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Bone defect is a common clinical symptom which can arise from various causes.
Currently, bone tissue engineering has demonstrated positive therapeutic effects
for bone defect repair by using seeding cells such asmesenchymal stem cells and
precursor cells. N-acetylcysteine (NAC) is a stable, safe and highly bioavailable
antioxidant that shows promising prospects in bone tissue engineering due to the
ability to attenuate oxidative stress and enhance the osteogenic potential and
immune regulatory function of cells. This review systematically introduces the
antioxidant mechanism of NAC, analyzes the advancements in NAC-related
research involving mesenchymal stem cells, precursor cells, innate immune
cells and animal models, discusses its function using the classic oral
microenvironment as an example, and places particular emphasis on the
innovative applications of NAC-modified tissue engineering biomaterials.
Finally, current limitations and future prospects are proposed, with the aim of
providing inspiration for targeted readers in the field.
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1 Introduction

Bone defects are commonly encountered in clinical practice and can arise from various
causes, including trauma (e.g., fractures), age-related bone loss (e.g., osteoporosis),
infections (e.g., osteomyelitis and periodontitis), cancer (e.g., surgical resection), genetic
diseases (e.g., inherited bone marrow failure syndrome), and congenital defects (e.g., cleft
palate). The different manifestations of bone defects affect the quality of life to varying
degrees. Bone tissue undergoes continuous remodeling, allowing for the restoration of
structure and function after injury (Guo et al., 2021; Riquelme et al., 2021; Zhang et al.,
2022). Small bone injuries (less than 6 mm in diameter) often heal spontaneously in a
favorable microenvironment, while larger bone defects typically require surgical
intervention and bone substitutes (Koushik et al., 2023). Approximately 2.2 million
bone grafts are performed globally each year, ranking as the second most common
tissue transplantation after blood transfusion (Sivakumar et al., 2022).

Autologous bone transplantation is currently considered the gold standard for bone
defect restoration, distinguished by its osteogenesis, osteoconduction and osteoinduction
properties. However, the application is limited by the scarcity of donor tissue, additional
trauma to the patient and surgical complications (Hao et al., 2022; Sivakumar et al., 2022;
Koushik et al., 2023). In contrast, alternative materials such as allografts and xenografts for

OPEN ACCESS

EDITED BY

Takehito Ouchi,
Tokyo Dental College, Japan

REVIEWED BY

Kui Xu,
Anhui University of Chinese Medicine, China
Xiaolei Li,
University of Pennsylvania, United States

*CORRESPONDENCE

Zhaosong Meng,
ddsmzs@sina.com

†These authors have contributed equally to
this work

RECEIVED 19 May 2024
ACCEPTED 27 June 2024
PUBLISHED 11 July 2024

CITATION

Zheng H, Liu J, Sun L and Meng Z (2024), The
role of N-acetylcysteine in osteogenic
microenvironment for bone tissue engineering.
Front. Cell Dev. Biol. 12:1435125.
doi: 10.3389/fcell.2024.1435125

COPYRIGHT

© 2024 Zheng, Liu, Sun and Meng. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Review
PUBLISHED 11 July 2024
DOI 10.3389/fcell.2024.1435125

https://www.frontiersin.org/articles/10.3389/fcell.2024.1435125/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1435125/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1435125/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2024.1435125&domain=pdf&date_stamp=2024-07-11
mailto:ddsmzs@sina.com
mailto:ddsmzs@sina.com
https://doi.org/10.3389/fcell.2024.1435125
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2024.1435125


bone defect repair carry potential risks including antigenicity,
pathogen transmission, immune rejection and graft resorption
(Sivakumar et al., 2022; Koushik et al., 2023). Bone tissue
engineering has recently become a leading field in tissue
engineering research, demonstrating promising therapeutic effects
for bone defect repair by using seeding cells, osteoinductive factors,
and biomaterial scaffolds. Stem cells, as primary seeding cells, play a
crucial role in osteogenic differentiation within bone tissue
engineering. The osteogenic function of seeding cells is intricately
linked to the osteoimmune microenvironment where they reside
(Takayanagi, 2007). Within the realm of bone tissue engineering,
this microenvironment comprises both osteogenic and immune cell
lineages, including mesenchymal stem cells (MSCs) and pre-
osteoblasts as the principal osteogenic cells, and macrophages as
the dominant immune cells (Li et al., 2024).

The complexity of the bone defect microenvironment makes
cells vulnerable to various factors during regeneration and repair,
creating substantial challenges for bone healing and clinical
implementation of bone tissue engineering. Among these
challenges, oxidative stress, driven by reactive oxygen species
(ROS), is recognized as a major factor in cellular dysfunction
(Sies and Jones, 2020; Li et al., 2021a; Bădilă et al., 2022; Sies
et al., 2022). Research has shown that following bone injury,
there is a marked increase in ROS levels, which peak during the
healing phase and then progressively return to baseline values (Li
J. et al., 2021). As the natural byproducts of cellular redox processes,
ROS are typically neutralized by endogenous antioxidant systems. In
oxidative environments such as in vitro expansion or in vivo
transplantation, cells confront excessive ROS levels. This
overexposure pattern depletes intracellular antioxidants, disrupts
redox balance and leads to adverse effects, including cell apoptosis,
proliferation inhibition, and functional impairment. Such
consequences will ultimately hinder tissue regeneration and
repair processes (Sies and Jones, 2020; Sies et al., 2022).

Exogenous antioxidants supplement the endogenous
antioxidant system to counteract ROS, demonstrating beneficial
outcomes in bone tissue engineering (Forman and Zhang, 2021;
Sies et al., 2022). Glutathione (GSH), a critical endogenous
antioxidant, is most effective when supplemented externally.
However, its propensity for rapid oxidation and deactivation
largely limits the bioavailability. Consequently, ongoing research
explores more stable GSH precursor drugs (Forman and Zhang,
2021). N-Acetylcysteine (NAC), a small-molecule compound
(C5H9NO3S), represents a major GSH precursor. Widely utilized
in fundamental and clinical research, NAC features stable chemical
properties, optimal safety and high bioavailability (Pedre et al.,
2021). It has been currently used for the treatment of various
pathologies, including cystic fibrosis, nephropathy and
paracetamol toxicity. As a classical antioxidant, NAC produces
potent antioxidative effects through direct and indirect pathways
and is approved by regulatory agencies, including the Food and
Drug Administration (FDA) of the United States and China
(Rushworth and Megson, 2014; Pedre et al., 2021; Tenório et al.,
2021). NAC has been investigated in over 500 clinical studies and is
distinguished as the only antioxidant that enters phase IV clinical
trials. The research related to NAC has maintained a steady
publication rate of approximately 1,000 articles annually since
2011, which underscores its significance (Supplementary Figure

S1A). Recent studies highlight the effectiveness of NAC in
mitigating ROS, fostering pro-repairative microenvironment and
enhancing the osteogenic potential and immune regulatory function
of cells, which offers a promising role in the treatment of bone
injuries and bone tissue engineering (Bădilă et al., 2022). As a result,
NAC has attracted widespread interest in the field of stem cell
biology and bone regenerative medicine (Supplementary Figure
S1B). This article systematically introduces the antioxidant
mechanism of NAC and its role in providing osteogenic
microenvironment, summarizes its application in bone tissue
engineering and the treatment of oral disease, and discusses the
current challenges and future directions.

2 The antioxidant mechanisms of NAC

The antioxidant mechanisms of NAC are typically attributed to
three main aspects: supplementing GSH, directly scavenging ROS,
and reducing the disulfide bonds (Figure 1A). While existing
literature provides experimental evidence for these mechanisms,
it often generalizes specific findings as universally applicable which
leads to an incomplete or even biased understanding for the
antioxidant action of NAC. The role of NAC in GSH
supplementation has recently gained broader recognition.
Although a few researches also support the effectiveness of NAC
as a direct ROS scavenger and a disulfide bond reducing agent,
further studies are necessary due to the lack of direct evidence.

2.1 GSH supplementation

GSH is synthesized and maintained at relatively high
concentrations (~mM) within cells, playing a vital role as an
endogenous antioxidant. It can not only directly participate in
redox reactions, but also act as a substrate or cofactor for
numerous detoxifying enzymes (Meister and Anderson, 1983). As
a cysteine precursor, NAC undergoes deacetylation to form cysteine
which is a rate-limiting substrate for de novo GSH synthesis.
Therefore, NAC can promote the synthesis of GSH and replenish
the antioxidant system, and plays a role in GSH depletion
conditions, such as acetaminophen or organophosphate
poisoning (Abdel-Daim et al., 2019; Pettie et al., 2019; Turkmen
et al., 2019). Additionally, NAC shows protective effects in chronic
conditions marked by GSH depletion, including respiratory
infections, cystic fibrosis, and diabetes (Asher and Guilford, 2016;
Rosa et al., 2018; Guerini et al., 2022). As precursors for GSH
synthesis used for treatment, NAC offers several advantages over
direct cysteine supplementation. Firstly, NAC is safe even at high
doses (exceeding 6 g/kg orally or 2 g/kg intravenously) (Bonanomi
and Gazzaniga, 1980), while excessive cysteine intake can lead to
severe pathological effects such as weight loss, cerebral damage,
severe hypoglycemia, muscle spasms, and potentially fatal outcomes
(EzEldeen et al., 2019). The biosafety of NAC comes from multiple
aspects. NAC is more resistant to metal-catalyzed auto-oxidation
which is the major source of cysteine toxicity (Wang and Cynader,
2001; Winterbourn et al., 2002). Moreover, cysteine is the sole
endogenous source of hydrogen sulfide in mammals (Szabo,
2018). Direct supplementation of cysteine can induce rapid
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elevations in highly cytotoxic hydrogen sulfide levels. In contrast,
NAC, bearing a negative charge at physiological pH, demonstrates
slower cellular uptake due to its N-acetyl group, which hinders both
passive and active membrane transport. Through deacetylation,
NAC ensures a gradual increase in hydrogen sulfide levels within
physiological limits, thereby facilitating cellular protection (Furne
et al., 2008; Ezeriņa et al., 2018; Jurkowska and Wróbel, 2018; Faria
et al., 2019). Secondly, freshly prepared NAC solutions exhibit
greater resistance to air oxidation compared to cysteine solutions,
with degradation rates at room temperature and under refrigeration
of 0.89% and 0.48%, respectively (Siddiqui et al., 2016; Aldini et al.,
2018). The oxidation of thiol groups in NAC requires deprotonation
to form anions. Unlike cysteine, the acetylated amino group of NAC
is unable to deprotonate and assume a positive charge, enhancing its
oxidative resistance. Additionally, NAC maintains the solubility of
its oxidation products, even in oxidized states (Pedre et al., 2021).

While NAC effectively replenishes GSH in GSH-deficient
conditions, its ability to increase GSH levels under normal
conditions is generally limited (Giustarini et al., 2012).
Interestingly, exogenous NAC continues to provide benefits even
when GSH synthesis is impaired (Nazıroğlu et al., 2013; Gleixner
et al., 2017), indicating a GSH-independent protective mechanism.
In addition to the direct antioxidant properties, there is evidence
suggesting that NAC supplies sulfane sulfur to tissue cells. Sulfane

sulfur refers to sulfur atoms with six valence electrons but no charge,
which is actively involved in redox signaling. Sulfane sulfur enhances
resistance to oxidative stress, protects cellular vitality and function
through safeguarding protein thiol, stimulates protein activity and
neutralizes free radicals (Pedre et al., 2021). Further research is
needed to fully understand the functional mechanism of NAC
independent from GSH replenishment.

2.2 Direct ROS scavenger

NAC is a thiol compound that exhibits a high propensity for
reacting with oxidants from a chemical thermodynamic perspective.
The chemical characteristics have led to numerous studies
associating antioxidant mechanisms of NAC with the direct
reaction with ROS. However, crucial factors include the reaction
rate constants and the in vivo concentration of NAC (Jurkowska and
Wróbel, 2018). In chemical reactions with primary ROS such as
hydrogen peroxide (H2O2) and superoxide, the reaction rates of
NAC are lower than those of endogenous antioxidants, including
GSH, GSH peroxidase, and superoxide dismutase (Samuni et al.,
2013). On the other hand, NAC shows stronger reactivity towards
hypochlorite and nitrogen dioxide, partially explaining its direct
antioxidant effects against exogenous factors like diet, air pollution,

FIGURE 1
The antioxidant mechanisms of NAC and its role in bonemicroenvironment. (A) The antioxidant mechanisms of NAC are typically attributed to three
main aspects: supplementing GSH, directly scavenging ROS, and reducing the disulfide bonds. (B) Within appropriate concentration range, NAC
enhances seeding cells proliferation, inhibits apoptosis, and significantly promotes osteogenic differentiation. Higher concentration of NACmay result in
osteogenic inhibition. (C) NAC regulates redox signaling pathways, mitigates oxidative stress, thereby inhibiting osteoclast differentiation and
reducing bone resorption. With the exception of redox balance, NAC plays a part in macrophage polarization regulation.
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or certain inflammatory conditions (Meyer et al., 1994; Samuni et al.,
2013). In vivo studies have shown that intravenously administered
NAC reaches high concentrations in organs such as the lungs
(320 μM), kidneys (250 μM), heart (170 μM), and liver
(100 μM), with peak concentrations in human red blood cells
reaching 200 μM. Although these concentrations are lower than
GSH levels, they suggest that NAC possesses some degree of direct
antioxidant activity (Medved et al., 1985; Giustarini et al., 2012;
Pedre et al., 2021). Consequently, the role of NAC as a direct ROS
scavenger, particularly against superoxide and hydrogen peroxide,
to protect cells from oxidative damage, remains a topic of debate.

2.3 Disulfide bond reducing agent

NAC participates in a conventional sulfhydryl–disulfide exchange
reaction, serving as an effective reducing agent for protein disulfide
bonds. The reaction rate is influenced by the nucleophilicity of the
thiolate, resulting in the enhanced capacity of NAC for reducing
disulfide bonds compared to cysteine and GSH (Noszál et al., 2000).
NAC is capable to disrupt disulfide bonds to alleviate cellular oxidative
stress. This disulfide bonds reducing function can decrease the
viscosity of glycoprotein, thereby reducing sputum viscosity, which
explains the role of NAC as a mucolytic agent (Javitt et al., 2020).
Additional evidence suggests that the reducing reaction of NAC can
replenish small molecule thiols and regulate the redox state, as well as
facilitate cysteine recycling through the formation of cystine or mixed
disulfides involving cysteine (Aldini et al., 2018). Both pathways may
contribute to antioxidant effects under the premise of higher NAC
concentrations.

3 The role of NAC in bone
microenvironment

3.1 NAC promotes the osteogenic
differentiation of stem cells in the bone
immune microenvironment

Among the MSCs sourced from various tissues, bone marrow-
derived mesenchymal stem cells (BMSCs) and adipose-derived
mesenchymal stem cells (AMSCs) are most widely used in bone
tissue engineering (Hoang et al., 2022; Ju et al., 2023; Qin et al.,
2023). Additionally, MSCs from dental tissues, such as periodontal
ligament stem cells (PDLSCs), dental follicle stem cells (DFSCs) and
stem cells from exfoliated deciduous teeth (SHEDs), demonstrate
superior osteogenic differentiation and mineralization potential
which are proven not to be inferior to BMSCs. They are also
frequently obtained from routinely discarded human tissues, such
as extracted third molars and deciduous teeth, making them highly
accessible and raising minimal ethical concerns. Such merits make
dental-derivedMSCs have significant advantages in promoting bone
tissue regeneration (Zheng et al., 2019; Srinivasan et al., 2021; Liu
et al., 2022; Yan et al., 2022).

Varying concentrations of NAC ranging from 490 μM to 50 mM
have been found to exhibit favorable cell compatibility in MSCs
sourced from bone marrow, adipose and dental tissues. Within this
concentration range, NAC not only preserves the activity of seeding

cells or in situMSCs through enhancing proliferation and inhibiting
apoptosis, but also significantly promotes the progression of stem
cell osteogenesis (Table 1). Extensive researches have focused on the
antioxidant function of NAC and explored its positive impact on the
osteogenic activity under stress conditions induced by exogenous
stimuli such as H2O2 (Ueno et al., 2011; Yamada et al., 2019; Zhang
J. et al., 2021; Liu et al., 2023), high glucose (Saito et al., 2022),
ethanol (Chen et al., 2010), cyclic stress (Tan et al., 2015; Xi et al.,
2022) and acrylonitrile (Sun et al., 2014). Additionally, primary
BMSCs from castrated, aged, or transgenic osteoporosis mouse
models (Xia et al., 2013; Yang et al., 2021; Shao et al., 2022)
which experience deteriorating oxidative balance and increasing
oxidative stress, are also used to assess the beneficial effects of NAC.
The mechanism behind these effects is often attributed to the direct
or indirect antioxidant activity of NAC and redox regulation of
signal transduction, including WNT/β-catenin, TP53, and PI3K/
AKT pathways. However, NAC demonstrates similar biological
effects under normal culture conditions (Ji et al., 2011; Yamada
et al., 2013; Debeljak Martacic et al., 2016; Yamada et al., 2019; Meng
et al., 2022; Song et al., 2022). One explanation for this is the active
sulfur provided by NAC, which metabolizes into hydrogen sulfide
and sulfane sulfur. Both active sulfur compounds can regulate redox
signals and promote osteogenic differentiation, thus contributing to
bone homeostasis (Kowalczyk-Pachel et al., 2021; Gilbert et al.,
2022). Another aspect to consider is the difference between in vivo
and in vitro environments. Primary cells and immortalized cell lines
are generally cultured under atmospheric oxygen levels, which are
higher than the physiological oxygen content in vivo, leading to a
pro-oxidative environment in vitro (Sies et al., 2022). To adapt to
this environmental condition, cells depend on their redox system
operating in reactive (feedback) and predictive (feedforward)
modes, ultimately establishing new gene expression patterns
which present as increased expression of antioxidant enzymes
and stress defense proteins. This process is known as adaptive
homeostasis or allostasis (Sies et al., 2022). The addition of
exogenous antioxidants can help maintain the adaptive
homeostasis. Thereby, NAC can exert antioxidant and pro-
osteogenic effects in vitro without specific stimulus inducing
oxidative stress.

3.2 NAC enhances the osteogenic activity of
precursor cells in the bone immune
microenvironment

Primary MSCs closely reflect the biological behavior of niche
cells and are both ideal seeding cells and cell models in bone tissue
engineering. However, these stem cells face challenges, including
limited availability, significant heterogeneity, in vitro instability due
to culture conditions as well as rising ethical concerns. Additionally,
in vitro models derived from different species, such as rats and
rabbits, complicate the extrapolation of results to human clinical
conditions due to interspecies differences. Pre-osteoblastic cell lines
with MC3T3-E1 as a prominent example, offer a more uniform and
stable population of immortalized cells suitable for studies of bone
tissue engineering (Czekanska et al., 2012). While they cannot fully
substitute primaryMSCs, they are recognized as valuable tools in the
development of novel biomaterials and therapies.
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TABLE 1 The application of NAC in MSCs.

Cell type Species NAC concentration Induction Function Mechanism Refs

BMSCs Rat 5 mM None, H2O2-induced
oxidative stress

Restoring proliferation,
inhibiting apoptosis,

maintaining osteogenic
differentiation,

mineralization and
expression of osteogenic

factors

Antioxidant activity Yamada et al.
(2019)

1 mM High glucose-induced
oxidative stress

Restoring proliferation,
maintaining osteogenic
differentiation and
mineralization

Antioxidant activity Saito et al.
(2022)

1 mM Cyclic stress-induced
oxidative stress

Maintaining osteogenic
differentiation

Antioxidant activity Tan et al.
(2015)

5 mM H2O2-induced oxidative
stress

Restoring proliferation,
maintaining osteogenic

differentiation,
mineralization and

expression of osteogenic
factors

Antioxidant activity Ueno et al.
(2011)

5 mM None Inhibiting apoptosis,
promoting osteogenic

differentiation,
mineralization and

expression of osteogenic
factors

Osteogenic induction activity Yamada et al.
(2013)

1 mM Ethanol-induced oxidative
stress

Maintaining osteogenic
differentiation and

expression of osteogenic
factors

Activation of WNT/β-catenin
pathway

Chen et al.
(2010)

Rabbit 490 μM None Promoting proliferation,
osteogenic

differentiation,
mineralization and

expression of osteogenic
factors

Upregulation of WNT5A
expression

Ji et al. (2011)

Mouse 50 mM Isolated from castrated
osteoporosis mouse models

Maintaining
mineralization

Inhibition of
TP53INP2 degradation via

antioxidant activity

Yang et al.
(2021)

500 μM 18-month-old elderly mice Maintaining expression
of osteogenic factors

Inhibition of the HIF1α/
p53 pathway via antioxidant

activity

Shao et al.
(2022)

Unkown Isolated from
Tg2576 transgenic mice
expressing ubiquitinated

APPswe (Alzheimer models
with skeletal aging-like

osteoporosis)

Maintaining osteogenic
differentiation

Antioxidant activity Xia et al.
(2013)

ADSCs Horse Unknown None Promoting expression of
osteogenic factors

Antioxidant activity Song et al.
(2022)

DFSCs Human 5 mM None Promoting proliferation,
osteogenic

differentiation,
mineralization and

expression of osteogenic
factors

Activation of PI3K/AKT
pathway and antioxidant

activity

Meng et al.
(2022)

5 mM H2O2-induced oxidative
stress

Restoring proliferation,
maintaining osteogenic

differentiation,
mineralization and

expression of osteogenic
factors

Antioxidant activity Zhang J. et al.
(2021)

(Continued on following page)
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Although not as prominently as in the case of primary stem cells,
pre-osteoblastic cell lines such as MC3T3 and NH3T3 possess a
certain degree of osteogenic capacity which can be regulated by the
redox environment. Thereby, As shown in Figure 1B, NAC also
exert pro-osteogenic effect through the antioxidative activity in pre-
osteoblastic cells under stress conditions induced by H2O2 (Lee et al.,
2015), high glucose (Liu and Yang, 2016), lipopolysaccharides (LPS)
(Chu et al., 2023; Li et al., 2023), 7-ketocholesterol (7KC) (Ouyang
et al., 2022), dibutyl phthalate (DBP) (Cui et al., 2022), TNF-α
(Zhang et al., 2017), dexamethasone (Deng et al., 2019),
MT3 knockout (Li S. et al., 2021) and adenosine triphosphate
(ATP) (Chu et al., 2023) (Table 2). Similar to those in MSCs, the
concentrations of NAC used in precursor cells range from 500 μM to
10 mM. While NAC promotes osteogenesis across a broad
concentration range, the effectiveness does not always positively
correlate with concentration. Applying higher concentrations of
NAC to stem cells or precursor cells may result in osteogenic
inhibition (Arakaki et al., 2013; Meng et al., 2022), potentially
due to excessive antioxidant-induced reductive stress. The
imbalance in cellular redox homeostasis characterized by a
disruption between oxidants and antioxidants, is a defining
feature of various pathological states. Elevated ROS levels lead to
antioxidant depletion, causing oxidative stress that impairs stem cell
functionality. However, physiological levels of ROS and their
associated redox signaling networks are equally vital for
maintaining cellular function and redox balance. Excessive
antioxidants can inhibit the accumulation of physiological ROS
necessary for signal transduction in stem cells, leading to
reductive stress and consequently hampering their biological
behavior (Manford et al., 2020; Coombs et al., 2021; Manford
et al., 2021; Sies et al., 2022). The precise impact of oxidant and
antioxidant levels on different cell types, and the necessity of
maintaining these levels within a specific range, remains unclear
due to current research limitations (Sies and Jones, 2020). It suggests
that the appropriate regulation of redox homeostasis is a critical
consideration and is instructive to the clinical application of NAC.

While these findings highlight the multifaceted benefits of NAC,
it is imperative to note that the current body of research may not
fully encapsulate the complex role of NAC in osteogenesis by
regulating the stem cells and precursor cells in bone

microenvironment. Despite the promising results, there remains a
need for more comprehensive studies that critically evaluate the
underlying mechanisms and potential clinical implications. For
instance, the variability in the efficacy of NAC across different
studies suggests that the context of its application, including the
specific stress conditions and cell types involved, plays a crucial role
in determining its effectiveness. Thus, future research should aim to
delineate these contextual factors more clearly, providing a more
nuanced understanding of how NAC can be optimally leveraged for
therapeutic purposes in bone regeneration.

3.3 NAC regulates innate immune cells in the
bone immune microenvironment to reduce
bone resorption

In bone tissue engineering, the osteogenic potential of seeding cells
including MSCs and precursor cells, is intricately linked to their
immune microenvironment. Therefore, the process of bone
regeneration is significantly influenced by the stimulatory role of the
immune system on osteogenesis (Mensah et al., 2009). The
interdisciplinary field “osteoimmunology” which was first coined by
Arron andChoi explores the interplay between the skeletal and immune
systems (Arron and Choi, 2000). Hematopoietic stem cells, originating
in the bone marrow, can differentiate into all types of cells of the
mammalian immune system. Both bone and immune cells coexist
within the same microenvironment and are regulated by various
common factors, collaboratively contributing to the functions of the
bone-immune system (Walsh et al., 2006; Takayanagi, 2007). Notably,
the immune system influences bone metabolism primarily through the
innate and adaptive response. Among the innate components, innate
immune cells, such as macrophages, neutrophils and mast cells, are
capable of producing a range of cytokines that regulate bone
metabolism in skeletal diseases (Walsh et al., 2018; Tsukasaki and
Takayanagi, 2019). The crucial bone-resorbing function of osteoclasts
which originate from macrophages, also highlight the significant
contribution of innate immune cells to the bone-immune system
(Edwards and Mundy, 2011). As a result, modulation of the innate
immune cells is a feasible way to foster favorable conditions for bone
regeneration in bone tissue engineering.

TABLE 1 (Continued) The application of NAC in MSCs.

Cell type Species NAC concentration Induction Function Mechanism Refs

PDLSCs Human 5 mM Cyclic mechanical stress-
induced oxidative stress

Maintaining osteogenic
differentiation and

expression of osteogenic
factors

Antioxidant activity and
downregulation of
NRF2 expression

Xi et al. (2022)

1 mM (NAC),
2 mM(Carbonized polymer
dots synthesized by NAC)

H2O2-induced oxidative
stress

Restoring proliferation,
maintaining osteogenic
differentiation and
mineralization

Antioxidant activity Liu et al.
(2023)

SHEDs Human 1 mM None Promoting proliferation,
osteogenic differentiation

and mineralization

Antioxidant activity Debeljak
Martacic et al.

(2016)

Umbilical
cord MSCs

Human 3 mM Acrylonitrile- induced
oxidative stress

Restoring proliferation,
inhibiting apoptosis and
promoting osteogenic

differentiation

Not mentioned Sun et al.
(2014)
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NAC possesses immunomodulatory properties, notably by
inhibiting oxidation-sensitive signaling pathways such as NF-κB
and MAPK (Tieu et al., 2023). The focus of current research on the
role of NAC in bone metabolism regulation via innate immunity
primarily centers on macrophage modulation, with fewer studies
addressing its effects on neutrophils, mast cells and other innate
immune cells (Figure 1C). For instance, 8 mMNAC has been shown
to partially inhibit M1 macrophage polarization and restore
M2 macrophage polarization in diabetic periodontitis patients by
scavenging ROS. The change of polarization can modulate the
production of proinflammatory and anti-inflammatory cytokines
by macrophages, thus regulating the bone-immune
microenvironment and preventing alveolar bone loss (Pajarinen
et al., 2019; Zhang B. et al., 2021). Conversely, other research reveals
that sustained low ROS levels may enhance M2 macrophage
polarization without significantly affecting M1 macrophages (Qiu

et al., 2023). Further investigation is required to clarify the role of
NAC in macrophage polarization regulation. Additionally, —NAC
has been observed to scavenge ROS in bone marrow-derived
macrophages, RAW264.7 cells, and CD14+ peripheral blood
monocytes under conditions promoting osteoclast differentiation
induced by RANKL, M-CSF (Aitken et al., 2004; Lee et al., 2005;
Sakai et al., 2012; Cao and Picklo, 2014; Kim et al., 2018; Soares et al.,
2019; Guo et al., 2020), H2O2 (Liu et al., 2021), Trimethylamine-N-
oxide (TMAO) (Wang et al., 2022), LPS (Yan et al., 2020), ferric
ammonium citrate (FAC) (Jia et al., 2012), TRP14 knockout (Hong
et al., 2014), and NRF2 knockout (Hyeon et al., 2013; Yang et al.,
2023). By these manners, NAC can mitigate ROS and inhibit
osteoclast differentiation via regulating redox signaling pathways,
thereby reducing oxidative stress-mediated bone resorption
(Table 3). Although there is a certain amount of in vitro studies
investigating the effect of NAC on innate immune cells, it has just

TABLE 2 The application of NAC in precursor cells.

Cell type Species NAC
concentration

Induction Function Mechanism Refs

MC3T3-E1 Mouse 5 mM H2O2-induced
oxidative stress

Maintaining osteogenic
differentiation, mineralization
and expression of osteogenic

factors

Inhibition of NRF2/HO-1 pathway Lee et al.
(2015)

Unknown High glucose-induced
oxidative stress

Restoring proliferation,
maintaining osteogenic
differentiation and
mineralization and

Inhibition of PI3K/AKT pathway
via antioxidant activity

Liu and
Yang
(2016)

500 μM LPS-induced oxidative
stress

Restoring proliferation,
maintaining osteogenic

differentiation, mineralization
and expression of osteogenic

factors

Antioxidant activity Li et al.
(2023)

2.5 mM 7KC-induced oxidative
stress

Inhibiting apoptosis,
maintaining osteogenic

differentiation, mineralization
and expression of osteogenic

factors

Inhibition of autophagy via
antioxidant activity

Ouyang
et al.
(2022)

5 mM DBP-induced oxidative
stress

Inhibiting apoptosis,
maintaining expression of

osteogenic factors

Inhibition of mitophagy via
antioxidant activity

Cui et al.
(2022)

1 mM TNF-α-induced
inflammatory
stimulation

Restoring proliferation,
maintaining osteogenic

differentiation and expression of
osteogenic factors

Downregulation of
DRP1 expression via antioxidant

activity

Zhang
et al.
(2017)

500 μM Dexamethasone-
induced oxidative stress

Restoring proliferation,
inhibiting apoptosis,

maintaining osteogenic
differentiation

Activation of PI3K/AKT/GSK3β
pathway via antioxidant activity

Deng et al.
(2019)

10 mM None Inhibiting mineralization Reductive stress Arakaki
et al.
(2013)

C2C12 Mouse 10 mM MT3 knockout-
induced oxidative stress

Maintaining osteogenic
differentiation and expression of

osteogenic factors

Antioxidant activity Li S. et al.
(2021)

Periodontal
ligament
fibroblasts

Human 10 mM LPS/ATP-induced
pyroptosis

Restoring proliferation,
maintaining osteogenic

differentiation, mineralization
and expression of osteogenic

factors

Antioxidant activity and inhibition
of SIRT1/NF-κB/Caspase-

1 pathway-induced pyroptosis

Chu et al.
(2023)
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begun to be explored in vivo. Therefore, a deeper understanding of
the regulatory and signaling mechanisms of NAC on macrophages
and other innate immune cells involved in bone metabolism will
further inform its application in bone tissue engineering. What’s
more, While the immunomodulatory properties of NAC are well-
documented, its precise mechanisms in many cellular contexts still
remain underexplored. The conflicting findings regarding M1 and
M2macrophage polarization suggest that the effects of NACmay be
context-dependent, influenced by factors such as concentration, cell
type, and specific microenvironmental conditions. This highlights a
critical gap in current research, where a more nuanced approach is
necessary to illustrate the circumstances under which NAC exerts
beneficial effects. Future studies should focus not only on the
antioxidative and immunomodulatory effects of NAC, but also

on critically assessing how these properties translate to in vivo
systems. This will provide a clearer understanding of the
potential therapeutic applications of NAC and guide its effective
use in clinical settings.

3.4 NAC promote bone tissue regeneration
in animal models

The osteogenic potential of NAC has been substantiated through
animal experiments (Table 4). Bone defect models are commonly
used in such studies. When loaded on scaffolds such as collagen
sponges and treated dentin matrix (TDM) and subsequently
implanted into bone defects, NAC or NAC-pretreated MSCs can

TABLE 3 The application of NAC in innate immune cells.

Cell type NAC
concentration

Induction Function Mechanism Refs

BMDM 30 mM M-CSF, RANKL, TMAO Inhibiting osteoclast differentiation Antioxidant activity and inhibition of
NF-κB pathway

Wang et al.
(2022)

20 mM M-CSF, RANKL, LPS Inhibiting osteoclast
differentiation, reducing bone

resorption

Antioxidant activity Yan et al.
(2020)

Unkown M-CSF, RANKL Inhibiting osteoclast
differentiation, suppressing

endoplasmic reticulum stress and
autophagy

Antioxidant activity and
downregulation of PERK expression

Guo et al.
(2020)

200 nM M-CSF, RANKL Inhibiting osteoclast differentiation Antioxidant activity and inhibition of
TPC2 calcium channel

Soares et al.
(2019)

Unkown M-CSF, RANKL Inhibiting osteoclast differentiation Antioxidant activity and inhibition of
endoplasmic reticulum stress and
CREBH/NFATc1 signaling axis

Kim et al.
(2018)

10 mM M-CSF, RANKL,
NRF2 knockout

Inhibiting osteoclast differentiation Antioxidant activity Hyeon et al.
(2013)

10 mM RANKL Inhibiting osteoclast differentiation Antioxidant activity, downregulation
of OH-1 and inhibition of

HMGB1 release and Caspase-3-
dependent pathway

Sakai et al.
(2012)

30 mM RANKL Inhibiting osteoclast differentiation Antioxidant activity and inhibition of
MAPK pathway

Lee et al.
(2005)

RAW264.7 100 μM RANKL, H2O2 Inhibiting osteoclast
differentiation, reducing bone

resorption

Antioxidant activity and inhibition of
NF-κB pathway

Liu et al.
(2021)

4 mM M-CSF, RANKL,
NRF2 knockout

Inhibiting osteoclast differentiation Antioxidant activity Yang et al.
(2023)

20 mM RANKL Inhibiting osteoclast
differentiation, reducing bone

resorption

Antioxidant activity Cao and
Picklo (2014)

5 mM RANKL,
TRP14 knockout

Inhibiting osteoclast differentiation Antioxidant activity and inhibition of
NF-κB and MAPK pathway

Hong et al.
(2014)

10 mM RANKL, FAC Inhibiting osteoclast
differentiation, reducing bone

resorption

Antioxidant activity Jia et al.
(2012)

CD14+ peripheral
blood monocytes

10 mM M-CSF, RANKL Inhibiting osteoclast differentiation Antioxidant activity, upregulation of
TBP-1, inhibition of TRX-1 nuclear
translocation and activation of AP-1

and NF-κB

Aitken et al.
(2004)
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TABLE 4 The application of NAC in bone defect-related animal models.

Animal model Application form Administration
strategy

Function Mechanism Refs

Bone defect model

Rat femoral defect model Collagen sponge containing
5 mM NAC

In situ transplantation Improving BV/TV and trabecular
bone parameters

Osteogenic induction
activity

Yamada
et al. (2013)

Rat femoral defect model Collagen sponge containing
BMSCs pre-treated with

5 mM NAC

In situ transplantation Improving BV/TV and trabecular
bone parameters

Antioxidant activity Yamada
et al. (2019)

Rat femoral defect model Collagen sponge containing
BMSCs pre-treated with

5 mM NAC

In situ transplantation Inhibiting apoptosis of seeding
cells, improving of BV/TV

and BMD

Antioxidant activity Watanabe
et al. (2018)

Rat mandibular defect
model

TDM biological tooth root
composites containing
DFSCs pre-treated with

5 mM NAC

In situ transplantation Inhibiting apoptosis of seeding
cells, improving of collagen

deposition

Antioxidant activity Zhang
J. et al.
(2021)

Rat alveolar bone defect
model

Collagen sponge containing
5 mM NAC or BMSCs pre-
treated with 5 mM NAC

In situ transplantation Improving BV/TV and BMD Activation of PI3K/AKT
pathway and antioxidant

activity

Meng et al.
(2022)

Closed fracture model in
rats with ethanol diet

NAC solution at a dose of
200 mg/kg body weight

Intraperitoneal injection, once
daily for three consecutive days

Enhancing bending strength and
expression of osteogenic factors

Antioxidant activity Duryee
et al. (2018)

Disease models

Diabetic sheep model NAC solution at a dose of
5 mg/kg body weight

Intramuscular injection, once
weekly for 12 consecutive weeks

Improving BV/TV and
osseointegration rate of titanium

alloy implants

Activation of FAK/
BMP/SMAD pathway
via antioxidant activity

Ma et al.
(2017)

Diabetic rabbit model NAC solution at a dose of
5 mg/kg body weight

Intravenous injection, once
weekly for 10 consecutive weeks

Improving BV/TV and
osseointegration rate of titanium

alloy implants

Activation of WNT/β-
catenin pathway via
antioxidant activity

Ma et al.
(2018)

Diabetic rabbit model NAC solution at a dose of
5 mg/kg body weight

Intravenous injection, once
weekly for 10 consecutive weeks

Improving BV/TV and
osseointegration rate of titanium

alloy implants

Activation of PI3K/AKT
pathway via antioxidant

activity

Ma X. et al.
(2022)

Periodontitis mouse
model

NAC solution at a dose of
100 mg/kg body weight or
Carbonized polymer dot

solution

Intraperitoneal injection, once
daily for four consecutive weeks

Reducing alveolar bone
resorption, improve collagen

deposition, BV/TV and
expression of osteogenic factors

Inhibition of KEAP1,
activate NRF2 and
antioxidant activity

Liu et al.
(2023)

Gene regulation models

Hepcidin knockout
mouse model

NAC solution at a dose of
100 mg/kg body weight

Oral gavage, administered at
weekly intervals three times, for a

consecutive four weeks

Improving bone formation rate,
BV/TV, BMD, trabecular bone
parameters, mechanical strength,
and expression of osteogenic

factors

Antioxidant activity Ma J. et al.
(2022)

Transgenic mouse model
of Alzheimer’s disease
(Tg2576) expressing
ubiquitinated APPswe

NAC solution at a dose of
2 mg/kg body weight

Oral administration via drinking
water, for four consecutive weeks

Improving collagen deposition,
BV/TV and trabecular bone

parameters

Antioxidant activity Xia et al.
(2013)

Other Models

Orthodontic tooth
movement rat model

NAC solution at a dose of
225 mg/kg body weight

Intraperitoneal injection, once
daily for 2–4 consecutive weeks

Improving BV/TV, trabecular
bone parameters, structural

model index, and expression of
osteogenic factors on the tension

side

Antioxidant activity and
downregulation of
NRF2 expression

Xi et al.
(2022)

Lactation ethanol diet rat
model

NAC solution at a dose of
1.4 g/kg body weight

Oral administration via drinking
water, for four consecutive weeks

Improving BV/TV and expression
of osteogenic factors

Activation of WNT/β-
catenin pathway

Chen et al.
(2010)

Ethanol diet cycling rat
model

NAC solution at a dose of
1.2 g/kg body weight

Oral administration via drinking
water, for four consecutive weeks

Improving BV/TV and BMD,
increasing osteoblast count,
osteoblast surface ratio, and

decreasing eroded surface ratio

Inhibition of NADH
oxidase

Chen et al.
(2011)
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significantly enhance collagen deposition, bone formation rate, bone
volume/total volume (BV/TV), bone mineral density (BMD) and
trabecular bone parameters (thickness, number, separation).
Moreover, this approach improves the survival rate of seeding
cells via enhancing cell proliferation and/or inhibiting apoptosis
(Yamada et al., 2013; Watanabe et al., 2018; Yamada et al., 2019;
Zhang J. et al., 2021; Meng et al., 2022). In various bone defect-
related models including diabetes, periodontitis and orthodontic
tooth movement, NAC administration via injection has been shown
to reduce bone loss, accelerate bone integration with implants and
enhance bone remodeling on the tension side. Strategies such as oral
gavage or addition to drinking water have also been effective in
restoring in vivo osteogenic activity as well as in improving the
mechanical properties of bones in diet-induced models and genetic
models that simulating osteoporosis (Chen et al., 2010; Chen et al.,
2011; Xia et al., 2013; Ma J. et al., 2022). Unfortunately, the
therapeutic potential of NAC in bone tissue pathology has not
been substantiated by clinical trials (https://clinicaltrials.gov/),
underscoring the need for further in vivo research.

Similar to the in vitro experiments, NAC primarily influences
osteogenic effects through ROS and related redox signaling
pathways in animal models. The classical redox pathways
including WNT/β-catenin, PI3K/AKT, NRF2, and p53 can
respond to oxidant or antioxidant signals and significantly

regulate gene transcription (Holmström and Finkel, 2014;
Lennicke and Cochemé, 2021). NAC has been shown to activate
the WNT pathway in various cell and animal models (Chen et al.,
2010; Ji et al., 2011; Ma et al., 2018), but its effects on PI3K/AKT,
NRF2, and other pathways are not consistent. For example, in
MC3T3-E1 cells cultured in high glucose, NAC inhibits the
PI3K/AKT pathway (Liu and Yang, 2016), while in
dexamethasone-stimulated MC3T3-E1 cells and human DFSCs
cultured under standard conditions, it activates PI3K signaling
(Deng et al., 2019; Meng et al., 2022). This variability may stem
from the complex feedback networks involving ROS-mediated
redox and phosphorylation modifications (Su et al., 2019; Gou
et al., 2022; Kuznetsov et al., 2022). Redox-dependent
modifications of numerous intermediates can lead to diverse
functional results such as changes in activity, localization and
substrate specificity. In addition, oxidation of substrates may alter
their localization/binding partners and/or their cognate phosphatase
activity, further exacerbating signal dysregulation. While the in vivo
evidence supporting the osteogenic potential of NAC is promising,
the inconsistency in its effects across different signaling pathways
suggests a research gap. The variability in the influence of NAC on
pathways like PI3K/AKT suggests that its efficacy may be highly
context-dependent. This underscores the importance of not only
continuing to explore the antioxidative and osteogenic effects of

TABLE 5 The application of NAC in tissue engineering biomaterials.

Carrier In vitro studies In vivo studies Mechanism Refs

PMMA bone cement Inhibiting apoptosis, promoting proliferation,
osteogenic differentiation, mineralization and
expression of osteogenic factors in rat BMSCs

Improving bone contact area, BV/TV,
mechanical strength in rat femoral

defect models

Antioxidant activity Tsukimura
et al. (2009)

PMMA bone cement Promoting mineralization in MC3T3-E1 None Not mentioned Zhao et al.
(2019)

Silk fibroin/α-TCP bone cement Promoting osteogenic differentiation,
mineralization and expression of osteogenic

factors in rat BMSCs

Improving BV/TV in rat femoral defect
models

Activation of WNT/β-
catenin pathway

Feng et al.
(2020)

Strontium-doped mesoporous
bioactive glass-modified thermo-
sensitive polyurethane hydrogel

Promoting expression of osteogenic factors in
human SAOS-2

None Not mentioned Pontremoli
et al. (2022)

Enzyme-crosslinked gelatin/
functionalized gold nanoparticle-

modified hydrogel

Promoting proliferation and osteogenic
differentiation in human ADSCs

None Antioxidant activity Lee et al.
(2018)

Mesoporous silica nanoparticle-
modified PLGA electrospinning

system

Promoting proliferation, mineralization and
expression of osteogenic factors in rat BMSCs

None Not mentioned Zhu et al.
(2019)

Hydroxyapatite/silk fibroin
biomimetic nanofibers

Promoting proliferation, osteogenic
differentiation and expression of osteogenic
factors in induced pluripotent stem cell-

derived MSCs

Improving BV/TV and BMD in rat
calvarial defect models

Not mentioned Li et al.
(2021b)

PEG-ss-PCL nanoparticle drug
delivery platform

Inhibiting apoptosis, maintaining osteogenic
differentiation, mineralization, and expression
of osteogenic factors in LPS-stimulated human

PDLSCs

Reducing alveolar bone resorption,
improving collagen deposition in rat

periodontitis models

Antioxidant activity Qiu et al.
(2021)

Bovine resorbable collagen membrane
and human demineralized freeze-

dried bone powder

Inhibiting apoptosis, promoting proliferation
and osteogenic differentiation in rat

osteoblasts

None Antioxidant activity Yamada et al.
(2011)

Titanium nanotube implant Promoting proliferation and expression of
osteogenic factors in MC3T3-E1

Improving BV/TV, BMD and
expression of osteogenic factors in rat
mandibular first molar implant models

Antioxidant activity Lee et al.
(2013)
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NAC, but also critically examining the underlying mechanisms in
varied biological contexts. Furthermore, the lack of clinical trials
evaluating the therapeutic potential of NAC in bone pathology
emphasizes the need for translational research that bridges the
gap between preclinical findings and clinical applications. By
focusing on these areas, future studies can provide a more
comprehensive understanding of how NAC can be effectively
utilized in tissue engineering and regenerative medicine.

4 NAC provides a pro-osteogenic
microenvironment for alveolar
bone repair

Alveolar bone is the most metabolically active bone in the
skeletal system that is under active bone remodeling. Due to the
continuous exposure to occlusal forces and periodontal
microorganisms, alveolar bone possesses a unique immune
microenvironment distinct from the long bones, with more
frequent interactions between monocytes/macrophages and MSCs
(Lin et al., 2021). The excessive production of ROS has been detected
in many settings of alveolar bone injuries, including periodontitis,
implant osseointegration and orthodontics-related bone loss.
Alveolar bone defects are important and major issues in clinical
work that pose considerable challenges for subsequent implant and
restorative treatments. These defects arise from multiple factors,
with periodontitis being the most extensively studied (Kinane et al.,
2017). Periodontitis results from an overactive immune response to
periodontal pathogen (Sima et al., 2019). Immune cells produce
excessive ROS and lead to an oxidative stress microenvironment
while killing pathogenic bacteria. The oxidative stress
microenvironment subsequently inhibits osteogenic
differentiation and bone formation, which is the major
contributor to periodontal tissue defects (Liao et al., 2016; Liu
et al., 2017). NAC has shown therapeutic promise when used
alone or in combination with stem-cell based bone tissue
engineering for alveolar bone defects caused by periodontitis.
NAC can provide a favorable osteoimmune microenvironment
for osteogenic differentiation. On the one hand, NAC and its
derivatives have been proven capable of sustaining physiological
ROS level and restoring proliferation and osteogenic differentiation
of PDLSCs (Qiu et al., 2021; Xi et al., 2022; Liu et al., 2023), which are
considered the most promising endogenous MSCs for alveolar bone
regeneration (Tsumanuma et al., 2011). Furthermore, as previously
mentioned, NAC can also be applied in bone tissue engineering by
stimulating osteogenic differentiation and mineralization potential
of various seeding cells, thereby achieving better promotion of
alveolar bone regeneration. On the other hand, NAC can
suppress osteoclastogenesis by reducing ROS level in LPS-
induced inflammatory microenvironment, consequently
attenuating osteolysis (Yan et al., 2020). Overall, NAC can
facilitate alveolar bone regeneration by promoting bone
formation and inhibiting bone resorption, thus enabling a
positive therapeutic effect for periodontal tissue defects caused by
periodontitis.

Apart from the application in the treatment for periodontitis-
related bone defects, NAC can also exert osteogenic function in
dental implantology and orthodontics. The clinical success of dental

implants primarily depend on the direct structural and functional
connection between the living bone and the implant surface, which
is referred to as osseointegration (Guglielmotti et al., 2019). A
balanced oxidant level in the surrounding tissue is critical for
implant osseointegration, preventing peri-implant infections, and
enhancing the implant success rate (Mouthuy et al., 2016). Research
indicates that surface treatment of implants with appropriate
concentration of NAC can mitigate oxidative stress and reduce
the upregulated expression of pro-inflammatory cytokines induced
by LPS and hyperlipidemia. Such treatment enhances osteoblast
adhesion and proliferation, thereby improving the biocompatibility
and osseointegration of implants (Lee et al., 2013;Wang et al., 2021a;
Li et al., 2023). Additionally, alveolar bone remodeling on the
tension side during orthodontic treatment is highly dependent on
the osteogenic differentiation of PDLSCs induced by cyclic
mechanical stress. NAC can promote osteogenic differentiation of
PDLSCs and facilitate bone formation on the tension side by
reducing the excessive ROS generated by cyclic stress, enabling
NAC to potentially improve bone remodeling and reduce adverse
effects of orthodontics (Xi et al., 2022). In summary, although not
yet applied clinically, NAC is capable of providing a favorable
osteogenic microenvironment and has broad application
prospects in periodontal, implant and orthodontic treatment.

5 NAC combined with biomaterials for
bone tissue engineering

Bone tissue, a highly organized natural composite material,
integrates organic and inorganic substances with various cell
types within the extracellular matrix (ECM) scaffold (Koons
et al., 2020). In an effort to mimic the microstructure of bone
ECM, a diverse range of materials and combinations are employed
as potential biomaterials for bone tissue engineering. The ideal
biomaterials should provide mechanical support, a conducive
microenvironment, and serve as carriers for bioactive molecules
such as NAC during tissue regeneration. This aids in facilitating cell
adhesion, proliferation, and differentiation (Koushik et al., 2023). At
present, commonly used biomaterials include polymers,
bioceramics, and composite materials. Given the composite
nature of bone tissue and the intricate requirements of bone
tissue engineering materials, composite materials have become
the preferred choice, offering superior performance compared to
single-component materials (Koons et al., 2020; Hassani
et al., 2022).

Polymethyl methacrylate (PMMA) bone cement is extensively
used in orthopedic surgery, but the high elastic modulus and low
biocompatibility have limited further advancements (Zhu et al.,
2020; Wang et al., 2021b). Incorporating NAC into PMMA bone
cement has significantly improved its bioactivity, as evidenced by
enhanced osteogenic activity in rat BMSCs and MC3T3-E1 cells and
favorable outcomes in bone regeneration in a rat femoral defect
model (Tsukimura et al., 2009; Zhao et al., 2019). Similarly, adding
NAC to silk fibroin/tri-calcium phosphate composite bone cement
has shown comparable osteogenic effects in both in vitro and in vivo
experiments (Feng et al., 2020). In composite materials, bioactive
glass and nanomaterials are common fillers (Koons et al., 2020).
Bioactive glass, a significant bioceramic, releases ions like calcium,
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silicon, and strontium. Mesoporous bioactive glass with the
structured mesoporous architecture enables the incorporation of
various drugs and biomolecules, making it an innovative material in
bone tissue engineering (Vallet-Regi and Salinas, 2021). The
combination of NAC with strontium-doped mesoporous
bioactive glass and thermosensitive polyurethane hydrogel
efficiently enhances osteogenic factor expression in precursor
cells (Pontremoli et al., 2022). Furthermore, NAC can be
integrated into nanoparticles, nanofibers, and other
nanomaterials to create nano-engineered composite materials.
These materials facilitate osteogenic differentiation and
mineralization of MSCs and have shown pro-osteogenic effects in

periodontitis and calvarial defect models (Lee et al., 2018; Zhu et al.,
2019; Li et al., 2021b; Qiu et al., 2021). Additionally, guided bone
regeneration materials in oral and maxillofacial surgery such as
resorbable collagen membranes and demineralized freeze-dried
bone powders as well as titanium nanotube implants, can also be
used as bone scaffolds for the delivery of NAC (Yamada et al., 2011;
Lee et al., 2013). Despite that bioactive materials have obtained the
positive results of bone defect repair, their clinical application faces
challenges due to the scarcity of animal studies and unclear specific
mechanisms in the research. While not yet translated into clinical
practice, NAC presents significant potential for modifying various
biomaterials and offers promising prospects in bone tissue

FIGURE 2
The application of NAC in bone tissue engineering.
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engineering as an active molecule (Table 5 and Figure 2).
Comprehensive animal studies and well-designed clinical trials
will be essential to transition these innovative materials from
bench to bedside.

6 Conclusion and future perspectives

Therapeutic approaches to address oxidative stress typically
involve upregulating antioxidant signals such as NRF2,
administering exogenous antioxidants, supplementing trace
elements or nutrients, and implementing environmental
interventions (Forman and Zhang, 2021). As a precursor of GSH,
NAC not only facilitates de novo GSH synthesis but also exhibits
independent antioxidant effects. Despite the development of
derivatives like N-acetylcysteine amide and N-acetylcysteine ethyl
ester which offer improved cell uptake efficiency, bioavailability and
antioxidant performance compared to NAC, their application
potential for bone tissue engineering warrant further exploration
due to the reduced oxidative stability and limited ability to
counteract cysteine toxicity (Tosi et al., 2021; Eligini et al., 2023).
Thus, NAC remains an indispensable antioxidant that acts as a
pivotal strategy against oxidative stress in the treatment of oral
disease and bone tissue engineering.

This review undertook a comprehensive literature search
encompassing the areas of NAC and bone tissue engineering.
It systematically categorized and analyzed the advancements in
NAC research involving MSCs, precursor cells, innate immune
cells and animal models, with a particular emphasis on the
innovative applications of NAC-modified tissue engineering
biomaterials. The review consolidates experimental evidence
that supports the utilization of NAC in bone tissue
engineering, underscoring its capacity to improve the
osteogenic microenvironment and optimize bone regeneration
outcomes. However, there are several major limitations to the
current studies that require further investigation:

1. The research on immune microenvironment is insufficient, as
it neither adopts a wider variety of immune cell types nor
investigates the interactions between immune cells and
osteoprogenitors, which hinders NAC to obtain an ideal
application effect.

2. With the advancement of biomaterials, the optimal carrier for
NAC in bone tissue engineering which possess the capacity of
good mechanical strength, stable chemical characteristics and
ideal loading and controlled release behaviors etc., remains to
be further investigated.

3. Most of the studies focus on the effect of NAC on cells and
animal models with a notable absence of comprehensive
clinical trial data which would lead to unknown biological
effects and human health risks, thereby impeding its clinical
application.

4. The prevailing focus regarding oxidative stress often neglects
reductive stress within the context of redox imbalances,
potentially obscuring the adverse effects of NAC. The lack

of in-depth investigation into redox homeostasis regulation
limits the appropriate clinical application in multiple aspects
with medication dose range as the main concern.

5. The molecular signaling mechanisms of NAC in seeding cells
and biomaterials is of great importance especially for
mammalian models due to the envisaged application of the
studied biomaterials concerning the complex in vivo
environment. However, the scarcity of relevant literature
and review reports makes it difficult to guide the clinical
practice of biomaterials.
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