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Caenorhabditis elegans hermaphrodite presents a unique model to study the
formation of oocytes. However, the size of the model animal and difficulties in
retrieval of specific stages of the germline have obviated closer systematic studies
of this process throughout the years. Here, we present a transcriptomic level
analysis into the oogenesis of C. elegans hermaphrodites. We dissected a
hermaphrodite gonad into seven sections corresponding to the mitotic distal
region, the pachytene region, the diplotene region, the early diakinesis region and
the 3most proximal oocytes, and deeply sequenced the transcriptome of each of
them along with that of the fertilized egg using a single-cell RNA-seq (scRNA-
seq) protocol. We identified specific gene expression events as well as gene
splicing events in finer detail along the gonad and provided novel insights into
underlying mechanisms of the oogenesis process. Furthermore, through careful
review of relevant research literature coupled with patterns observed in our
analysis, we delineate transcripts that may serve functions in the interactions
between the germline and cells of the somatic gonad. These results expand our
knowledge of the transcriptomic space of the C. elegans germline and lay a
foundation on which future studies of the germline can be based upon.
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Introduction

With a transparent body of less than 1,000 somatic cells, a fully sequenced genome
harboring 19,985 protein-coding genes (based on the WS291 annotation) and about 14 h of
embryogenesis time and 2 weeks of life span, the C. elegans hermaphrodite provides an
extraordinary model to understand cell differentiation and organogenesis (Sulston and
Horvitz, 1977; Sulston et al., 1983; Wood and Edgar, 1994; Consortium, 1998; Rose and
Kemphues, 1998; Labouesse andMango, 1999; Hillier et al., 2005; Kim et al., 2013a; Chu and
Shakes, 2013; Marcello et al., 2013; Robertson and Lin, 2013). Particularly, C. elegans gonad
provides an excellent model to understand meiosis (Pazdernik and Schedl, 2013), gamete
formation (Kim et al., 2013a; Chu and Shakes, 2013) and fertilization (Marcello et al., 2013).

In the C. elegans hermaphrodite germline, oogenesis occurs independently in two sets of
U-shaped gonads connected to a single shared uterus (Pazdernik and Schedl, 2013). Oocyte
formation begins at the distal end of each gonad withmitotically proliferating germline stem
cells near the single somatic distal tip cell (DTC) (Kimble and White, 1981). Proliferating
germ cells moving away from the DTC and begin to enter meiosis prophase I through a
transition zone, after which germ cells move along the gonad while going through the
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pachytene, diplotene and diakinesis stages, and ending in the most
proximal (-1) oocytes that awaits fertilization in the spermathecae
for progression into metaphase I and the subsequent formation of
the zygote (Kim et al., 2013b). Apart from the proximal oocytes in
diakinesis, most of the germline nuclei do not have fully enclosed
membranes and form a syncytium, sharing a nucleus free
cytoplasmic region called the rachis, which facilitates the
transport of RNAs and proteins to growing oocytes (Figure 1A)
(Wolke et al., 2007; Nadarajan et al., 2009). Throughout this process,
the germline also is enveloped by five pairs of gonadal sheath cells
(Sh1-Sh5 from distal to proximal), each pair serving distinct
functions through communication with the germline and
promoting the oogenesis program (Hall et al., 1999; Killian and
Hubbard, 2005).

However, for a long time this system is limited by its miniscule
size, preventing a detailed dissection of the biochemistry in each part
of the oocyte assembly line using techniques such as transcriptome
profiling using microarray (Reinke, 2002; Walhout et al., 2002;
Baugh et al., 2003) or bulk-RNA sequencing (RNA-seq) (Gerstein
et al., 2010; Spencer et al., 2011; Li et al., 2014), and proteome
profiling using mass spectrometry (Yuet et al., 2015), as all of these
techniques require a descent quantity of RNA/protein from at least
hundreds of thousand cells.

Recent studies have performed micro-dissections of the C.
elegans gonad and profiled transcriptomes of dissected segments
using single-cell RNA-seq (scRNA-seq) techniques (Diag et al.,
2018). However, these analyses mainly focused on the post-
transcriptional/translational regulation of germline transcripts via
binding of 3′UTRs to RBPs and miRNAs. Although these studies
provided expression estimates for genes from each segment as well,
they did not focus on other aspects of the transcriptome between the
segments that might also account for the progress of oogenesis.
Consequently, the research community still lacks a good
understanding of the machinery of the assembly line, such as key
regulators and gene expression patterns along the temporal and
spatial axis of the gonad.

To fill these gaps, we combined microdissection with scRNA-
seq technique (Tang et al., 2010a; Tang et al., 2010b; Ramskold et al.,
2012; Picelli et al., 2013), and profiled the transcriptomes
in the proliferative zone, pachytene zone, diplotene zone,
early diakinesis zone (before -3 oocyte stage), later diakinesis
zone (-3, -2, -1 oocytes), and the zygote. Our results revealed a
highly dynamic picture of gene transcriptional regulation at each
transitional time point throughout the oocyte assembly line. These
results should provide a foundation to further investigate the
molecular mechanisms of the oogenesis and fertilization processes.

FIGURE 1
Comparison of our datasets with existing ones. (A) A diagram of an isolated one side gonad together with a cartoon of one side gonad showing the
dissection positions for the segments along the one side gonad. (B) Number of samples from each stage of segments, oocytes and zygotes. (C)
Percentage of genes found expressed in each stage in previous studies that we found expressed in our study.
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Materials and methods

Experimental model

The AZ212 C. elegans strain (pie-1::H2B::GFP) was obtained
from the C. elegans Genetics Center (University of Minnesota), and
was maintained in E. coli OP50 lawn on an agar plate according to
the standard protocol (Stiernagle, 2006).

Method details

Dissection of the gonad and harvest
of samples

After a well-fed gravid hermaphrodite was immobilized in the
egg salt solution (ESS) containing 118 mM NaCl and 48 mM KCl
(Edgar and Goldstein, 2012) with 10% tetramisole (Sigma, St. Louis),
a cut was made across the vulva using a 26G subcutaneous needle
controlled by a micromanipulator (ROE-200, Sutter) under an
inverted microscope (Olympus 1X71). This would release
fertilized eggs and early-stage embryos from the uterus as well as
sperm and at least portions of the two sides of the gonad. Each end of
the gonad wrapped around by five pairs of sheath cells was
completely isolated by pushing its distal end as shown in
Figure 1A. The -1, -2 and -3 oocytes as well as the diakinesis
zone (S4), the loop corresponding to the diplotene zone (S3), the
pachytene zone (S2), and the distal proliferative zone (S1) were
sequentially isolated by a cut at the positions as shown in Figure 1A,
and similarly harvested. The zygote (fertilized oocyte) also known as
P0 was similarly harvested when the two pronuclei were fused at its
center (Figure 1A). Once a sample was harvested, it was immediately
transferred to a 200 μL PCA tube containing 4 μL cell lysis buffer
(0.45 μL 10X PCR buffer II, 3 mM MgCl2, 0.45% NP40, 4.5 mM
DTT, 0.18U/μL SUPERase-In, 0.36U/μL RNase inhibitor, and 2 mM
dNTP. All the reagents in the buffer were from Life Technologies
except NP40 (Roche). The PCR tube containing the sample was
incubated in a thermocycler at 70°C for 90 s and then transferred on
ice before being stored at −80 until use. Due to the difficulty for their
isolation, sheath cells wrapped around the gonad segments and
oocytes were also harvested in the samples. Moreover, despite
meticulous care taken during sample collection, some samples
may contain sperm released during gonad dissection. In total, we
harvested 136 samples, including 24 S1 segments, 24 S2 segments,
20 S3 segments, 16 S4 segments, 7 -3 oocytes, 15 -2 oocytes, 19 -
1 oocytes, and 11 zygotes (P0).

Preparation of RNA-seq libraries

In the early stages of the project, we prepare a sequencing library
for each harvested sample for Illumina platforms using a modified
scRNA-seq method based on Tang et al. as previously described
(Tang et al., 2010a; Tang et al., 2010b; Su et al., 2023). Samples
prepared during this time were either sequenced by 100 bp single
end reads on an Illumina HiSeq2000 with an average of 37, 508,
654 reads/sample or were sequenced by 100 bp paired-end reads on
an HiSeq2500 machine with an average of 17, 468, 703 reads/

sample). Later on, we prepared samples using the Smart-seq2
protocol (Picelli et al., 2013) later on. Samples produced during
this stage constitute most of our samples, which were sequenced by
125 bp pair-end reads on an Illumina HiSeq2500 machine with an
average 3,575,998 reads/sample.

Transcriptome mapping and quantification

The C. elegans genome assembly (GCA_000002985.3) was
obtained from NCBI Refseq, while the annotations were based on
Wormbase version: WS291. Prior to mapping, raw reads were
trimmed with Trim Galore (Krueger, 2015), with parameters
(quality ≥10, length >35 bp). We quantified the expression levels
of genes in two ways for different subsequent analysis. For
differential gene expression analysis, trimmed reads were mapped
to the genome using HISAT2 (Kim et al., 2019) with default settings,
read counts were obtained by using HTSeq (Anders et al., 2015) with
default settings based on the mapping results. The trimmed reads
were also mapped to the genome using Salmon (Patro et al., 2017)
with default settings to obtain transcript per million (TPM)
estimates for both genes and transcripts.

Quality control

Sequenced libraries were then assessed for quality with custom
scripts and quality metrics evaluated via the QoRTs package
(Hartley and Mullikin, 2015). First, we designated certain genes
as mitochondrial, ribosomal, sperm associated, intestine associated,
or stress associated based previous publications. Specifically,
ribosomal genes and mitochondrial genes were selected based on
gene annotations (Davis et al., 2022). Selection of sperm, intestine
and stress associated genes were based on manual curation of genes
from earlier studies along with a correlation analysis of gene
expression. Briefly, sperm associated genes are a combination of
curated sperm genes from previous studies (Reinke et al., 2004; Ortiz
et al., 2014) and genes whose expression levels were highly correlated
with those of major sperm protein genes (Supplementary Figure S1;
Supplementary Table S1). Similarly, intestine associated genes were
a combination of curated intestine genes in a previous study
(Mcghee, 2007) and in WormBase (Davis et al., 2022) and genes
whose expression levels were highly correlated with those of the
curated intestine genes (see specifics in Supplementary Figure S1;
Supplementary Table S1). Finally, stress related genes are a
commination curated stress genes in a previous study (Brunquell
et al., 2016) and genes whose expression levels are highly correlated
with the curated stress genes (Supplementary Figure S1;
Supplementary Table S1). A sample was filtered out if it met any
of the following criteria: i) over 5% reads (in terms of TPM) were
from themitochondrial genome; ii) over 5% reads (in terms of TPM)
were from rRNA genes; iii) over 5% reads (in terms of TPM) were
from sperm specific genes); iv) over 5% reads (in terms of TPM)
were from intestine specific genes; v) HISAT unique reads mapping
rate <70%; vi) less than 50% of HISAT uniquely mapped reads were
mapped to coding DNA sequences. These criteria were set to remove
samples that were of poor libraries quality or were heavily
contaminated by sperm, intestinal tissue and/or exhibited
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reduced quality during sample collection. To further increase the
robustness of subsequent analysis, samples were visualized using
Uniform Manifold Approximation and Projection (UMAP), and
those that largely deviated from clustered groups of the same sample
type were removed. We also included the 6 P0 (1-cell) samples of
Tintori et al. (2016) in our analysis, and the samples were processed
through the same pipeline as our own samples. We note that with
exception of comparisons with previously published datasets, all our
subsequent analyses were performed with genes excluding all
mitochondrial, ribosomal, stress, sperm and intestine
associated genes.

Comparison with previous datasets

Gene expression data from six previous studies were collected
from the following sources and compared with our data. For all
comparisons, we used filtered samples with all genes (genes were not
filtered). Details of the datasets and comparisons are as follows:

1) Reinke et al. (2004) provided the first microarray-based list of
oogenic genes. The list was retrieved from via their
Supplementary Material.

2) Ortiz et al. (2014) performed RNA-seq analysis on the gonad
to distill a list of genes termed oogenic. These genes were
acquired via their Supplementary Material, and genes marked
oogenic were used for our subsequent comparisons.

3) Stoeckius et al. (2014) performed RNA-seq on proximal
oocytes and 1 cell zygotes. Expression profiles were
acquired via the instructions in their paper and genes with
expression >0.5 RPKM were deemed expressed.

4) West et al. (2018) dissected the gonad into mitotic and meiotic
sections, and oocytes. RNA-seq data of each sample was
acquired via the Supplementary Material of the paper, and
genes with a reads count >0 were deemed expressed.

5) Tzur et al. (2018) utilized the Cel-seq protocol to sequence
10 segments of the C. elegans gonad, with 2 replicates per
segment. Alignment of these 10 segments to our segments
was based on diagrams presented in their study and rough
estimates of where their dissection occurred. The exact
alignments between their segments and ours are given in
Supplementary Table S2. Count matrices were acquired per
the authors’ instructions. Pearson correlation was
performed with log transformed count values using all
shared genes.

6) Diag et al. (2018) performed cryo-dissection of the
3 posterior and 3 anterior gonads into 13–15 segments
per gonad. This resulted in 85 slices sequenced via Cel-
seq. Expression profiles for these samples were retrieved
from GEO with accession number GSE115884. Samples
with <104 reads were discarded from correlation analysis
with our samples. The authors (Diag et al., 2018) provided
approximate slice label, slice size as well estimates size of
each gonad region. Thus, we were able to derive a coarse
conversion from their slices to our segments, as shown in
Supplementary Table S2. Pearson correlation was
performed with log transformed count values using all
shared genes.

Differential gene expression analysis

We performed differential gene expression analysis between each
two dissected neighboring stages along the developmental axis of the
gonads as above-described and zygotes using Monocle2 (Qiu et al.,
2017). Experimental batch and gene detection rate in each sample
were included as covariates along with segment/cell-type to model
normalized gene expression using the negbinomial. size model of
Monocle2. Because Monocle2 does not produce Log2FoldChange
(Log2FC) values, we applied Bayesian shrinkage of gene model
coefficients using the apeglm (Zhu et al., 2019) package to account
for large foldchange values of genes with low expression and obtain
shrunken Log2FC values for each gene. A model of gene expression as
a function of segment/cell-type was also fit to assess genes that were
differentially expressed across all stages prior to fertilization
(excluding P0). Genes with an Benjamini-Hochberg adjusted
p-value (BH p-adj) <0.05 and a fold change increase/decrease of
1.5 were considered differentially expressed. ClusterProfiler (Yu et al.,
2012) was used to perform Gene Set Enrichment Analysis (GSEA)
with pre-ranked shrunken Log2FC values and gene sets from KEGG
(Kanehisa et al., 2022), GO (Gene, 2021) Biological Pathways,
Reactome (Milacic et al., 2024) and Wikipathways (Martens et al.,
2021). Enrichment of each type of gene sets was performed separately,
and the results were aggregated. Only gene sets containing more than
10 and less than 250 genes were considered, and those with a q
value <0.05 were considered significantly enriched.

Clustering Co-expressed genes

The union of DEGs identified in all pairwise comparisons were
used for gene co-expression analysis. After the read count values of
genes were variance stabilizing transformed using the vstExprs
function of Monocle2 package, Pearson correlation coefficient
between expression levels of the genes in the samples were
calculated, and genes were hierarchically clustered using the
“ward.D2” method of the hclust function in R. Upon visual
inspection of the resulting clustering heatmaps, the clusters were
set at a hierarchical level. Each cluster was then subject to enrichment
analysis for GO biological process (BP) terms using ClusterProfiler
(Yu et al., 2012) to identify significantly enriched terms for the cluster.
Gene expression as well as the respective clusters were visualized with
the ComplexHeatmap package (Gu, 2022), and the top three most
significantly (q value < 0.05 or p-value < 0.001) enriched GO terms
were shown alongside the heatmap.

Validation of expression patterns of DEGs
using in situ hybridization (ISH) images in the
NEXTDB database

For an identified DEG cluster, we focused only on genes that
have in situ images in NEXTDB database (Shin-i and Kohara, 1999).
We then selected genes that had an average normalized expression
level >500 across all gonadal segments (S1 to -1, we did not include
zygote expression due to inconsistent staining of zygotes in the
NEXTDB database) to ensure visible imaging signals in at least one
segment for most genes.We denote the maximum Fold Change (FC)
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for a gene as the maximum absolute FC of the gene across all its FCs
between adjacent gonad segments (S1 vs. S2, S2 vs. S3, etc.). We then
select at most 10 genes with highest maximum FC values. If the
cluster had less than 5 genes selected, we then considered all genes
with an average expression level >100 in at least one of the segments
and selected at most 5 genes with highest maximum FC values. For
each selected gene, we manually examined the ISH images of its
transcripts in NEXTDB.

Differential alternative
polyadenylation analysis

3′UTR regions were extracted from the WS291 annotation via
custom scripts to only include 3′UTR regions that did not overlap
coding exons and other UTR regions. The Samtools (Li et al., 2009)
depth function was used to obtain pair-read aware coverage of the
genome for each samples with HISAT2 (Kim et al., 2019) aligned bam
files. Coverage for each sample was normalized with DESeq2 (Love
et al., 2014) size factors before estimation of polyadenylation site and
long/short 3′UTR coverage, and Percentage of Distal poly-A site Usage
Index (PDUI) was computed performed using DaPars2 (Feng et al.,
2018; Li et al., 2021).Modification to theDaPars2 programwasmade to
begin polyadenylation site search starting from 25 bp downstream of
3’UTR’s 5′ end. For each neighboring stages comparison, only 3′UTRs
that belonged to a gene with a mean count >10 across all compared
samples and had PDUI values in at least three samples in both stages
were tested for differential alternative polyadenylation. Fisher’s exact
test was performed with the average long/short 3′UTR coverage in
compared stages, and the resulting p-values were corrected for false
discovery rate (FDR) via the Benjamini Hochberg method. Genes that
had FDR <0.05 and |PDUI difference| >0.05 were called for
significantly differential alternative polyadenylation. ClusterProfiler
(Yu et al., 2012) was used to perform GO BP (Ashburner et al.,
2000) term enrichment analysis, and significant terms with
FDR <0.05 were called significantly enriched. Visualization was
made with the trackViewer (Ou and Zhu, 2019) R package.

Differential splicing analysis

Differential splicing analysis was performed using rMATS (Shen
et al., 2014) that calculated splicing Psi values and evaluated their
statistical significance. rMATS classifies splicing events into five
categories: alternative 3′ splice site (A3SS), alternative 5′ splice site
(A5SS), retained intron (RI), mixed exon usage (MXE), skipped
exon usage (SE). A splicing event with a Psi value change >0.1 and an
adjusted p-value <0.05 was significant.

Results

Expression levels of detected genes
correlate well with those from
previous studies

We cut each isolated gonad into seven segments roughly
corresponding to the stages of oocyte development (Figure 1A)

(Materials and Methods), and the number of samples collected for
each segment, oocyte and the zygote are shown in Figure 1B. To
assess the quality of the RNA-seq libraries, we evaluated the
similarity between the detected genes and their expression
values and those from six previous studies (Reinke et al., 2004;
Ortiz et al., 2014; Stoeckius et al., 2014; Diag et al., 2018; Tzur et al.,
2018; West et al., 2018) (Materials and Methods). Four (Reinke
et al., 2004; Ortiz et al., 2014; Stoeckius et al., 2014; West et al.,
2018) of these studies largely quantified expression levels in entire
gonads or large sections of the gonad, thus we aggregated gene
expression in corresponding samples to allow reasonable
comparisons. Our aggregated expression profiles recall over
90% of expressed genes in all the four datasets (99% for Reinke
et al., 2004; 93% for Ortiz et al., 2014; 95% for Stoeckius et al., 2014;
96% for West et al., 2018) (Figure 1C), indicating that our data are
consistent with these earlier results.

Furthermore, two of these studies (Diag et al., 2018; Tzur
et al., 2018) dissected the C. elegans gonad into multiple segments
and profiled the transcriptome of each segment using a variety of
techniques including RNA-seq. As both studies cut the gonad in
more segments than we did, we thus aggregated data from the
segments of (Diag et al., 2018) and (Tzur et al., 2018) according to
the alignments of the segments (Materials and Methods;
Supplementary Table S2), so that data from largely the same
segments as ours were compared. Our detected genes in each
segment/oocyte recall most of detected genes in the
corresponding aggregated segments by (Tzur et al., 2018) and
(Diag et al., 2018) (Figure 1C). Moreover, the expression levels of
genes in our segments are largely correlated with those in the
corresponding aggregated segments in the two prior studies
(Supplementary Figuers S2A, B). These results suggest that we
have largely correctly align the segments in both studies to ours.
However, notably, our detected genes have higher recall rates
(Figure 1C) for and higher correlation coefficients
(Supplementary Figuers S2A, B) with those of (Tzur et al.,
2018) than for and with those of (Diag et al., 2018). This
might be due to the higher similarity in gonad dissection
between our segments and those of (Tzur et al., 2018) than
between our segments and those of (Diag et al., 2018). These
results further suggest that our detected genes are largely
consistent with those detected by previous studies.

Differential gene expression mostly occurs
in early stages of oogenesis and -1
proximal oocytes

Dissection of the C. elegans hermaphrodite gonad is a delicate
procedure that is prone to contamination from neighboring
tissues, particularly, intestine cells and released sperm. To
mitigate the effects of such contaminations, we filtered sperm-,
intestine- and stress-related genes in the samples and discarded
heavily contaminated samples following a procedure (Materials
and Methods; Supplementary Figuers S1;
Supplementary Table S1).

We inspected the relationships among our samples via UMAP
visualizations. As shown in (Figure 2A), the samples form into
two distinct clusters, indicating strong batch effects in our
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datasets possibly due to the two different scRNA-seq library
preparation protocols used at different stages of the project
(Materials and Methods). Nonetheless, a trajectory from
S1 samples to -1 oocytes and zygote samples is formed in both
batches, which is in line with the developmental path of the
germline. Thus, we account for batch effects in subsequent
analysis when possible. Inspection of the number of genes

expressed in each segment/cell type shows a clear pattern,
i.e., the number of expressed genes increased from S1 to S3,
before dropping slightly in S4 and exhibiting only minor changes
before another increase in the -1 oocyte and finally a large
decrease in the fertilized oocyte (Figure 2B). Therefore, it
appears that gene transcriptional regulation mostly occurs in
early stages of oogenesis, particularly between the S2 (pachytene)

FIGURE 2
UMAP display of samples and differential expression analysis of genes between neighboring stages. (A) Both batches of samples are clustered
according to their positions along the gonad developmental axis by UMAP based on their measured transcriptomes. Libraries of batch A were mainly
prepared using a modified Tang protocol (Tang et al., 2010a; Tang et al., 2010b; Su et al., 2023), and libraries of batch B were mainly prepared using the
Smart-seq2 protocol (Picelli et al., 2013). (B) Boxplot of numbers of genes detected in the samples in each developmental stage of the gonad and
zygotes. (C) Number of upregulated and downregulated genes detected between each pair of neighboring stages, see Supplementary Table S3
for details.
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and S3 (diplotene) transition and becomes progressively quieter as the
oocyte goes through the S4 stage and -3/-2 oocytes (Figure 2B). Gene
transcription appears to reactivate in the -1 oocyte as a potential
preparation for fertilization (Figure 2B). To further reveal gene
expression transitions along the developmental axis of the gonad,
we analyzed DEGs between each pair of neighboring stages with
the earlier stage as the baseline reference in each comparison
(Figure 2C; Supplementary Table S3). Transition from S2 to
S3 invokes the largest number of upregulated DEGs, and transition
from -3 to -2 has the smallest number of DEGs, while fertilization
triggers the largest number of downregulated DEGs in the
zygotes (Figure 2C).

DEGs form distinct clusters that are
significantly enriched for various functions
related to oogenesis

To reveal functional modules underlying the maturation process
and fertilization of oocytes, we clustered the union of DEGs
identified in all neighboring stages comparisons, based on their
expression levels in all analyzed samples. As shown in Figure 3, the
DEGs form 20 distinct clusters that are significantly enriched for
various functional modules. For instance, clusters 2, 4 and 6 are
significantly enriched for ribosomal and translation related
processes. All these three clusters of genes exhibited a

FIGURE 3
Heatmap of hierarchical clustering of DEGs using their transcription levels across the seven stages of oogenesis and zygotes. Enriched GO BP terms
in some clusters are shown. See Supplementary Table S4 for details.
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downregulating trend of expression, albeit with their largest decrease
at different stages. Cluster 14 and 15 are enriched for genes involved
in programmed cell death, with expression levels elevated in the
S3 stage corresponding to the diplotene loop. However, genes in
cluster 14 were quickly downregulated after the S4 stage, while genes
in cluster 15 retained similar transcription levels through the
subsequent stages. Cluster 18 -20 are all enriched for processes
related to oogenesis, e.g., eggshell formation and female gamete
generation. Genes in these three clusters exhibited increasing trends
of expression from S1 to -1 the most proximal oocyte (-1), with the
largest increases happening in the early stages (S1-S3). However,
genes in cluster 18 experienced reduced expression after fertilization
in the zygotes (P0 cells), while genes in cluster 19 and 20 remained at
similar expression levels. Furthermore, genes in cluster 18 are
enriched for eggshell formation, suggesting that transcripts-
related to eggshell formation begin degradation post-fertilization
after their protein products are no longer needed. Most DEGs
belonging to the larger clusters 16 and 17 exhibited similar
increases in expression from S2 to S3 and maintained steady
levels of expression throughout the later stages even post
fertilization. These genes are involved in phosphorylation, synaptic
transmission and signaling, positive regulation of transcription,
neuronal differentiation, cell fate specification and cell migration.
Interestingly, cluster 17 is strongly enriched for genes involved in
neuronal development, suggesting common functional modules
might be used in the differentiation processes of both neurons and
oocytes. Cluster 9 is enriched for genes involved in muscle structures
and myofibril assembly. As mentioned above, proximal gonadal
sheath cells serve the role of pushing oocytes into the
spermathecae and require many components like those of muscle
cells. Thus, it is highly likely that genes of this cluster originate from
proximal sheath cells wrapped around the proximal oocytes. It is also
worth noting that gene expression pattern of cluster 9 differ from
those of clusters 16 and 17 in that expression of genes in cluster
9 almost completely disappears in fertilized zygotes, likely due to the
absence of sheath cells surrounding the isolated zygotes. Cluster
1 exhibits no obvious pattern of change in expression and the
expression levels are generally low. These genes are enriched for
defense response related processes and might be required at low levels
along the gonad temporospatial axis. Both clusters 5 and 11 are
enriched for extracellular matrix organization. It has been shown that
many genes (mig-6, mig-39, lag-2, let-2, epi-1, etc.) in the two clusters
(Supplementary Table S4) were preferentially expressed in the distal
mitotic regions of the gonad and played roles in extracellular matrix
organization and distal tip cell migration (Henderson et al., 1994;
Huang et al., 2003; Kawano et al., 2009; Kikuchi et al., 2015).
Consistently, expression levels of these genes were elevated in S1.

We also performed GSEA using shrunken log2FC values of all
genes evaluated between each pair of neighboring stages and the
results are summarized in Supplementary Table S4. Although most
of the GSEA results are in accordance with those observed in the
gene clustering enrichments (Figure 3), surprisingly, GSEA finds
upregulated genes enriched for cell cycle activity, mitosis,
transcription, mRNA splicing, mitochondrial translation, and
ATP production in the -1 oocytes vs. P0 comparison
(Supplementary Table S5). This suggests that transcriptional
activation of cell division and energy production is present in
the zygote.

Detected gene expression patterns mostly
align with ISH images in the
NEXTDB database

To validate our detected gene expression patterns along the
developmental axis of the gonad, we resorted to ISH images in the
NEXTDB database (Shin-i and Kohara, 1999). Of our 3,520 DEGs,
2,223 have ISH images in NEXTDB. However, not all in situ images
showed clear imaging of the L4 stage worm gonad. Furthermore,
genes with low expression, very high expression or relatively low FC
along the gonad segments will likely exhibit poor clarity of
expression pattern. Thus, to validate our expression results, we
attempted to select for genes that would likely exhibit clear
expression patterns in NEXTDB for each of the gene clusters,
except for cluster 1 and 8. We did not validate genes in cluster
1 due to the enrichment of defense to pathogen, suggesting genes of
cluster 1 were likely due to stress in some segments/cells, and may
not represent interesting patterns that underlie oogenesis, while
validation of genes in cluster 8 is shown separately in
subsequent sections.

In total, we selected 121 DEGs that were distributed in 17 of the
20 clusters (Supplementary Table S6), no DEGs in cluster
12 matched our selection criteria. Of these 121 DEGs, 80 genes
(67%) distributed in 14 clusters have clear staining of the gonad in
NEXTDB. Examples of images of 44 of these genes along with our
detected expression pattern are shown in Supplementary Figures
S13–S15. Our detected expression patterns of the genes along the
gonad are in excellent agreement with the corresponding images.
For instance, in the case of the mig-6 gene of cluster 5, ISH images
show that its expression is only evident in distal tip cells, which is
reflected in our diagram of gene expression pattern showing its
decreased expression from S1 to S2. Other examples such as that of
ribosomal protein subunit genes rps-21, rps-22 and rpl-11.1 show
clear decreasing ISH staining in accordance with our expression
results (Supplementary Figure S3). Genes increasing in expression
during oogenesis such as that of cpg-1/2 and egg-1 also show
accordance with their respective ISH Supplementary Figure S13).
We further note that genes from cluster 9, which was enriched for
muscle related genes, show staining around proximal oocytes,
reinforcing our hypothesis that genes of cluster 9 may be mainly
of sheath cell origin (Supplementary Figure S7). We thus conclude
that our detected gene expression patterns along the gonad are
generally accurate.

In silico analysis of proximal oocytes and
zygotes may uncover putative sheath cell
expression

The hermaphrodite gonad is tightly wrapped by five pairs of
sheath cells that provide germline maturation signals, move germ
cells along the rachis and push proximal oocytes into the
spermathecae (Hall et al., 1999; Killian and Hubbard, 2005). Due
to the tight conjugation between the sheath cells and the germline,
completely separating them without damage was difficult. Thus, we
collected sheath cells along with the segments and oocytes (Materials
and Methods). Nonetheless, this also presented us an opportunity to
investigate the transcriptome of the sheath cells if we were able to
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decipher in silico whether the expression of a gene originated from
the germline or from the surrounding somatic tissues. As zygotes
were often released in the medium once a cut was made across the
vulva, and were always collected without obvious objects wrapped
around, thus we reason that the zygote sample was unlikely
contaminated by surrounding somatic cells. Therefore, we
postulate that genes that are detected in proximal oocytes (-1 to
-3) but absent in zygote samples are likely from sheath cells, and find
many genes meet this criterion, such as those in clusters 7–9
(Figure 3). For instance, the expression levels of itr-1 and let-23
were relatively stable between -2 and -1 oocytes prior to dropping
significantly in the zygotes, while that of lin-3 remained high and
relatively unchanged between proximal oocytes and zygotes
(Figure 4A). The contractile activity of sheath cells begins with
major sperm protein signals to the proximal oocytes, which in turn
produces and releases the LIN-3 ligand that is received by the LET-
23 receptor on proximal sheath cells (Miller et al., 2001). The LET-
23 receptor then triggers signaling inside the sheath cells through

PLC-3, which phosphorolyzes IP3 that binds to ITR-1 receptors on
the ER, causing the release of calcium (Yin et al., 2004). Moreover,
sheath cell specific innexin channel encoding genes inx-8 and inx-9
(Starich et al., 2014) maintained intermediate expression levels in
S1~S4 stages, and were highly upregulated in proximal oocytes, but
had negligible expression levels in the zygotes (Figure 4B).
Furthermore, expression levels of sheath cell contractile activity
related genes were also progressively increased along the gonadal
development axis, but almost vanished in zygote samples, such as
genes pat-10, mup-2, tni-1 and unc-27 coding for the troponin
complex (Ono and Ono, 2004; Obinata et al., 2010) (Supplementary
Figure S16A), and genes unc-54 and myo-3 coding for the myosin
heavy chain (MHC) (Shelton et al., 1999; Ono and Ono, 2016)
(Supplementary Figure S16B).

Similar reasoning can be made with other genes that have
evidence of somatic or germline origins. Searching the CenGEN
database (Hammarlund et al., 2018) revealed genes perm-2/4, which
encode components of the eggshell (Gonzalez et al., 2018), had the

FIGURE 4
Examples of transcriptional dynamics of possible sheath cell genes along the gonad developmental axis. (A) Genes coding for hemichannels (inx-8
and inx-9) of the somatic gonad. (B) Genes coding for components signaling pathways between proximal sheath cells and oocytes. (C) Distribution of
Log2FC values between neighboring stages of the DEGs that are significantly downregulated in the −1 vs. P0 comparison. A small portion of these DEGs is
significantly upregulated in the −2 vs. −1 comparison as indicated by the right peak of the distribution compared to other comparisons, see
Supplementary Table S7 for details. (D) Genes coding for ULE-3/5. (E) NEXTDB in situ imaging of ule-3 expression in spermathecae. In each gonad
diagram, the average expression levels of the genes in each segment or the zygote are shown. BH p-adj: * <0.05; ** <0.01; *** <0.0001.
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highest expression levels in sheath cells. Expression of perm-2/4 was
absent in P0 but high in -1 oocytes (Supplementary Figure S16C),
while genes egg-1/2, which encode other known components of the
eggshell that are produced in the germline (Kadandale et al., 2005),
did not exhibit such significant decrease of expression in P0
(Figure 5B) (Kadandale et al., 2005). The expression of mlc-1/3,
which are myosin light chains genes involved muscle activity

(Moerman et al., 1997; Rushforth et al., 1998) through regulation
of the ATPase activity of the MHCs were all high in -1 oocytes but
absent in P0, while the expression of mlc-4, a non-muscle myosin
light chain gene that is required for cytokinesis in zygotes, was
present in P0 (Supplementary Figure S16D) (Shelton et al., 1999;
Ono and Ono, 2016). Analysis of actin genes act-1/2/3/4 (Ono and
Pruyne, 2012; Ono, 2014) finds act-4 expression level increased in

FIGURE 5
Examples of transcription of DEGs that are involved in key events of oogenesis and fertilization. (A) Genes encoding different elements of the
eggshell. (B)Genes involved inmitosis-meiosis transition andmeiotic maturation. (C)Genes involved in apoptosis with expression throughout the gonad.
(D) Genes involved in apoptosis with elevated expression starting from the S3 stage. (E) Genes involved in apoptosis showing transient expression in the
S3 stage. (F) Boxplot of transcription levels of genes coding for ribosomal subunit across each stage of gonad development and in zygotes. BH p-adj:
* <0.05; ** <0.01; *** <0.0001.
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the -1 oocyte and subsequently significantly downregulated in
zygotes (Supplementary Figure S16E). Considering the previous
finding that act-1/2/3 were expressed in both muscle and non-
muscle cells, while act-4 was expressed predominantly in body wall
muscle (Stone and Shaw, 1993;Willis et al., 2006), our results suggest
that the increased expression of act-4 seen in -1 oocyte samples may
be primarily of sheath cell origin, and that changes in act-4
expression may reflect differences in sheath cells.

Proximal oocyte expression profiles reveal
potential interactions between the germline
and the spermathecae

We compared the distributions of log2FC values for all the
DEGs that exhibit significantly lower expression levels in zygotes
(P0) compared to -1 oocytes. As shown in Figure 4C, a
considerable number of the genes show a significant increase
in expression between the -2 vs -1 comparison, as indicated by an
additional small peak with higher Log2FC values in the
distribution compared to other comparisons. These genes are
largely those in clusters 7 and 8 (Figure 3). This is interesting, as
early studies indicate transcriptional inactivity or an overall
presence of transcriptional silence as oocytes move to the
proximal end (Starck, 1977; Walker et al., 2007). Though this
was the case between the -3 and -2 oocytes, it was clear that there
were significant differences in transcripts detected between the
-2 and -1 oocytes (Figure 2B). This expression pattern appeared
different from expression patterns of genes of gonadal sheath
origin that we described earlier, where the expression levels stay
relatively stable in the proximal oocytes. We took notice of two
Uterine Lumen-Expressed (ule) genes ule-3 and ule-5
(Figure 4D), which exhibited sudden increases in transcription
from 10-fold to 100-fold between the -2 and -1 oocyte transition.
It has been reported that ule-3/5 might play a role in driving the
ageing of the reproductive system, though the origin of their
expression is not clearly discernible (Zimmerman et al., 2015). A
more recent study utilizing fluorescent in situ hybridization
(FISH) to track the origins of these transcripts suggests a
mechanism by which the transcripts are produced in
spermathecae and carried over into the proximal oocytes
(Trimmer et al., 2023). Using the expression of ule-3/5 as a
reference, we discerned a set of 25 genes displaying the similar
expression pattern (Supplementary Table S7) by invoking a
stringent criterion: Log2FC < −7 in the -1 vs. P0 comparison;
and Log2FC > 4 in the -2 vs -1 comparison; and average Median
Normalized Expression in -1 oocytes >1,000. This criterion also
allows us to potentially filter out genes with increased expression
due to differences between proximal sheath cells, as those
expression changes may not be as drastic. Of these 25 genes,
17 have ISH images the NEXTDB database (Kohara, 2001), of
which 13 (including ule-3) exhibited clear localization of
transcripts in the spermathecae region (Figure 4E;
Supplementary Figure S7). These results suggest possible
interactions between transcriptionally silent oocytes and their
somatic neighbors, where transcripts in the surrounding
spermathecae might be transferred into the proximal oocytes
and rapidly depredated in the zygotes.

DEGs mark transcriptional timing of the key
events of oogenesis and fertilization

One of the early key events in the oogenesis process is the control
of mitosis and meiosis. Thus, it is interesting to look into the
transcription patterns of GLD-1/2/3, which promote germline
differentiation (Eckmann et al., 2004), and the RNA binding
proteins (RBP) FBF-1/2, which maintain mitosis in the distal
germline via inhibition of GLD activities (Crittenden et al., 2002).
We found that gld-1/2 maintained high expression along the entire
gonad developmental axis, while gld-3 exhibited increased
expression between S1 and S2, and the levels were maintained
thereafter (Figure 5A). Expression of fbf-1/2 showed was high in
the S1 stage, but subsequently decreased in the S2 and S3 stages and
beyond (Figure 5A). In addition to maintaining mitosis in the distal
gonad via repression of transcripts of meiosis promoting gene gld-1
and gld-3 (Crittenden et al., 2002; Hansen et al., 2004), FBF-1/
2 regulate one another and function antagonistically for the
transition between mitosis to meiosis, with FBF-2 promoting
meiotic entry (Wang et al., 2020; Albarqi and Ryder, 2023).
These results suggest transcript level regulation of fbf-1/2 may
contribute to the translational de-repression of meiosis
promoting factors. Furthermore, we observed transcriptional
changes of key genes involved in the maintenance of germ cells
in meiotic prophase I such as OMA-1/2 and LIN-41 (94).
Specifically, the expression of oma-1/2 and lin-41 gradually
increased throughout the early stages (S1 and S2) of oogenesis
followed by high elevations in the S3 stage, which were
maintained even after fertilization, apart from lin-41, whose
expression dropped after fertilization (Figure 5A). It has been
suggested that LIN-41 could prolong prophase I and inhibit
meiotic maturation after fertilization by a translational level
regulatory mechanism (Spike et al., 2014; Tsukamoto et al.,
2017), thus diminishment of the lin-41 transcripts in zygotes
suggests that transcriptional degradation might also play a role in
the exit of the oocyte from metaphase I upon fertilization.

We also found that many genes coding for eggshell components
were upregulated in distal segments of the gonad, far before the
complete formation of the eggshell that happened around the early-
stage embryo (Stein, 2018). Genes coding for components of the
vitelline layer (cbd-1) (Gonzalez et al., 2018), the chitin layer (chs-1,
gna-2, egg-1/2/3) (Kadandale et al., 2005; Zhang et al., 2005;
Johnston et al., 2006; Maruyama et al., 2007; Johnston and
Dennis, 2012) and the proteoglycan layer (cpg-1/2) (Olson et al.,
2006) all exhibit increased expression in early stages of the germline
until after fertilization (Figure 5B). ISH images of egg-1 and cpg-1/2
transcripts in NEXTDB are in good agreement with our results
(Supplementary Figure S13). These results suggest that transcription
of these eggshell genes occur mostly during the mitosis to meiosis
transition and the pachytene, while translation and degradation of
these transcripts might occur as a response to fertilization signaling.

Moving along the germline, another key event of oogenesis
happens in the diplotene loop (S3) where germ cells undergo
apoptosis (Gartner et al., 2008). Interestingly, we find that genes
regulating apoptosis form three distinct patterns of expression. The
expression of genes encoding core apoptosis machinery such as
apoptosis initiators CED-4/3 (103) and apoptosis inhibitor CED-9
(Hengartner et al., 1992) were relatively stable in the distal gonad
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(with only ced-3 exhibiting increase of expression between S1 and
S2) in (Figure 5C). The high expression levels of ced-3/4/9were
largely maintained thereafter (Figure 5C). Two other genes cgh-1 and
car-1, RNAi depletion of which have been found to contribute to
increased physiological apoptosis in the germline (Navarro et al.,
2001; Boag et al., 2005), show significant increased expression in
S2 and slight decrease of expression in S3. Our results suggest that
levels of car-1 and cgh-1 may be partially transcriptionally
downregulated to induce apoptosis in a portion of the germ cells.

Expression of ced-8, which encodes a transmembrane protein
likely involved in apoptosis dynamics and functions as a cell death
effector downstream of the CED-3 Caspase (Stanfield and Horvitz,
2000; Chen et al., 2013), follows a different pattern with significant
upregulation in the S3 stage, and maintaining high expression until
fertilization (Figure 5D). The sudden increase in ced-8 transcription in
the S3 stage suggests that CED-8 might play an important role in
promoting cell killing via phagocytosis during germline apoptosis
(Chen et al., 2013). Other genes such as eor-2 and dre-1 showed
expression patterns like that of ced-8, with elevated expression starting
from the pachytene (S3) loop onwards through fertilization
(Figure 5D). DRE-1 has been found to interact directly with CED-
9 in regulating apoptosis (Chiorazzi et al., 2013). Early studies have
found EOR-2, along with EOR-1 to induce apoptosis in neuronal cells
(Hoeppner et al., 2004). However, we only observed upregulation of
eor-2 (Figure 5D) but not of eor-1 in the germline, suggesting a
possibly different mechanism of EOR-2 induced apoptosis in the
germline than in neuronal cells.

The third group of apoptosis related genes follow a different
expression pattern that can be characterized by the expression
profile of egl-1, which encodes a direct downstream target of
CED-4 and an inhibitor of CED-9, thus playing a critical role in
DNA damage induced germline apoptosis (Huang et al., 2013). Egl-1
exhibited a transient increase in transcription in the pachytene loop
(S3) that did not go beyond the S4 stage (Figure 5E). Other apoptosis
related genes such as csp-1 and ces-2 displayed expression patterns
like that of egl-1 (Figure 5E). Consistently, an earlier study found
that csp-1was expressed in late stage pachytene of the germline using
FISH imaging (Denning et al., 2013). Ces-2 has been implicated in
the apoptosis of neuronal cells in C. elegans, though a previous study
suggested that ces-2 was not essential for germline apoptosis
(Metzstein et al., 1996). However, the sudden upregulation of ces-
2 transcription in S3 strongly suggests a role of ces-2 in apoptosis of
the germline. Furthermore, since all 3 genes belong to cluster 14
(Figure 3), it is likely cluster 14 contains other genes that are related
to apoptosis as well.

As shown in Figure 5F, genes encoding ribosome subunits and
other translation-related proteins generally exhibited downtrends in
transcription as oocytes matured and prepared for fertilization,
consistent with a previous observation (Diag et al., 2018).
Though downregulation occurs early on in the pachytene, the
most significant downregulation occurs between S4 and -3 and
includes many ribosomal protein subunits, such as rla-0/1, rpl-1/2/3/
4/5/7/9/10/13/14/15/16/17 and rps-0/1/2/3/4/5/7/8/9/10/11/12/13/
14/15 (Supplementary Table S3) (Nakao et al., 2004). Moreover,
the reduced expression of ribosomal protein genes from the S4 stage
and beyond suggests that the transcription of translational
machinery required for oocyte maturation might have been
completed before the diakinesis stage.

Differential alternative polyadenylation
activity resumes post-fertilization

Though many studies focused on regulation of translation
through the 3′UTRs of transcripts by RNA binding proteins
(RBPs), few have elucidated changes of the 3′UTRs themselves
(Merritt et al., 2008; Mangone et al., 2010; Diag et al., 2018;
Steber et al., 2019). Thus, we analyzed differential alternative
polyadenylation (DAP) usage through the DaPars2 software
(Feng et al., 2018; Li et al., 2021), which estimates changes in
proportion of distal (lengthened 3′UTR) and proximal (shortened
3′UTR) polyadenylation sites used under two different conditions.
We found very few significant changes in distal versus proximal sites
usage between neighboring stages, apart from the S4 vs. -3, -3 vs.
-2 and -1 vs. P0 comparisons (Figure 6A). GO term enrichment
analysis found that only the -1 vs. P0 comparison resulted in
significant enrichment of genes with DAP for mitotic cell cycle
related processes, mostly with shortened 3′UTRs (Figure 6B). For
instance, we found that cyb-1/2.2 exhibited shortened 3′UTRs while
cdk-1 exhibited lengthened 3′UTR (Figure 6C). CYB-1/2.2 along
with CDK-1 regulate M phase entry of cell cycle in C. elegans
(Rabilotta et al., 2015). Though most DAP genes between -1 oocytes
and P0 exhibit shortened 3′UTR (Figure 6B), it is not
straightforward how usage of distal vs. proximal sites regulates
protein production. Furthermore, despite very few significant
DAP genes in the early stages of oogenesis, we found the par-5
gene to exhibit DAP in both the S1 vs. S2 and -2 vs. -1 comparisons
(Figure 6C). In fact, 3′UTR length of the par-5 transcript gradually
decreased until the -3 stage before increasing again afterward
(Figure 6C). Previous studies found that PAR-5 regulates
asymmetric cell division and alternative 3′UTR isoforms of par-5
confers different levels of the PAR-5 protein (Mikl et al., 2014).
Interestingly, most genes with DAP between S4 and -3 oocytes
exhibited an increase in 3′UTR length, while most genes with DAP
between -3 and 2 oocytes exhibited decreased in 3′UTR length
(Figure 6A). However, it is unclear whether this is because -3 oocytes
are fully cellularized and maintain a stable transcriptome or
other factors.

Differential splicing play roles in germline
development

We further performed differential splicing analysis using rMATs
(Shen et al., 2014) to look for differential transcription of
alternatively spliced isoforms of genes between neighboring stages
along the oocyte developmental axis. Since rMATs could not
account for batch effects, we performed the analysis with samples
from Batch A (Figure 2A). We identified varying numbers of genes
exhibiting significant splicing signals defined by rMATs,
i.e., alternative 3′ splice site (A3SS), alternative 5′ splice site
(A5SS), retained intron (RI), mixed exon usage (MXE), skipped
exon usage (SE), between neighboring stages. Most notably, the
S1 vs. S2 and the S4 vs. -3 oocyte comparisons yielded the most
differential splicing usage with 58 genes and 54 genes exhibiting
differential splicing, respectively (Figure 7A). Genes with differential
splicing usage between the S1 vs. S2 comparison are enriched for GO
terms related to mitosis (Figure 7B), which is expected, given the fact
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that S1 contains the TZ regions (Figure 1A). However, other
neighboring stages comparisons yielded no significantly enriched
GO BP terms. A few interesting examples are detailed as follows.

Gene inx-14 was differentially spliced during the S1 to
S2 transition (Figure 7C). Specifically, inx-14 was preferentially
utilized for its longer sixth exon in the S2 stage compared to the
S1 stage, resulting in increased proportions of its F07A5.1b isoform
(Figure 7C). It has been documented that germline innexins INX-
14/INX-21 and somatic innexins INX-8/9 forms gap channels that
facilitate the communication between the somatic gonad and the
distal germline to promote germline proliferation (Starich et al.,
2014). UniProt designates the F07A5.1b isoform as the canonical

isoform, differing from the alternative F07A5.1a isoform by 2 amino
acids in the 406-407 positions. Our results suggest a possible
mechanism by which INX-14 functions are regulated. (Starich
et al., 2014).

Another notable event was a gradual increase in preference of
zen-4 skipping its eighth exon in the S1 to S3 transition (Figure 7D).
Specifically, zen-4 is predominantly spliced in mutlple isoforms,
including M03D4.1a.1, M03D4.1c.1, M03D4.1d.1 and M03D4.1f.1
(Figure 7D). This is due to the lack of read coverage for the regions
that are spanned by the other isoforms (Figure 7D). The exon
skipping event is indicative of decreased preference for the
M03D4.1d.1 and M03D4.1f.1 isoforms, which contain the

FIGURE 6
Differential alternative polyadenylation (DAP) analysis of genes between neighboring stages. (A) Number of DAP genes between each neighboring
stage, colors indicate lengthening (purple) or shortening (yellow) of 3′UTR lengths. (B) GO term enrichment of significant DAP gene between F1 and P0
(left panel), and bar plot of percentage of significantly lengthened or shortened genes in each enriched gene set, GeneRatio is the proportion of
differentially polyadenylated genes that belong to a known gene set. (C)Coverage by RNA-seq reads of 3′UTRs of genes cyb-1/2.2, cdk-1 and par-5,
red lines mark the estimated proximal polyadenylation site. BH p-adj: * <0.05; ** <0.01.
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skipped exon in the other isoforms (Figure 7D). ZEN-4 along with
CYK-4 forms the central spindlin complex, a conserved component
of intercellular bridges that function in cellularization of oocytes
during cytokinesis (White and Glotzer, 2012; Zhou et al., 2013; Lee
et al., 2018). Though a recent study suggested that ZEN-4 was not
essential in the germline for the closure of the intercellular bridge
(Lee et al., 2018), our results suggest that as the oocyte moves along
the rachis into late pachytene stage, alternative isoforms of zen-4
may play a role in the cellularization of maturing oocytes.

In addition, we found that ife-3 switched isoforms during the
S1 to S2 transition (Figure 7E). The ife-3 gene encodes one of the C.

elegans homologs for human translation initiation factors (eIFs) that
play critical role in regulating mRNA content along with microRNA
and RBPs binding proteins (Huggins et al., 2020). More specifically,
ife-3 functions as a repressor of fem-3 expression to promote
production of oocytes in the germline (Mangio et al., 2015;
Huggins et al., 2020). Here, we showed a switch in ife-3 splicing
preference for the B0348.6b and B0348.6c isoforms over the shorter
B0348.6a isoform (Figure 7E). Along with a slight increase in ife-3
expression, these results hint at a possible mechanism of ife-3
regulation in the pachytene stage of oogenesis. Interestingly, ife-3
expression reduced significantly in proximal oocytes, where

FIGURE 7
Examples of differential splicing usage of genes during germline development. (A) Box plot of numbers of five splicing types (A3SS, A5SS, MXE, SE and
RI, see main text for definitions) detected between each pair of neighboring stages of germline development. (B) Enriched GO terms of genes with
differential splicing events between the S1 and S2 stages, GeneRatio is the proportion of differentially spliced genes that belong to a known gene set. (C)
Differential splicing events of gene inx-14 between the S1 and S2 stages. (D)Differential splicing events of gene zen-4 between the S1 and S2 as well
as S2 and S3 stages. (E) Differential splicing event of gene ife-3 between the S1 and S2 stages. Exact positions of splicing events are shown in the red box.
BH p-adj: * <0.05; ** <0.01; *** <0.0001.
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transcription became increasingly silent, thus obviating the need for
mRNA regulation (Figure 7E).

Other genes worth pointing out include tos-1 coding for a
reporter of differential splicing (Ma et al., 2011), and lev-11
coding for tropomyosin (Watabe et al., 2018). Transcripts of tos-
1 exhibit loss of preference for the usage of its third exon from -1 to
zygote transition (Supplementary Figure S18A), which is further
corroborated by the decreased coverage of its longer isoform in S4
(Supplementary Figure S18A). As we described above, lev-11
belongs to cluster 9 and its expression exhibits similar putative
somatic characteristics. Thus, differential splicing of lev-11
transcripts (Supplementary Figure S18B) might be occurring in
the sheath cells wrapped around the oocytes. It has been shown
that different isoforms of lev-11 exhibit different characteristics in
terms of muscle assembly and function (Watabe et al., 2018). Since
-2 oocytes are roughly covered by Sh4 and -1 oocytes by Sh5, it is
likely that an alternative isoform switch of lev-11 contributes to the
different functions of these two sheath cell types.

Discussion

With a spatial layout of cells that simultaneously mirrors the
timeline of oogenesis, the C. elegans gonad can serve as a powerful
model for uncovering mechanisms of oogenesis. However, the tiny
size of the gonad also presents challenges for in-depth studies of the
intricacies of this process. With the recent development of single cell
methods, we utilize scRNA-seq techniques to decipher the
transcriptomic landscape of different stages of oocyte formation as
well as fertilization, though the data from the S1-S4 segments are not
of single cell resolution as they contain multiple nuclei due to their
syncytial structure. Our transcriptomic dataset of the C. elegans gonad
presents a good resource for research into the transcriptional
landscape of oogenesis of animals. Our results not only are able to
recall most of the oogenic genes designated by earlier research that
utilized micro-arrays and bulk-RNAseq (Reinke et al., 2004; Ortiz
et al., 2014), but also are highly correlated with the earlier data,
through careful alignment of samples, especially with those generated
using single cell based techniques (Diag et al., 2018; Tzur et al., 2018).

Although care has been taken, the dissection of the tiny gonad
presents a delicate problem, and it is difficult to fully avoid
contamination by surrounding tissues, particularly, sperm and
intestines. Based on known genes that are specifically transcribed in
surrounding tissues, we were able to filter out these genes, and
mitigating their impacts on our analyses. Though our dataset
presents discernible batch effects, we either incorporated them into
our analysis models or forfeited the smaller batch of samples when
necessary. The number of biological repeats for each stage as well as the
sequencing depth for each sample means the results are robust to the
discarding of few samples. The expression profiles of the samples in
both batches show a trajectory pattern in the UMAP display, which is
consistent with the developmental axis of the gonad, indicative of our
successful capture of the transcriptomes underlying the oogenesis
program. Moreover, clustering analysis of DEGs identified between
adjacent stages reveals 20 distinct patterns of dynamic changes in their
expression along the gonad developmental axis. Expression patterns of
the majority of randomly selected DEGs in the clusters are in excellent
agreement with ISH images of the transcripts of corresponding genes in

the NEXTDB database (Shin-i and Kohara, 1999), indicating that our
results are of high accuracy.

We note that distal stages (S1–S3) inevitably contain transcripts
originating from Sh1 and Sh2 sheath cells, due to the unenclosed and
miniscule nature of the germline along the rachis. Thus, we focus on
elucidating the transcriptomic changes of known germline
associated genes to minimize false positive findings. On the other
hand, the difficulty to remove to sheath cells wrapped around
proximal stage oocytes prompted us to investigate patterns of
expression that may arise from known sheath cell specific genes
and investigate interactions between proximal oocytes and surround
somatic tissues. We find that a great portion of genes that are
drastically downregulated in zygotes relative to the -1 oocyte are of
somatic origin, including many known markers of muscle cells and
sheath cells. This allowed us to infer a large portion of genes as
somatic in nature, especially those in the proximal oocytes. From
their expression patterns throughout the gonad, these genes can be
divided into roughly two groups. The first group consist of genes
that have relatively stable transcription in the proximal oocytes
before complete disappearance in zygotes, and the second group
consist of genes that are drastically upregulated in only the -1 oocyte.
The second group include genes whose transcripts have recently
been found to be produced in the spermathecae but transported into
-1 oocytes (Trimmer et al., 2023).We thus provide a list of genes that
might undergo this process. Though the exact function and
underlying mechanism for this phenomenon remain to be
elucidated, a few genes exhibiting this pattern have been shown
to affect the ageing of C. elegans (Zimmerman et al., 2015).

We confirm previous findings (Lee et al., 2012) at the transcriptomic
level that the growth of oocytes presents as a process in which ribosomal
biogenesis and cellular activity gradually decreases. Moreover, we
observed at the transcriptional level known dynamics of core
regulators of the mitosis to meiosis switch and meiosis maturation. In
addition, we find that many genes involved in the eggshell formation
initiate transcription as early as in the S1 stage, and their transcripts are
accumulated until post fertilization. TheC. elegans germline also presents
a remarkable model for studying germ cell apoptosis (Gumienny et al.,
1999). Our results not only capture distinct upregulation of apoptosis
related genes in the pachytene loop (S2 stage), but also discover novel
candidate genes for future studies of germ line apoptosis. Furthermore,
our gene clustering and DEG results also reveal three distinct sets of
apoptotic related genes, characterized by the expression pattern of the
ced-3/4/9 (Figure 5C), ced-8 (Figure 5D) and egl-1 (Figure 5E) genes,
respectively. These different modes of transcription suggest that cross-
talks occur between different genes at the transcriptional and post-
transcriptional levels to induce apoptosis.

The previous report that RBPs and the 3′UTRs are key players in
a complex regulatory mechanism (Merritt et al., 2008; Mangone
et al., 2010; Diag et al., 2018) in the C. elegans germline prompted us
to investigate whether significant changes in polyadenylation site
usage occurred during oogenesis and fertilization. Though we are
not able to find significantly enriched pathways regulated via
changes in polyadenylation during oogenesis, we do find
enrichment for cell cycle processes due to changes in
polyadenylation site usage during fertilization. Our results suggest
that polyadenylation sites of transcripts remain relatively stable
during oogenesis, and active regulation of alternative
polyadenylation likely resumes in the zygote.
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Finally, we find that alternative splicing events are present
throughout the gonadal segments. We reveal significant changes in
the usage of isoforms of hemi-channel gene inx-14. It is highly likely
that products of different isoforms of inx-14 are associated with
germline hemichannels INX-21/22 or somatic hemichannels INX-
8/9 to facilitate communication between the somatic gonad and
germline. We also find differential splicing usage of genes in the
germline. For instance, we observe differential splicing of zen-4
throughout the pachytene region. Though previous studies
preclude the involvement of ZEN-4 in oocyte cellularization in the
germline syncytium (Lee et al., 2018), ZEN-4 isoforms may play roles
in oocyte growth in late pachytene. Future studies are needed to
elucidate the roles of isoform usages in C. elegans oogenesis and the
underlying mechanisms.

Taken together, our results paint a complex transcriptional landscape
of the germline development, oogenesis and fertilization processes in C.
elegans in finer detail than previous studies. Though contaminations of
sperm and somatic tissues present challenges, wewere able to largely filter
them out in silico, and meanwhile discern putative somatic elements. We
not only confirm previous findings, but also reveal many novel
transcriptional events along the temporospatial axis of the C. elegans
germline and in the zygote. Our study presents a wealth of resources and
gene candidates for future experimental investigation to reveal the
underlying mechanisms of the oogenesis program, although much
work remains to be done. Particularly, improving dissection
techniques to sufficiently remove somatic contaminations may allow
better delineation of the oogenesis program as well as provide
transcriptomic profiles of the somatic gonad. Along the same line of
thought, single nucleus transcriptomics may provide fine grain profiling
of every oocyte along the gonad, albeit in silico separation and re-
alignment of samples to a developmental trajectory may be required.
Finally, application of amulti-omics approach on individual cell/stages of
the gonad may paint a more comprehensive picture of the regulatory
relationships that drive oogenesis.
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