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Fragile X Syndrome (FXS) is a genetic neurodevelopmental disorder closely
associated with intellectual disability and autism spectrum disorders. The core
of the disease lies in the abnormal expansion of the CGG trinucleotide repeat
sequence at the 5′end of the FMR1 gene. When the repetition exceeds 200 times,
it causes the silencing of the FMR1 gene, leading to the absence of the encoded
Fragile X mental retardation protein 1 (FMRP). Although the detailed mechanism
by which the CGG repeat expansion triggers gene silencing is yet to be fully
elucidated, it is known that this process does not alter the promoter region or the
coding sequence of the FMR1 gene. This discovery provides a scientific basis for
the potential reversal of FMR1 gene silencing through interventional approaches,
thereby improving the symptoms of FXS. Epigenetics, a mechanism of genetic
regulation that does not depend on changes in the DNA sequence, has become a
new focus in FXS research by modulating gene expression in a reversible manner.
The latest progress inmolecular genetics has revealed that epigenetics plays a key
role in the pathogenesis and pathophysiological processes of FXS. This article
compiles the existing research findings on the role of epigenetics in Fragile X
Syndrome (FXS) with the aim of deepening the understanding of the pathogenesis
of FXS to identify potential targets for new therapeutic strategies.
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1 Introduction

Fragile X Syndrome (FXS) is a common cause of hereditary intellectual disability (ID)
and autism spectrum disorders (Budimirovic et al., 2020; Salcedo-Arellano et al., 2020). Its
clinical manifestations include characteristic facial features, macroorchidism, learning
disabilities, cognitive impairments, behavioral disorders, and autism spectrum disorders,
as well as epileptic seizures (Salcedo-Arellano et al., 2020; Stone et al., 2023; Svalina et al.,
2023). The underlying genetic cause of FXS is attributed to the abnormal expansion of the
CGG repeat sequence located within the 5′-untranslated region of the Fragile X mental
retardation 1 gene (FMR1). When this CGG trinucleotide repeat surpasses 200 units, it
triggers the silencing of the FMR1 gene, resulting in a deficiency of the Fragile X mental
retardation protein 1 (FMRP) (Ranjan et al., 2023; Stone et al., 2023; Svalina et al., 2023).

The FMR1 gene was successfully cloned in 1991 (Verkerk et al., 1991) and is located in
the Xq27.3 region (Nobile et al., 2021; Tabolacci et al., 2022). The gene is approximately
38 kilobases long and includes, from the 5′end to the 3′end, the promoter region, the
5′untranslated region (5′UTR), exons and introns, and the 3′untranslated region (3′UTR)
(Zafarullah et al., 2020) (Figure 1). The promoter region lacks a typical TATA box and
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contains a CpG island composed of about 56 CpG dinucleotides,
two GC boxes, and three Inr-like sequences (Nobile et al., 2021;
Ciobanu et al., 2023). The 5′UTR is rich in CGG repeat sequences,
which are located about 130 nucleotides from the Inr-like sequence
of the promoter and approximately 50 nucleotides from the
transcription start site (Nobile et al., 2021). The FMR1 gene
includes 17 exons and 16 introns, with the first exon marking
the beginning of the open reading frame (ORF) (Verkerk et al.,
1991; Barasoain et al., 2016). Under normal conditions, the CGG
repeat sequence in the 5′UTR of the FMR1 gene repeats between
5 and 44 times. Upstream of the CGG repeat sequence, there is a
unique DNA methylation boundary about 650–800 nucleotides
from exon 1. The promoter’s upstream region is methylated,
while the promoter and the downstream of the FMR1 gene
remain unmethylated. Meanwhile, the histones H3 and H4 of the
FMR1 gene are acetylated (Coffee et al., 1999; Naumann et al., 2010),
maintaining the gene’s normal transcriptional and translational
state. Its ORF can be transcribed into a 4.4 kb precursor mRNA
(Nobile et al., 2021), and through alternative splicing, it specifically

expresses different isoforms of FMRP protein in different tissue cells
or developmental stages (Ferder et al., 2022). FMRP is an important
RNA-binding protein that plays a key role in various biological
processes, including synaptic plasticity, neuronal development, and
cellular signaling (Darnell et al., 2011; Casingal et al., 2020; Monday
et al., 2022; Martín et al., 2023; Yu et al., 2023). It is crucial for
maintaining the normal function of the nervous system, especially in
the brain, where it represses about 4% of the brain’s mRNAs
(Rodriguez et al., 2020), When the CGG repeat sequence ranges
from 45 to 54, it is considered a gray zone. Between 55 and 200, it is
referred to as a premutation, which may be associated with the
development of Fragile X-associated Primary Ovarian Insufficiency
(FXPOI) and Fragile X-associated Tremor/Ataxia Syndrome
(FXTAS). The underlying pathogenic mechanism might involve
the overexpression of the FMR1 gene’s mRNA, leading to a toxic
effect (Huang et al., 2019). In FXS, when the (CGG) n repeat
sequence in the 5′untranslated region (5′UTR) expands to 200 or
more repeats, this is known as a full mutation (FM). Against the
backdrop of a FM, while the promoter sequence and the open

FIGURE 1
Diagram illustrating the structural characteristics of a normal FMR1 gene and one with a full mutation. The FMR1 gene, situated on the X
chromosome’s q27.3 region, typically features a CGG repeat sequence between 5 and 44 times. In this state, the gene’s methylation boundaries are well-
defined, the promoter remains free of methylation, and histones are acetylated, facilitating the gene’s transcription into mRNA and the production of the
FMRP protein, thus preserving a normal phenotype. However, when the CGG repeat count surpasses 200, a full mutation occurs, erasing the
methylation boundaries, methylating the promoter region, and deacetylating histones. This sequence of events halts the transcription of the FMR1 gene
into mRNA, leading to the absence of the FMRP protein and potentially causing Fragile X Syndrome (FXS).
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reading frame (ORF) of the FMR1 gene remain unchanged, the
methylation boundary region of the FMR1 gene may vanish. This
leads to a state of heightenedmethylation across the region spanning
from the promoter to intron 1 of the FMR1 gene. Additionally,
histones H3 and H4 associated with the FMR1 gene undergo
deacetylation (Suardi and Haddad, 2020; Nobile et al., 2021).
Consequently, the FMR1 gene lapses into a state of
transcriptional silencing, which in turn prevents the normal
expression of the FMRP protein.

Although the expansion of the CGG repeat sequence is a known
cause of FMR1 gene silencing, the specific molecular mechanisms
are not yet clear. Currently, it is known that the silencing of the
FMR1 gene is associated with epigenetic changes such as DNA
methylation and histone deacetylation. Moreover, research indicates
that the gene may have acquired additional inhibitory chromatin
modifications, such as H3K9me2 and H3K27me3, as well as
chromatin compaction (Usdin and Kumari, 2015). In addition,
clinical observations have noted that a small number of full

FIGURE 2
Diagramof lncRNAs FMR4, FMR5, and FMR6. FMR4, a long non-coding RNA (lncRNA), is transcribed by RNA polymerase II and is located upstreamof
the FMR1 gene in an antisense orientation. FMR5, with its 5′end approximately 1 kilobase upstreamof the FMR1 transcription start site (TSS), is an unspliced
transcript of approximately 800 nucleotides in length, guided by the sense strand, and overlaps with the promoter region of FMR1. FMR6 is a spliced long
non-coding RNA, an approximately 600-nucleotide long antisense transcript that is fully complementary to the 3′region of FMR1. It initiates at the
3′untranslated region (UTR) and terminates within the 15th exon of FMR1.

FIGURE 3
The pathogenesis of fragile X syndrome.
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mutation carriers without changes in epigenetic markers have
normal intelligence (Smeets et al., 1995), which further
emphasizes the importance of epigenetics in the process of
FMR1 gene silencing.

Epigenetics refers to heritable changes in cell phenotype that do
not involve alterations to the DNA sequence itself, including but not
limited to methylation, histone modification, chromatin
remodeling, and non-coding RNA regulation (Peixoto et al.,
2020; Dai et al., 2021). In recent years, researchers have also

begun to focus on other emerging epigenetic phenomena, such as
the formation of R-loops and the three-dimensional(3D) genome
regulation (Kim andWang, 2021; Glaser andMundlos, 2022). These
mechanisms play a crucial role in determining cellular fate, working
independently or in concert to regulate gene expression in a
reversible manner (Kim and Wang, 2021; Glaser and Mundlos,
2022; Madrigal et al., 2023). Epigenetic mechanisms have been
proven to be closely related to the occurrence and development
of a variety of diseases, such as FXS (Poeta et al., 2020). These

TABLE 1 FMR1 Gene’s overview of known epigenetic modifications.

Epigenetics
Findings in FXS References

Type Classification Components

Methylation DNA Methylation N6 position of adenine N7 position
of guanine C5 position of cytosine

• The DNA methylation boundary, located
approximately 650–800 nucleotides upstream of the
FMR1 gene exon 1, is lost.Loss of CpGmethylation in
the far 5′-upstream FMR1 region

• Increased levels of 5 mC correspond to reciprocal
changes in 5 hmC within the FMR1 gene body and its
proximal flanking regions

• increased methylation of the FMR1 intron 1 sites,
specifically CpG10–12
. . .

Naumann et al. (2010), Naumann
et al. (2014)
Brasa et al. (2016)
Godler et al. (2023)

RNA Methylation m6A • the m6A landscape can be affected by FMRP in
mouse cortex

• some m6A-marked mRNA is the target of FMRP
• the stability of m6A-marked mRNAs is regulated by
FMRP

Zhang et al. (2018); Edens et al.
(2019)

m5C • establishment and removal of m5C methylation
modifications maybe regulated by FMRP

Yang et al. (2022); Chen et al.
(2023)

Protein Methylation arginine \llysine residues of
signaling pathway proteins or
histones

• elevated H3K9Me3 and H4K20Me3 coincident with
the FMR1 gene repeat

• elevated H3K9Me2和H3K27Me3 on exon 1 or
intron 1

Kumari and Usdin (2010)

Histone
Acetylation

N/A histone tails • hypoacetylated histones at 5′end of the FMR1 gene Chiurazzi et al. (1998, 1999);
Coffee et al. (1999)

Chromatin
Remodeling

SWI/SNF cBAF PBAF ncBAF • The subunit Brm of the SWI/SNF complex can
interact with the methylated FMR1 gene through
MeCP2.

• The expression of subunits from the remodeling
factor families, including Arid1, CHD, and Smarca, is
altered in the FXS model.

Moffat et al. (2022); Liu et al.
(2023); Muhammad et al. (2023)

ISWI NURF、CHRAC、ACF

INO80 INO80、SWR1

CHD CHD1 NuRD

non-
coding RNA

small RNA siRNA 、miRNA • siRNA-mediated heterochromatinization may be the
cause of FXS

• many miRNA were altered in fmr1 knockout mice
• FMR4 is silenced in FXS patients
• The expression or function of FMR5 and FMR6 may
change in FXS

Jin et al. (2004); Hecht et al. (2017);
Shitik et al. (2020); Huang et al.
(2019)long non-

coding RNA
lncRNA、microRNA

others R-LOOP N/A • R-loop may act as a structural block or nucleosome
analogy to induce epigenetic
Silencing in FXS

• R-loop formation is a key step in the conditional
treatment of Fragile X Syndrome (FXS) models using
5i or dCas9.

Colak et al. (2014); Groh et al.
(2014)
Lee et al. (2023)

3D genome
regulation

chromosome territory • TADs and chromatin loops exhibit severe structural
disarray in FXS.

Malachowski et al. (2023)

chromosomal compartment

TAD

chromatin loop
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mechanisms not only help to understand the pathogenesis of
diseases, but they themselves may also become potential
therapeutic targets for these diseases.

This article presents a comprehensive review of the current
epigenetic research findings within the domain of Fragile X
Syndrome (FXS). It encompasses pivotal mechanisms such as
DNA methylation, histone acetylation, chromatin remodeling,
and the role of non-coding RNAs along with other emerging
epigenetic phenomena. The objective is to shed light on the
intricate molecular mechanisms underlying the silencing of the
FMR1 gene and to facilitate the translation of epigenetic theories
from the realm of basic science to practical clinical applications.

2 Methylation changes and FXS

Methylation changes are a key phenomenon in epigenetics,
which refers to the genetic changes caused by the methylation or
demethylation of targets by methylation or demethylation enzymes,
without altering the DNA sequence. These changes are mainly
divided into three categories: DNA, RNA, and protein
methylation changes (Dai et al., 2021).

2.1 DNA methylation and FXS

DNA methylation alterations refer to the addition or removal of
methyl groups at specific bases within the DNA molecule, such as
the N6 position of adenine, the N7 position of guanine, and the
C5 position of cytosine (Dai et al., 2021). In prokaryotes,
methylation predominantly occurs at restriction enzyme sites,
serving a protective role for the DNA. In contrast, in eukaryotes,
methylation is predominantly found at cytosines within CpG
islands, resulting in the formation of 5′-methylcytosine (5′-mC)
structures (Mattei et al., 2022). Approximately 70% of promoters in
the human genome contain CpG islands, including the FMR1 gene
(Nobile et al., 2021; Fan et al., 2023), highlighting the ubiquity of
DNA methylation in gene regulation.

DNA methylation is orchestrated by a suite of enzymes,
including DNA methyltransferases (DNMTs) such as DNMT1,
DNMT3A, DNMT3B, and the DNMT3L, as well as the
demethylation TET family enzymes (Chen and Zhang, 2020;
Acharjee et al., 2023). DNMT1 predominantly perpetuates
established methylation patterns, whereas DNMT3A and
DNMT3B are instrumental in laying down new methylation
profiles during embryogenesis. Although DNMT3L lacks
enzymatic activity as a methyltransferase, it plays a supportive
role in the function of DNMT3A and DNMT3B. The TET family
of enzymes initiates the demethylation process by converting 5-
methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC), which
can then undergo further oxidation to 5-formylcytosine and 5-
carboxylcytosine (Charlton et al., 2020; Feng et al., 2024). This
process reveals the dynamics and reversibility of DNA methylation
modification.

DNA methylation plays a key role in the suppression of gene
transcription. In the upstream region of a gene, the differential
methylation of CpG islands can attract specific proteins to achieve
gene silencing. Downstream of the gene, DNA methylation in the

imprinting control region (ICR) suppresses gene expression by
regulating gene transcription (Sergeeva et al., 2023). These
regulatory effects are closely connected with other epigenetic
modifications such as histone methylation and acetylation
(Hashimoto et al., 2010; Cusack et al., 2020; Tibben and
Rothbart, 2024). For histone methylation, whole-genome DNA
methylation profiling studies have shown that DNA methylation
is associated with specific histone methylation patterns, especially
H3K4me0 and H3K9 methylation, with H3K9 methylation
potentially being a prerequisite for the occurrence of DNA
methylation (Hashimoto et al., 2010). DNA methylation may also
promote the process of lysine methylation (Cusack et al., 2020). As
for histone acetylation, many studies have confirmed that
methylated CpG sites can attract proteins containing a methyl-
CpG binding domain (MBD). These proteins further recruit histone
deacetylase complexes, leading to histone deacetylation, which
results in gene heterochromatinization, etc (Desai et al., 2015;
Leighton et al., 2023). That is, these interactive relationships
affect the binding capacity of transcription factors to DNA,
thereby regulating the conformation of chromatin and the
transcriptional activity of genes (Kreibich and Krebs, 2023).
These findings highlight the complexity of epigenetic regulation
and emphasize the importance of considering these
interrelationships in disease research.

DNA methylation is a crucial player in the pathogenesis of FXS.
The prevailing view among researchers is that the expansion of the
CGG repeat sequence in the FMR1 gene beyond 200 repeats leads to
methylation of the CpG island in the promoter region and the
erosion of the methylation boundary upstream of the promoter,
which are the primary triggers for the silencing of the FMR1 gene
(Naumann et al., 2010; Naumann et al., 2014). This hypothesis is
reinforced by numerous studies, including cases of full mutation
carriers with normal cognitive function (Smeets et al., 1995),
research demonstrating a positive correlation between the extent
of DNA methylation and the severity of the FXS phenotype (Baker
et al., 2019; Khoodoruth et al., 2024), and some therapeutic research,
including case studies that demonstrate treatment with 5-azacitidine
can block DNA methylation and reactivate the FMR1 gene
(Tabolacci et al., 2016a), as well as targeted DNA demethylation
using the dCas9-Tet1 system can restore the activity of the
FMR1 gene to a certain extent (Liu et al., 2018).

However, the precise mechanism by which the expansion of
CGG repeats leads to hypermethylation of FXS CpG cytosines is not
yet fully understood. The extension of the CGG repeat sequence
beyond the methylation boundary and the potential insertion of
foreign DNA are hypothesized to be contributing factors (Naumann
et al., 2014). As research progresses, emerging findings are
challenging the notion that DNA methylation is the sole primary
factor in the silencing of the FMR1 gene. Firstly, the inactivation of
the FMR1 gene is associated not only with DNA demethylation but
also with increased levels of deacetylation of histones H3 and H4
(Pietrobono et al., 2005; Li et al., 2018), suggesting that other
epigenetic modifications, in addition to DNA methylation, play a
critical role in the pathogenesis of FXS. Secondly, numerous
experiments have shown that histone deacetylase (HDAC)
inhibitors can activate the FMR1 gene and ameliorate FXS
symptoms, even without altering DNA methylation activity
(Biacsi et al., 2008; Tabolacci et al., 2008). Some researchers have
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posited that the silencing of FMR1 may be triggered by chromatin
modification changes due to histone deacetylation, which may occur
prior to DNAmethylation (Eiges et al., 2007; Warren, 2007), further
underscoring the complexity of epigenetic regulation. Additionally,
5-azacitidine (5-AzadC) cannot reactivate the silenced the
FMR1 gene in post-mitotic neurons and can only exert its effects
during the DNA replication process (Kumari et al., 2020), indicating
that DNAmethylation may not be the sole factor in the pathogenesis
of FXS and that the role of other epigenetic modifications should not
be disregarded. These research outcomes underscore the importance
of considering a broader spectrum of epigenetic regulatory
mechanisms, rather than focusing solely on DNA methylation, in
the development of therapeutic strategies for FXS.

2.2 RNA methylation and FXS

RNAmethylation is a form of epigenetic modification found in a
variety of RNA molecules, including messenger RNA (mRNA),
transfer RNA (tRNA), ribosomal RNA, and small nuclear RNA.
Over 100 types of RNA methylation are known, with N6-
methyladenosine (m6A) and 5-methylcytosine (m5C) being the
most common (Yang et al., 2021). m6A methylation is primarily
catalyzed by the METTL3/14 methyltransferase complex and the
WTAP protein, while the demethylation process is mainly carried
out by the FTO and ALKBH5 enzymes (An and Duan, 2022). The
m5C methylation is mediated by members of the NOP2/Sun RNA
methyltransferase family and the DNMT2 family of DNA
methyltransferases, and the demethylation is performed by the
TET family of enzymes (Balachander et al., 2023). m6A and
m5C meticulously control gene expression by precisely regulating
key steps such as RNA splicing, localization, stability, nuclear export,
degradation, transcription, and translation, thereby causing
physiological and pathological changes in cells and having a
profound impact on cellular function and the development
of diseases.

The m6A and m5C methylation modifications have been
established as pivotal factors in the etiology of FXS. With respect
to m6A modification, research indicates that the FMRP
predominantly targets mRNAs that have been marked with m6A.
For example, the sites where FMRP binds to mRNAs correlate
closely with the locations of m6A modifications on these mRNAs
(Chen et al., 2023); the neurodevelopmental abnormalities caused by
FMRP deficiency share similarities with the neurodevelopmental
phenotypes resulting from abnormal m6A modification (Edens
et al., 2019); in the mouse cortex, lack of FMRP can affect the
m6A landscape (Zhang et al., 2018). Furthermore, FMRP regulates
the stability of m6A-marked mRNAs through interaction with the
m6A reader protein YTHDF2, and promotes the export of m6A-
marked RNA targets from the nucleus to the cytoplasm, affecting the
differentiation of neural progenitor cells (Edens et al., 2019).
Regarding m5C modification, an increasing number of studies
suggest that FMRP may act as an emerging m5C reader protein,
participating in the regulation of the establishment and removal of
m5C methylation modifications (Yang et al., 2022; Chen et al.,
2023). Nevertheless, the specific mechanisms of RNAmethylation in
FXS still require further research to fully elucidate its biological
significance.

2.3 Protein methylation and FXS

Protein methylation is divided into histone and non-histone
methylation. Histone methylation primarily occurs on the lysine and
arginine residues of histones and is jointly regulated by
methyltransferases such as PRMT (Protein Arginine
Methyltransferase) and KMT (Lysine Methyltransferase), as well as
demethylases like LSD1 (Lysine-Specific Demethylase 1) to maintain
balance (Gong and Miller, 2019; Dai et al., 2021). The histones
methylation, in addition to its close ties with DNA methylation, also
engages in a dynamic, antagonistic interplay with histone acetylation
(Zhang et al., 2021). Studies have shown that many residues of histone
methylation can also undergo acetylation. For instance, the acetylation
at the H3K9 site must be removed before methylation can occur
(Monte-Serrano et al., 2023). This fine regulatory mechanism is
crucial for the regulation of gene expression in cells. In the cell,
many histone methylation is associated with gene silencing regions,
such as H3K9, H3K27, and H4K20 (Zhang et al., 2021). These specific
histone modifications typically mark a variety of transcriptional
repression sites and areas where heterochromatin is formed (Gong
and Miller, 2019; Zhang et al., 2021; Monte-Serrano et al., 2023). The
degree of methylation at these sites determines the openness or closure
of chromatin, thereby finely regulating the activity of gene expression.
Specifically, the tri-methylation of H3K9 (H3K9me3) is generally
closely related to the formation of heterochromatin and gene
silencing (Methot et al., 2021; Padeken et al., 2022), while the tri-
methylation of H3K27 (H3K27me3) is associated with the suppression
of gene expression, playing a crucial role in the silencing of specific
genes during the developmental process of an organism (Nichol et al.,
2016; Laugesen et al., 2019). Non-histone methylation typically targets
lysine and arginine residues on proteins engaged in signal transduction,
playing a role in diverse signaling pathways like MAPK, WNT, and
BMP (Dai et al., 2021; Chen et al., 2024). This methylation fine-tunes
protein activity by influencing these pathways and directs the
translation, localization, and signal transduction processes of proteins.

In research on FXS, it has been found that the silenced
FMR1 gene region is enriched with various histone methylation
marks associated with transcriptional silencing, such as H3K9me2,
H3K27me3, H3K9me3, and H4K20me3 (Kumari and Usdin, 2010;
Basalingappa, 2020). The common characteristics of these
modifications give the FMR1 locus heterochromatic properties,
thereby suppressing the transcription of the FMR1 gene.
Experiments have shown that removing these modifications can
effectively reverse the symptoms of FXS (Tabolacci et al., 2016b;
Kumari and Usdin, 2016; Kumari et al., 2020; Kumari et al., 2024),
further demonstrating the importance of histone modifications in
the pathogenesis of FXS. In contrast, the study of non-histone
modifications in FXS is not as in-depth, but it is known that
abnormalities in the WNT, BMP, and MAPK signaling pathways
are associated with FXS (Casingal et al., 2020; Salcedo-Arellano et al.,
2021; Song and Broadie, 2022).

3 Histone acetylation and FXS

Histone acetylation is crucial for regulating gene transcription,
being notably more prevalent in open chromatin regions compared
to the more condensed heterochromatic regions. This dynamic
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process is intricately linked to DNA accessibility: DNA is compacted
into a chromatin structure, with nucleosomes as its basic units,
which include four types of histone proteins: H2A, H2B, H3, and H4
(Ahmad et al., 2022). Specific regions of these histone proteins can
undergo modifications that regulate the tight binding of
nucleosomes to DNA, thereby controlling gene transcription
(Ahmad et al., 2022). The acetylation and deacetylation of lysine
residues on the histone tails are among the most common
modifications, jointly regulated by histone acetyltransferases
(HATs) and histone deacetylases (HDACs) (Kumar et al., 2022;
Shvedunova and Akhtar, 2022). When histones are acetylated, it
reduces the electrostatic attraction between histones and DNA,
leading to a more “open” chromatin structure that facilitates gene
transcription; conversely, deacetylation results in a more compact
chromatin structure, inhibiting gene transcription (Kumar et al.,
2022). Furthermore, histone acetylation is closely related to DNA
methylation and histone methylation (see the previous text for
details). They are interwoven with each other, forming a complex
epigenetic network that plays a regulatory role in maintaining the
normal physiological functions of cells and in the occurrence and
progression of many diseases.

In research on FXS, the discovery of hypoacetylated FMR1 genes
has provided new insights into the mechanisms underlying the
gene’s silencing. Numerous studies have shown that the
FMR1 gene in its silenced state has a higher level of histone
deacetylation compared to when it is actively transcribed
(Pietrobono et al., 2005; Usdin and Kumari, 2015; Reches, 2019;
Shitik et al., 2020). Further investigation has shown that within the
scope of FXS, the FMR1 gene’s methylated CpG sites engage with
methylation-binding proteins (MBDs), These interactions
subsequently draw in histone deacetylases, triggering histone
deacetylation. This process culminates in a condensed chromatin
architecture that precipitates gene silencing (Shitik et al., 2020; Dhar
et al., 2021). These findings have led researchers to hypothesize that
the long CGG repeats at FMR1 gene may guide local histone
deacetylation through DNA methylation, thereby contributing to
gene silencing. In cellular therapy experiments targeting FXS, the use
of the demethylating agent 5-azacitidine (5-azadC) alone
significantly activates FMR1 expression in FXS cell lines. In
contrast, the use of histone deacetylase inhibitors such as TSA,
romidepsin, and vorinostat alone has limited or insignificant effects
on the activation of FMR1 (Dolskiy et al., 2017). This result suggests
that DNAmethylation may play a more critical role in the process of
gene inactivation, further supporting the theory that DNA
methylation contributes to gene silencing by guiding the
deacetylation of local histones.

However, when treating FXS models with the DNA
methyltransferase inhibitor 5-aza-dC, it was found that it could
only partially reactivate the gene, and this effect required the process
of DNA replication to be realized (Kumari et al., 2020; Berry-Kravis
et al., 2021). The use of histone deacetylase (HDAC) inhibitors such
as sodium valproate and splitomicin has been shown to ameliorate
some symptoms in FXS (Tabolacci et al., 2008; Berry-Kravis et al.,
2021). In FXS lymphoblastoid cells, sodium valproate has been
demonstrated to moderately affect histone modifications at the
FMR1 locus, but it does not impact DNA methylation nor
significantly influence transcriptional reactivation (Warren, 2007;
Tabolacci et al., 2008). This has led some researchers to propose that

histone deacetylation may be a key initiating factor in the silencing
of the FMR1 gene. Nevertheless, it is currently unclear whether DNA
methylation or histone deacetylation plays a decisive role in the
silencing of the FMR1 gene, and this point remains to be further
investigated.

4 Chromatin remodeling and FXS

Chromatin remodeling is an epigenetic process that modulates
gene transcription by adjusting the architecture of chromatin
through modifications in nucleosome composition and
positioning. This is facilitated by chromatin remodeling
complexes, which possess ATPase activity and utilize the energy
from ATP hydrolysis to enact these changes (Reyes et al., 2021).
These factors are categorized into four main classes based on the
sequence and structural characteristics of their ATPase subunits:
SWI/SNF, ISWI, INO80, and CHD (Clapier and Cairns, 2009; Reyes
et al., 2021), each with distinct non-redundant roles within the cell.
The SWI/SNF class, which includes complexes such as canonical
BAF (cBAF), polybromo-associated BAF (PBAF), and noncanonical
BAF (ncBAF), primarily functions to disrupt nucleosome order,
promote their disassembly and repositioning, and enhance DNA
accessibility (Centore et al., 2020). ISWI exists in complex forms like
NURF, CHRAC, and ACF, with subunits that participate in
nucleosome maturation and arrangement, maintaining DNA
stability (Barisic et al., 2019; Li et al., 2021). The INO80 class,
encompassing INO80 and SWR1 complexes, regulates nucleosome
sliding and facilitates the exchange of histone variants, impacting
DNA status and gene expression (Willhoft andWigley, 2020; Zhang
et al., 2023). The CHD class, which includes CHD1 subunits and the
NuRD family, modulates gene transcription by regulating
nucleosome assembly, sliding, and disassembly (Muhammad
et al., 2023). Chromatin remodeling factors are crucial for
cellular function, precisely regulating chromatin structure and
influencing cell development, differentiation, and adaptability to
the environment.

In the pathogenesis of FXS, chromatin remodeling plays a
crucial role. On one hand, these factors may be the key drivers
of FMR1 gene silencing. In the context of FXS, the silencing of the
FMR1 gene coexists with chromatin remodeling phenomena (Shitik
et al., 2020). The latest research reveals that the methylated
FMR1 gene can recruit MeCP2 protein, and there is a unique
interaction between MeCP2 and specific subunits of the SWI/
SNF complex. This interaction may cause a change in the
topological structure of the FMR1 gene, thereby triggering the
gene’s silencing (Harikrishnan et al., 2005). On the other hand,
the imbalance in the expression of chromatin remodeling factors is
considered a key factor in the formation of abnormal neurological
phenotypes in FXS. In FXS research, the absence of FMRP protein is
associated with significant changes in the expression of subunits of
chromatin remodeling factors such as the Arid1 family, CHD family,
and Smarca family (Korb et al., 2017; Richter and Zhao, 2021),
which are closely related to neurodevelopment (Moffat et al., 2022;
Wischhof et al., 2022; Liu et al., 2023; Loblein et al., 2023). The latest
research using organoids to simulate FXS phenotypes further
confirms that the absence of FMRP protein may lead to an
increase in the level of CHD remodeling factor subunit CHD2,
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causing an imbalance in genomic transcription, and ultimately
leading to abnormal neurodevelopment (Kang et al., 2021). In
summary, chromatin remodeling is central to the pathogenesis of
FXS. By thoroughly investigating the specific roles of chromatin
remodeling factors in FXS, we can gain a more profound
understanding of the disease’s development and progression,
laying a solid scientific foundation for the development of
targeted therapeutic strategies.

5 Non-coding RNA and FXS

Non-coding RNAs (ncRNAs) are a class of RNAs transcribed
from genomic DNA that do not encode proteins but make up the
vast majority of RNAs produced by the human genome
transcription (Bhatti et al., 2021; Yan and Bu, 2021). ncRNAs are
divided into two main categories: small non-coding RNAs, which
are less than 200 nucleotides in length, and long non-coding RNAs,
which are longer than 200 nucleotides. siRNAs and miRNAs belong
to the category of small non-coding RNAs. Although they originate
from different sources, their primary functions are similar—they
bind to the complementary sequences of target mRNAs, activating
the RNA-induced silencing complex (RISC), which promotes the
degradation of the target mRNAs (Vos et al., 2019; Yan and Bu,
2021). lncRNAs and circRNAs are types of long non-coding RNAs.
lncRNAs have a linear structure, while circRNAs form closed
circular structures. They can be transcribed in either direction
from various regions of protein-coding genes, including exons,
introns, and 5′/3′untranslated regions (Panni et al., 2020). These
RNA molecules can fold into complex secondary structures and
serve diverse biological functions. For example, they can act as
“sponges” for miRNAs, preventing them from degrading target
mRNAs; they can regulate the binding of transcription factors to
promoters, affecting gene expression; and they can also act as
“molecular scaffolds”, modulating protein interactions and their
downstream signaling pathways (Panni et al., 2020; Yan and Bu,
2021). Overall, ncRNAs play a crucial role in regulating gene
expression, constructing cellular structures, modulating protein
functions, and participating in numerous biological processes.

In the field of FXS research, ncRNAs has become a key focus in
exploring the disease’s pathogenesis. Initially, siRNA andmiRNA, as
small RNA molecules, provide a hypothetical model for RNA-based
silencing of the FMR1 gene. Specifically, research indicates that the
stable hairpin structure of pre-mutation CGG repeat sequences can
be processed by Dicer to produce small RNAs (Handa et al., 2003),
and considering the role of siRNA in the formation of
heterochromatin (Verdel et al., 2004), researchers have proposed
an innovative hypothetical model: the hairpin structured RNA
formed after transcription of the fully mutated FMR1 gene can
be processed into siRNAs. The deposition of these siRNAs in the
expanded CGG repeat region can effectively recruit the RITS
complex and further attract key epigenetic effectors, such as
histone methyltransferases and DNA methyltransferases, thereby
triggering the epigenetic silencing of the FMR1 gene (Jin et al., 2004;
Zhou et al., 2019). Secondly, miRNAs may have subtle interactions
with FMRP in the pathogenesis of FXS. Extensive research in FXS
models has observed that FMRP can control neuronal development
by regulating miRNA expression (Liu et al., 2015; Men et al., 2020;

Zhang et al., 2020). Conversely, the abnormal expression of specific
miRNAs can disrupt FMRP function, weakening its role as a
translational repressor in regulating axonal growth and synaptic
plasticity, thus inducing FXS-related phenotypes (Wu et al., 2019;
Zhang et al., 2019; Lannom et al., 2021). Additionally, lncRNAs are
also considered participants in the pathogenesis of FXS (Figure 2).
Studies have shown that FMR4 plays an important role in
neurodevelopment (Zhao et al., 2020; Barros et al., 2021), but
FMR4 is not transcribed in FXS alleles (Shitik et al., 2020; Nobile
et al., 2021). Both FMR5 and FMR6 can influence the expression and
function of the FMR1 gene (Rosario and Anderson, 2020; Shitik
et al., 2020), yet their expression or function is significantly altered in
FXS (Huang et al., 2019). Furthermore, circular RNAs (circRNAs)
have been confirmed to interact with the FMR1 gene (Liao et al.,
2022; Zhong et al., 2023), suggesting a potential link to the
pathological processes of FXS. Overall, non-coding RNAs play a
multifaceted and critical role in the pathogenesis of FXS. The
regulatory effects of these molecules offer new potential targets
for the treatment of FXS.

6 FXS and other epigenetics

As research continues to deepen, R-loops and 3D genome
regulation have become hot topics in the field of epigenetics.
R-loops are a three-stranded nucleic acid structure composed of an
RNA-DNA hybrid and a displaced single-strand of DNA; they are
typically concentrated in the transcription start and termination regions
of genes, especially in guanine-rich areas (Niehrs and Luke, 2020).
R-loops play the role of dynamic regulators in gene transcription
regulation. On one hand, the formation and stability of R-loops are
finely regulated by various genetic activities involving numerous
epigenetic mechanisms. For instance, DNA methylation can inhibit
the formation of R-loops, while N6-methyladenosine (m6A)
modification helps stabilize them. In addition, long non-coding
RNAs (lncRNAs) and circular RNAs (circRNAs) are also involved
in the formation of R-loops (Ginno et al., 2012; Niehrs and Luke, 2020).
On the other hand, the presence and stability of R-loops can also cause
multiple changes in gene activity. If R-loops are not correctly cleared or
shielded, they may cause DNA breaks and activate DNA repair
mechanisms. At the same time, R-loops can also alter the structure
of chromatin, affecting the methylation modification of certain regions.
Therefore, R-loops are a complex epigenetic phenomenon with
profound effects on gene activity. 3D genome regulation focuses on
how the spatial structure of the genome affects gene expression and
regulation. Research in this field is based on 3C technology and its
derivatives, revealing multi-level regulatory mechanisms from
chromosome territories to chromatin loops. Chromosome territories
demonstrate the specific distribution patterns of chromosomes within
the cell nucleus, where gene-rich regions gather to form active
expression domains, while regions with fewer genes are concentrated
within the chromosomes, closely related to gene function and stability.
The chromosome compartments are divided into transcriptionally
active compartment A and repressive compartment B, and the
dynamic transition between them has a decisive effect on gene
expression. Topologically associating domains (TADs), as 3D spatial
functional units composed of interacting gene sets within the genome,
are defined by CTCF proteins and cohesin proteins at their boundaries,
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laying the foundation for DNA recombination and replication.
Chromatin loops are circular connections between distant
chromatin, playing a key role in gene activation and fine regulation
(Kumar et al., 2021). The study of R-loops and 3D genome regulation
provides uswith a new perspective to understand epigenetics, helping us
to gain a deeper understanding of the complexity of gene expression
and its role in health and disease.

In the field of Fragile X Syndrome (FXS) research, the in-depth
exploration of R-loops and three-dimensional genome structures
has opened new research paths for pathological mechanisms that
traditional epigenetic theories struggle to fully explain. In terms of
R-loop research, as early as 2014, studies proposed that the CGG-
expanded FMR1 gene forms a special R-loop during transcription,
where the nascent RNA hybridizes with its unzipped DNA template,
potentially inducing epigenetic silencing as a structural block or
nucleosome-like entity (Colak et al., 2014; Groh et al., 2014). The
latest literature reports that R-loop formation is a key step in using 5i
or dCas9 to conditionally induce the contraction of the CGG repeat
sequence in the FMR1 gene, thereby reactivating the FMR1 gene and
restoring the expression of FMRP protein. This research suggests
that R-loops formed under specific conditions can, on the one hand,
promote DNA demethylation, thereby further enhancing the
formation of R-loops through positive feedback; on the other
hand, R-loops can trigger endogenous DNA repair mechanisms,
especially through the MSH2/Mismatch Repair (MMR) pathway, to
correct the abnormal CGG repeat sequence length in FXS cells,
activate the FMR1 gene, and restore the expression of FMRP protein,
thus forming a virtuous cycle. These findings confirm the dynamic
role of R-loops in the pathogenesis of FXS (Lee et al., 2023);
Regarding 3D genome regulation, the latest research has found
that in various cell types of FXS patients, the expansion of the CGG
sequence triggers the formation of large-scale H3K9me3 regions
around the autosomes and the FMR1 gene, leading to significant
adjustments in chromatin structure, accompanied by severe
structural disorder of topologically associating domains (TADs)
and chromatin loops. This disorder not only affects the normal
activity of long synaptic genes but also leads to double-strand DNA
breaks caused by replication stress and progressive somatic
instability in short tandem repeat sequences (STRs). It is worth
noting that correcting the CGG sequence with gene editing
technologies such as CRISPR can reverse the above phenomena
and restore the normal structure and function of chromatin
(Malachowski et al., 2023). These findings further emphasize the
epigenetic role of R-loops and three-dimensional genome structures
in FXS, reveal the complexity of epigenetic regulation in FXS, and
provide a new theoretical basis for future therapeutic strategies.

7 Discussion

Epigenetic silencing of the FMR1 gene is the core pathological
mechanism of Fragile X Syndrome (FXS) (Figure 3; Table 1), and its

reversibility offers potential for treatment of FXS. This article reviews
the current progress in epigenetic research on FXS, aiming to promote
the application of epigenetics in FXS research and treatment.
However, due to the complexity and interdependence of multiple
steps in epigenetic processes, the precise localization of epigenetic
marks during the transcription of the FMR1 gene remains a challenge,
and the mechanism of FMR1 gene inactivation during development is
not yet fully understood. To fully explore the potential for FXS
treatment, future research needs to delve into the epigenetic
mechanisms behind the silencing of the FMR1 gene, including the
interactions between these epigenetic marks. This will help us to more
comprehensively understand the complexity of FMR1 gene silencing
and provide a solid scientific foundation for the development of
effective therapeutic strategies capable of reversing these
silencing marks.
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