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Background: Sentinel lymph node metastasis (SLNM) is a critical factor in the
prognosis and treatment planning for breast cancer (BC), as it indicates the
potential spread of cancer to other parts of the body. The accurate prediction and
diagnosis of SLNM are essential for improving clinical outcomes and guiding
treatment decisions.

Objective: This study aimed to construct a Lasso regression model by integrating
multimodal ultrasound (US) techniques, including US, shear wave elastography
(SWE), and contrast-enhanced ultrasound (CEUS), to improve the predictive
accuracy of sentinel lymph node metastasis in breast cancer and provide
more precise guidance for clinical treatment.

Results: A total of 253 eligible samples were screened, of which 148 were group
benign and 105 were group malignant. There were statistically significant
differences (p < 0.05) between group malignant patients in terms of age,
palpable mass, body mass index, distance to nipple, maximum diameter,
blood flow, microcalcification, 2D border, 2D morphology, and 2D uniformity
and group benign. The Lasso regression model was useful in the diagnosis of
benign andmalignant nodules with an AUC of 0.966 and in diagnosing SLNMwith
an AUC of 0.832.

Conclusion: In this study, we successfully constructed and validated a Lasso
regression model based on the multimodal ultrasound technique for predicting
whether SLNM occurs in BCs, showing high diagnostic accuracy.
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Introduction

Data from 2020 show that, for the first time, the number of new cases of breast cancer
(BC) at 2.26 million surpassed lung cancer globally, making it the most prevalent type of
cancer, as well as topping the female cancer mortality rate with 680,000 deaths (Breidenbach
et al., 2022). This trend emphasizes the critical importance of early detection and definitive
diagnosis to improve survival and quality of life for BC patients. Although molybdenum
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X-rays and ultrasound (US) have become the dominant diagnostic
methods, they have their limitations and potential risks, such as the
applicability of molybdenum X-rays in Asian women and the risk of
ionizing radiation, as well as overdiagnosis due to the US (Wang
et al., 2020). MRI, although more capable of identifying breast soft
tissue, sometimes needs to be used in combination with other
methods due to its lack of specificity, which may trigger
unnecessary overtreatment (Radhakrishna et al., 2018).

The determination of sentinel lymph node (SLN) metastasis is
particularly critical in prognostic assessment. Although the vast
majority of patients with early-stage BC show no clinically
significant signs of lymph node metastasis, SLN metastases are
still detected in 15%–20% of patients after surgery (Tonellotto
et al., 2019). Current metastatic evaluation by lymph node
dissection or biopsy, although routine, involves invasive means
that are prone to complications and are not suitable for all
patients. Therefore, there is an urgent need to develop a method
for the non-invasive assessment of SLN status (Abass et al., 2018;
Zhang et al., 2021).

Ultrasound elastography is commonly used as a diagnostic tool
to help identify benign and malignant tumors, using color images to
reflect tissue hardness. However, it carries the risks of mis- and
underdiagnosis due to operator subjectivity (Zhao and Xu, 2019). To
address this issue, the shear wave elastography (SWE) technique was
developed. SWE quantitatively obtains Young’s modulus values,
which allows for the objective evaluation of lesions and improves
diagnostic reproducibility and accuracy (Chou et al., 2021).
Additionally, contrast-enhanced ultrasound (CEUS) technology, a
blood pool imaging technique formed by microbubble reflective
interfaces, has shown significant advantages in displaying the
microvasculature and has thus provided important information
for invasive and metastatic studies of BC (Xu et al., 2020).

Multimodal ultrasound is an advanced medical imaging
technology that combines different ultrasound imaging modalities
to provide comprehensive information about a lesion, facilitating
more accurate diagnosis and disease assessment (van der Pol et al.,
2022). The advantages of multimodal ultrasound include significant
reduction in the rate of misdiagnosis and omission and improving
diagnostic efficiency and accuracy. As a non-invasive, portable, non-
radioactive technology, it is particularly suitable for monitoring
diseases that require frequent review (Zhu et al., 2020). This
technique is widely used in the evaluation of soft tissue disorders
such as thyroid nodules and liver disease.

In this study, multimodal ultrasound technology was used to
integrate CEUS, US, and SWE methods to provide a comprehensive
assessment of breast lesions. This approach requires a great deal of
work and expertise, and ultrasound is highly operator-dependent. To
address its fit within the regular workflow, it is important to clarify
that multimodal ultrasound is intended for use in specific clinical
scenarios. It is particularly useful for patients who have an abnormal
mammogram or those with a known diagnosis of breast cancer, rather
than being used as a general screening tool for all patients. Through
comparative analysis with post-surgical pathological findings, this
study explored the performance of each imaging technique and its
value in BC diagnosis. Additionally, we attempted to establish a
prediction model for SLN metastasis (SLNM) through this
integrated diagnostic approach, aiming to provide a more accurate
guide for clinical treatment.

Methods and materials

Sample information

The data of patients who were examined at the First Hospital of
Wenzhou Medical University with breast masses from January
2023 to December 2023 were retrospectively collected. The study
was conducted with the approval of the Medical Ethics Committee
of the First Affiliated Hospital of Wenzhou Medical University (No.
KY2022-R169).

Inclusion and exclusion criteria

The inclusion criteria are as follows:① Over 18 years of age.②
UE, SWE, and CEUS were performed before surgery. ③

Pathological results are available for surgery. ④ Pathology after
surgery can clarify the presence or absence of SLNM. ⑤ Patient’s
clinical data are complete.

The exclusion criteria are as follows: ① Patients who had
undergone breast implantation. ② Image acquisition is not
standard. ③ Patients with contraindications to surgery. ④

History of radiotherapy. ⑤ With contraindications to contrast
agents. All subjects understood the content of the study,
voluntarily participated in the study, and signed the informed
consent form.

Determination of benignity and malignancy

Patients’ tissues were obtained by surgery or pathology puncture
and sent to the pathology department for testing to confirm the
diagnosis of the tissue. The pathology results were used as the final
judgement criteria.

Sample screening

We screened 253 cases of eligible samples according to the
inclusion and exclusion criteria. The patients were divided into
group benign (n = 148) and group malignant (n = 105) according to
the pathological test results.

Ultrasound Detection

For ultrasound examination of breast lesions, we used a Resona
8 ultrasound system (provided by Mindray Medical International,
Shenzhen, China). The system is equipped with a variety of probes,
ranging from 3–15MHz for US and shear wave elastography (SWE),
and 3–11 MHz for contrast ultrasound (CEUS). The contrast agent
used was SonoVue (provided by Bracco Suisse SA). First, the
location, size, echo pattern, margins, shape, calcification, and
blood flow condition of the lesion were assessed in detail by US
examination, and this information was recorded. Subsequently, the
SWE mode was initiated, and the main part of the lesion was placed
in the center of the sampling frame. While instructing the patient to
hold his/her breath, the mass-speed dual dynamic mode of SWE was
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TABLE 1 Comparison of clinical data, ultrasonography, and color Doppler blood-flow imaging data.

Variables Benign (n = 148) Malignant (n = 105) t/Z/χ2 p

Age (years) 42.65 ± 10.34 51.34 ± 10.97 6.361 <0.001

Palpable mass

Present 33 64 38.823 <0.001

None 115 41

Nipple discharge

Present 32 25 0.168 0.681

None 116 80

BMI (kg/m2) 22.30 [20.70,23.87] 23.05 [21.33,24.84] 2.544 0.011

Location of the tumor

Left 76 50 0.342 0.559

Right 72 55

Distance to nipple

>20 mm 13 23 8.664 0.003

≤20 mm 135 82

Maximum diameter

≥20 mm 28 53 28.103 <0.001

<20 mm 120 52

Aspect ratio

≥1 25 21 0.399 0.528

<1 123 84

Blood flow

Abundant 39 58 21.681 <0.001

Sparse 109 47

Microcalcification

Present 39 70 40.712 <0.001

None 109 35

2D border

Unclear 31 57 30.097 <0.001

Clear 117 48

2D morphology

Irregular 93 91 17.584 <0.001

Regular 55 14

2D uniformity

Homogeneous 56 20 10.319 0.001

Heterogeneous 92 85

Periductal features

Present 60 46 0.270 0.604

None 88 59
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selected. Image quality was considered good when the image showed
a homogeneous green background with no significant purple
artifacts. On this basis, we switched to grayscale SWE velocity
dual mode, where red represents hard tissue and blue represents
soft. The lesion was carefully observed for hard edge features
(i.e., the area surrounding the lesion was red or orange). The
assessment parameters are detailed in Supplementary Table S1.
We manually outlined the edges of the lesion and recorded for
the lesion mean elastic modulus (Emean), maximum elastic
modulus (Emax), minimum elastic modulus (Emin), and elastic
modulus standard deviation (Esd). We also recorded the peripheral
area 2 mm around the tumor for mean elastic modulus (Esmean),
maximum elastic modulus (Esmax), minimum elastic modulus
(Esmin), and elastic modulus standard deviation (Essd). For the
lesions plus peripheral areas, we recorded minimum elastic modulus
(Elsmin), maximum elastic modulus (Elsmax), minimum elastic
modulus (Elsmin) (0–140 kPa), and the elastic modulus standard
deviation (Elssd). After completing the above steps, we replaced the
probe and activated the CEUS mode. We selected a section with
irregular morphology or abundant blood flow while ensuring that
the normal breast tissue surrounding the lesion was also in the field
of view. While 4.8 mL of the contrast agent was injected
intravenously and immediately followed by 5 mL of saline, the
timing and storage function were activated, and the images were
continuously observed and recorded in real time for 3 min. During
this procedure, detailed observation of the CEUS features of the
lesion and its surrounding normal breast tissue was made, including
enhancement time, enhanced intensity, enhancement margin,
enhancement morphology, enhancement distribution,
enhancement direction, enhancement area, Crab-claw-like
pattern, perfusion defect, and Ring-like enhancement. In
addition, it was necessary to record such factors as base intensity

(BI), arrival time (AT), time to peak (TTP), peak intensity (PI),
ascending slope (AS), 1/2 descending time (DT/2), decay slope (DS),
area under the curve (AUC), and mean transit time (MTT).

Clinical data collection

Information about the patient was obtained through electronic
medical records, outpatient review records, and ultrasound test
records. Clinical information included age, palpable mass, and
body mass index (BMI). US parameters include location of the
tumor, distance to the nipple, maximum diameter, aspect ratio,
blood flow, microcalcification, 2D border, 2D morphology, 2D
uniformity, and periductal features. SWE parameters include
hard edge sign, Emean, Emax, Emin, Esd, Esmean, Esmax,
Esmin, Essd, Elsmean, Elsmax, Elsmin, Elssd. CEUS parameters
include enhancement margin, enhancement morphology,
enhancement distribution, enhanced intensity, enhancement
direction, perfusion defect, ring-like enhancement, enhancement
area, Crab-claw-like pattern, enhancement time, BI, AT, TTP, PI,
AS, DT/2, DS, AUC, MTT.

Observation indicators

1. Analyze the difference in clinical data, US, SWE, and CEUS
between group benign and group malignant patients.

2. Analyze the difference in clinical data, US, SWE, and CEUS
between SLNM and non-SLNM patients.

3. Determine the optimal cut-off value for measures with
differences by using receiver operating characteristic
(ROC) curves.

TABLE 2 SWE signs and parameters.

Variables Benign (n = 148) Malignant (n = 105) Z/χ2 p

Hard edge sign

Yes 35 80 68.392 <0.001

No 113 25

Emean (kPa) 30.73 [21.81,45.13] 45.15 [39.20,52.73] 6.251 <0.001

Emax (kPa) 63.81 [43.24,89.19] 107.72 [82.93,150.58] 7.572 <0.001

Emin (kPa) 14.96 [8.56,19.91] 17.02 [10.99,25.01] 2.284 0.022

Esd 8.21 [5.95,12.50] 13.31 [10.47,18.45] 6.196 <0.001

Esmean (kPa) 33.69 [22.83,48.02] 50.35 [42.38,57.06] 6.581 <0.001

Esmax (kPa) 70.19 [49.31,105.69] 126.97 [101.44,167.53] 7.611 <0.001

Esmin (kPa) 12.25 [6.58,18.49] 14.15 [7.44,18.92] 1.205 0.229

Essd 11.18 [8.18,16.68] 18.66 [14.66,25.65] 6.79 <0.001

Elsmean (kPa) 33.08 [22.60,46.62] 48.60 [41.70,54.65] 6.376 <0.001

Elsmax (kPa) 74.85 [50.06,106.30] 133.63 [104.61,173.00] 7.844 <0.001

Elsmin (kPa) 12.00 [6.43,17.58] 13.23 [7.20,18.92] 0.989 0.323

Elssd 10.92 [7.85,15.36] 16.86 [12.84,21.47] 6.518 <0.001
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TABLE 3 CEUS signs and parameters.

Variables Benign (n = 148) Malignant (n = 105) t/Z/χ2 p

Enhancement margin

Clear 71 38 3.477 0.062

Unclear 77 67

Enhancement morphology

Regular 75 30 12.362 <0.001

Irregular 73 75

Enhancement distribution

Homogeneous 51 31 0.683 0.409

Heterogeneous 97 74

Enhanced intensity

High 76 96 45.327 <0.001

None/low/equal 72 9

Enhancement direction

Centripetal 109 85 1.832 0.176

Centrifugal 39 20

Perfusion defect

Present 70 55 0.635 0.426

None 78 50

Ring-like enhancement

Present 9 1 4.256 0.039

None 139 104

Crab-claw-like pattern

Present 8 45 52.025 <0.001

None 140 60

Enhancement area

> 31 84 86.396 <0.001

= 117 21

Enhancement time

Early 48 59 14.205 <0.001

On time 100 46

BI (db) 1.94 [1.26,2.97] 2.68 [1.58,4.65] 3.061 0.002

AT (s) 8.87 [6.91,11.22] 7.87 [6.31,9.52] −2.856 0.004

TTP (s) 17.06 [14.25,20.48] 15.44 [12.89,18.06] −3.185 0.001

PI (db) 20.46 [14.68,28.70] 29.61 [25.62,33.54] 5.880 <0.001

AS 0.57 [0.31,0.73] 0.61 [0.45,0.78] 1.941 0.052

DT/2 (s) 89.51 ± 29.30 96.61 ± 29.07 1.908 0.058

DS −0.11 [-0.15,-0.07] −0.12 [-0.16,-0.10] −2.131 0.033

AUC 943.66 [581.58,1619.55] 1736.51 [1138.51,2156.63] 5.704 <0.001

MTT 79.42 ± 29.09 90.00 ± 29.40 2.833 0.005
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4. Construct predictive models for benign and malignant tumors
as well as SLNM by lasso-logistics regression.

Statistical analysis

Statistical analyses were performed using SPSS 26.0 software. Count
data were expressed as numbers, and χ2 test was used to compare rates
between groups. Measurement information was expressed as x ± s, and
a t-test was used. The diagnostic value of the model was analyzed using
the ROC curve. The best cut-off value was obtained by ROC analysis,
and the corresponding sensitivity, specificity were calculated. Lasso
regression was performed using the “glmnet” package in R software
(4.3. 2) with family = “Binomial or Gaussian”, alpha = 1, nfolds = 10.
p-value <0.05 was considered statistically significant.

Results

Comparison of clinical data with US data

Comparison found that age, palpable mass, BMI, distance to
nipple, maximum diameter, blood flow, microcalcification, 2D

border, 2D morphology and 2D uniformity in group malignant
patients were statistically different compared to group benign
patients (p < 0.05, Table 1).

Comparison of SWE parameters in benign
and malignant patients

By comparison, hard edge sign, Emean, Emax, Emin, Esd,
Esmean, Esmax, Essd, Elsmean, Elsmax, and Elssd were found to
be statistically different in group malignant patients compared to
group benign patients (p < 0.05, Table 2).

Comparison of CEUS parameters in benign
and malignant patients

Enhancement morphology, enhanced intensity, ring-like
enhancement, crab-claw-like pattern, ring-like enhancement,
enhancement time, BI, and AT were found to be statistically
different from group malignant patients by comparison. TTP, PI,
DS, AUC, andMTTwere statistically different compared with group
benign patients (p < 0.05, Table 3).

FIGURE 1
Multimodal ultrasound–parameter ROC curve.
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Determination of the optimal cut-off value

Since Lasso-logistics regression requires the use of dichotomous
data, we used ROC curves for the 19 measures that differed
(Figure 1), and we subsequently calculated cut-off values for each
measure (Table 4).

Lasso-logistics regression of benign and
malignant tumor characteristic screening

We assigned values to 33 meaningful variables (Supplementary
Table S2). Subsequently, Lasso-logistics regression was used and two
lambda values were filtered out, with 23 feature variables obtained
when lambda = 0.0121 (min) and 21 feature variables obtained when
lambda = 0.0306 (1se) (Figure 2). Considering the generalizability,
we chose 21 feature variables at lambda = 0.0306 (1se) for model
construction.

Validation of Lasso-logistics regression
model of benign and malignant tumors

First, we constructed a nomogram (Figure 3A) based on
21 feature variables. We analyzed the value of the Lasso-logistics
model in predicting benign and malignant tumors in patients using

ROC curves, DCA curves, and calibration curves. The results found
that the model had an AUC of 0.966 in diagnosing benign and
malignant tumors (Figure 3B). In addition, DCA curve analysis
found the model have a net yield of 58.49% (Figure 3C). The
calibration curve analysis found the C-index of the model to be
0.966 (0.946–0.985), and the p-value of Hosmer–Lemeshow was
0.853 (Figure 3D). It suggested that the Lasso-logistics regression
model has high value in diagnosing benign and malignant tumors.

Lasso regression SLNM feature screening
and model validation

We first grouped patients according to their metastases and
subsequently compared all factors separately. The comparison
revealed statistically significant differences in Elsmax, Esmax,
Essd, Emax, and BI between metastasis group and non-metastasis
group (p < 0.05, Tables 5, 6). As the initial screening revealed no
differences in count information, we used the Gaussian function
in Lasso regression for model construction. Four feature variables
were acquired when lambda = 0.0043 (min), and one feature
variable was acquired when lambda = 0.1027 (1se). Considering
that choosing four feature variables (Emax, Essd, Elsmax, and BI)
at lambda = 0.0043 (min) provides the best model accuracy and
allows the model to capture the intrinsic relationships of the data
more tightly, we decided to adopt this configuration for model

TABLE 4 ROC curve parameters.

Variables AUC 95%CI Specificity (%) Sensitivity (%) Youden index (%) Cut_off

Age 0.717 0.653–0.780 78.38 55.24 33.62 50.5

BMI 0.594 0.523–0.665 34.46 80.00 14.46 21.13

Emean (kPa) 0.731 0.669–0.793 58.78 84.76 43.55 34.925

Emax (kPa) 0.779 0.722–0.837 66.89 78.10 44.99 79.855

Emin (kPa) 0.584 0.512–0.656 74.32 45.71 20.04 19.8

Esd 0.729 0.666–0.791 70.95 68.57 39.52 11.565

Esmean (kPa) 0.743 0.681–0.804 55.41 88.57 43.98 36.2

Esmax (kPa) 0.781 0.723–0.839 72.30 79.05 51.34 96.35

Essd 0.751 0.690–0.811 60.14 82.86 42.99 12.515

Elsmean (kPa) 0.735 0.673–0.797 53.38 89.52 42.90 34.235

Elsmax (kPa) 0.79 0.733–0.846 72.30 80.00 52.30 96.35

Elssd 0.741 0.680–0.802 62.16 80.95 43.11 12.29

BI 0.613 0.542–0.684 76.35 42.86 19.21 3.005

AT 0.605 0.536–0.675 41.89 81.90 23.80 10.065

TTP 0.618 0.549–0.687 48.65 70.48 19.12 17.445

PI 0.717 0.653–0.781 60.81 81.90 42.72 22.975

DS 0.579 0.509–0.649 20.95 97.14 18.09 −0.055

AUC 0.711 0.646–0.775 65.54 71.43 36.97 1291.22

MTT 0.602 0.532–0.673 71.62 45.71 17.34 93.745
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construction (Figures 4A,B). The four feature variables were
visualized by a nomogram (Figure 4C). ROC curve analysis
revealed that the model had an AUC of 0.832 in diagnosing
SLNM (Figure 4D). In addition, DCA curve analysis found that
the model had a net yield of 25.71% (Figure E). The calibration
curve analysis found the C-index of the model to be 0.832
(0.737–0.928), and the Hosmer–Lemeshow p-value was 0.749
(Figure F). This suggests that the Lasso regression model has
some value in diagnosing SLNM.

Discussion

Early diagnosis of BC is essential to achieve timely treatment
and improve patients’ quality of life (Mann et al., 2024). Through

early detection and intervention, patients can choose more
conservative treatment options such as surgical resection,
radiotherapy, or endocrine therapy, thus avoiding more
invasive treatments such as chemotherapy (Vicini et al., 2019).
In addition, early diagnosis helps maintain the structural
integrity of the breast, reduce tissue removal, lessen the
postoperative physical form and emotional burden, and
further enhance the patient’s quality of life (Loibl et al., 2024).

Although SWE has been utilized in breast imaging, it has not
been widely adopted in clinical practice, mainly due to the high
dependency on operator expertise and the significant cost of the
equipment (He et al., 2023). However, SWE provides objective and
reproducible diagnostic information by quantitatively measuring
Young’s modulus of the tissues, which is crucial for improving the
accuracy of breast cancer diagnosis (Chen et al., 2023). Previous

FIGURE 2
Lasso-logistics regression benign and malignant tumor feature screening (A–B) Characteristic variable screening with lambda values shown. Note:
min points in red and 1se points in blue.
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studies have demonstrated the potential of SWE in differentiating
benign and malignant breast lesions, yet its integration into routine
clinical workflows remains limited (Weng and Yu, 2023). The
combination of SWE with other imaging modalities, such as
conventional US and CEUS, as explored in this study, may
enhance its clinical utility and promote its adoption. By
providing comprehensive and multimodal diagnostic information,
this approach can potentially reduce the subjectivity associated with
conventional US and offer a more reliable assessment of breast
lesions and SLNM (Liu et al., 2019). Each of these techniques has
limitations in the quantitative assessment of BC and may be missed
or misdiagnosed when used alone. In the present study, we
diagnosed benign and malignant tumors by multimodal
ultrasound modality. In our study, we found that the multimodal
ultrasound model constructed by lasso-logistics regression achieved
an AUC of 0.966 in the diagnosis of BC, and we validated the clinical
efficacy of the model by DCA curves and calibration curves. This

result suggests that the combined use of multimodal ultrasound
techniques with US, CEUS, and SWE can significantly improve the
diagnostic accuracy of BC, especially in differentiating benign and
malignant tumors. With this integrated approach, we are not only
able to reduce the diagnostic errors that may be associated with a
single technique, but also more accurately predict the nature of the
tumor and thus provide more precise treatment recommendations
for patients.

The multimodal ultrasound technique that combines US,
CEUS, and SWE provides a highly accurate method for early
cancer diagnosis and benign–malignant differentiation (Qian
et al., 2021). Xiang et al. (2022) recently suggested that a fusion
network constructed based on the three modalities of US, SWE,
and CDUS effectively improves the diagnosis rate of thyroid
nodules. They also indicated that multimodal ultrasound could
enhance the diagnostic speed and efficiency of
ultrasonographers. Additionally, Hu et al. (2020) had shown

FIGURE 3
Validating the clinical value of the Lasso-logistics regression model (A) Nomogram plot of the 21 feature variables. (B) ROC curve to analyze the
diagnostic value of the Lasso-logistics regression model. (C) DCA curve to analyze the clinical value of the Lasso-logistics regression model. (D)
Calibration curves to analyze the accuracy of the Lasso-logistics regression model.
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that the AUC of the ROC curve for diagnosing benign and
malignant tumors of the liver using multimodal ultrasound
techniques (US, CEUS, and SWE) was 0.968, much higher
than individual ultrasound tests. Urhuţ et al. (2023)
demonstrated that the combined application of B-mode
ultrasound, CEUS, pSWE, and RTE not only improved the
diagnostic accuracy of hepatocellular carcinoma but also
reduced the dependence on other imaging modalities. These
results indicate that the multimodal ultrasound technology
significantly enhances the diagnostic accuracy and efficiency
in diagnosing diseases such as BC, thyroid nodules, and liver
tumors. Each technique utilizes its unique strengths and
complements the others to form a comprehensive assessment
system, enhancing diagnostic accuracy, reducing misdiagnosis,
improving efficiency, and reducing reliance on other imaging
techniques (Han et al., 2022; Li et al., 2023).

Preoperative evaluation of SLNM in BC is critical for surgical
decision-making and patient prognosis (Wang et al., 2022).
Although 2D ultrasound is widely used in BC screening, it
has limited sensitivity in identifying small or deep SLNM.

Our study found significant differences in Elsmax, Esmax,
Essd, Emax, and BI between patients with and without
metastasis. Lasso regression analysis identified Emax, Essd,
Elsmax, and BI as factors strongly associated with SLNM.
Similarly, a study by Dai et al. (2022) proposed nomograms
based on preoperative multimodal ultrasound features of
papillary thyroid carcinoma and cervical lymph nodes to
predict central lymph node metastasis. Their model
demonstrated high predictive performance, especially in
papillary thyroid carcinoma patients with varying tumor
sizes. Furthermore, Dai et al. (2023) found that multimodal
ultrasound has high clinical value in predicting central
ultrasound radiomics models based lymph node metastasis in
papillary thyroid carcinoma, with an AUC >0.9. These studies
collectively confirm the effectiveness of combining multimodal
ultrasound features and statistical models (e.g., Lasso regression
and nomograms) in improving the accuracy of lymph node
metastasis prediction in BC.

In this study, we successfully constructed a Lasso regression
model based on the multimodal ultrasound technique to predict

TABLE 5 Comparison of ultrasound parameters and clinically relevant data measurements in patients with SLNM.

Variables Metastasis group (n = 27) Non-metastasis group (n = 78) t/Z p

Age 49.04 ± 11.50 52.14 ± 10.74 −1.229 0.226

BMI 23.30 [21.77,24.95] 22.66 [21.25,24.82] 0.66 0.512

Emean (kPa) 47.26 [43.50,50.34] 44.80 [37.56,53.89] 0.403 0.689

Emax (kPa) 131.82 [96.50,177.84] 98.94 [81.35,132.30] 4.245 <0.001

Emin (kPa) 16.18 [8.98,27.62] 17.02 [11.39,23.49] −0.15 0.883

Esd 14.00 [10.95,17.55] 13.09 [10.29,18.67] 0.315 0.755

Esmean (kPa) 50.49 [47.70,61.41] 50.02 [41.80,56.16] 1.037 0.301

Esmax (kPa) 161.63 [125.05,202.56] 120.85 [96.83,146.42] 3.413 <0.001

Esmin (kPa) 8.79 [4.78,18.82] 15.29 [8.35,19.34] −1.653 0.099

Essd 22.49 [16.87,28.01] 17.90 [13.01,22.35] 2.134 0.033

Elsmean (kPa) 49.10 [43.42,53.57] 47.91 [39.19,54.79] 0.579 0.565

Elsmax (kPa) 176.49 [145.67,210.97] 125.07 [96.83,150.38] 2.698 0.007

Elsmin (kPa) 8.79 [4.78,18.87] 13.77 [8.18,18.87] −1.404 0.161

Elssd 18.41 [14.27,23.89] 15.25 [12.71,21.16] 1.602 0.11

BI (db) 2.28 [1.31,3.12] 2.75 [1.86,5.26] −1.98 0.048

AT (s) 7.92 [6.36,9.16] 7.83 [6.24,9.50] 0.202 0.843

TTP (s) 15.19 [12.69,17.37] 15.50 [13.16,18.16] −0.26 0.797

PI (db) 27.20 [23.41,33.39] 30.77 [25.66,33.54] −1.213 0.226

AS 0.58 [0.44,0.80] 0.61 [0.48,0.77] 0.103 0.921

DT/2 (s) 88.11 ± 34.17 99.55 ± 26.71 −1.58 0.123

DS −0.13 [-0.17,-0.10] −0.12 [-0.15,-0.10] −0.909 0.364

AUC 1554.03 ± 881.14 1760.84 ± 690.17 −1.108 0.275

MTT 79.75 ± 34.12 93.55 ± 26.92 −1.906 0.064
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TABLE 6 Comparison of ultrasound parameters with clinically relevant information count data in patients with SLNM.

Variables Metastasis group (n = 27) Non-metastasis group (n = 78) χ2 p

Palpable mass

Present 20 44 2.629 0.105

None 7 34

Nipple discharge

Present 4 21 1.621 0.203

None 23 57

Location of tumor

Left 13 37 0.004 0.949

Right 14 41

Distance to nipple

>20 mm 8 15 1.268 0.260

≤20 mm 19 63

Maximum diameter

≥20 mm 18 35 3.811 0.051

<20 mm 9 43

Aspect ratio

≥1 8 13 2.106 0.147

<1 19 65

Blood flow

Abundant 15 43 0.001 0.969

Sparse 12 35

Microcalcification

Present 21 49 2.019 0.155

None 6 29

2D border

Unclear 17 40 1.103 0.294

Clear 10 38

2D morphology

Irregular 25 66 1.105 0.293

Regular 2 12

2D uniformity

Homogeneous 3 17 1.485 0.223

Heterogeneous 24 61

Periductal features

Present 11 35 0.139 0.709

None 16 43

(Continued on following page)
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SLNM in BC. Although the model showed a high degree of
predictive accuracy, we must acknowledge some of its
limitations. First, the retrospective design of the study may
have introduced selection and information biases, affecting
our ability to generalize the results. Second, the relatively

limited sample size of the study may not adequately represent
the broader BC patient population. Third, although the model in
this study performed well in preliminary tests, its long-term
predictive effects and generalizability across different
populations need to be further validated and explored. Future

TABLE 6 (Continued) Comparison of ultrasound parameters with clinically relevant information count data in patients with SLNM.

Variables Metastasis group (n = 27) Non-metastasis group (n = 78) χ2 p

Hard edge sign

Yes 23 57 1.621 0.203

No 4 21

Enhancement margin

Clear 6 32 3.071 0.080

Unclear 21 46

Enhancement morphology

Regular 7 23 0.125 0.724

Irregular 20 55

Enhancement distribution

Homogeneous 6 25 0.931 0.335

Heterogeneous 21 53

Enhanced intensity

High 24 72 0.299 0.584

None/low/equal 3 6

Enhancement direction

Centripetal 23 62 0.422 0.516

Non-centripetal 4 16

Perfusion defect

Present 18 37 2.974 0.085

None 9 41

Ring-like enhancement

Present 1 0 2.917 0.088

None 26 78

Crab-claw-like pattern

Present 12 33 0.037 0.847

None 15 45

Enhancement area

> 23 61 0.611 0.435

= 4 17

Enhancement time

Early 12 47 2.037 0.154

On time 15 31
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studies should use prospective designs, larger sample sizes, and
multicenter collaborations to improve the generalizability and
accuracy of predictive models. At the same time, more
biomarkers and clinical information can be integrated to build
comprehensive and refined models to facilitate personalized
medicine and optimize treatment decisions.

Conclusion

This study successfully constructed and validated two Lasso
regression models based on the multimodal ultrasound
technique for predicting BC and SLNM, showing high
diagnostic accuracy.
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