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The cell has multiple mechanisms for sensing and responding to dynamic changes
in the mechanical environment. In the process, intracellular signaling is activated to
modulate gene expression. Recent studies have shown that multifunctional
signaling molecules that link intracellular force and gene expression are
important for understanding cellular functions in the mechanical environment.
This review discusses recent studies on one of the mechanotransducers, Four-
and-a-half LIM domains 2 (FHL2), which localizes to focal adhesions (FAs), actin
cytoskeleton, and nucleus. FHL2 localizes to FAs and the actin cytoskeleton in the
cell on stiff substrate. In this situation, intracellular tension of F-actin by Myosin II is
critical for FHL2 localization to FAs and actin stress fibers. In the case, a conserved
phenylalanine in each LIM domain is responsible for its localization to F-actin. On
theother hand, lower tensionof F-actin in the cell on a soft substrate causes FHL2 to
be released into the cytoplasm, resulting in its localization in the nucleus. At the
molecular level, phosphorylation of specific tyrosine in FHL2 by FAK, non-receptor
tyrosine kinase, is critical to nuclear localization. Finally, by binding to transcription
factors, FHL2 modulates gene expression for cell proliferation as a transcriptional
co-factor. Thus, FHL2 is involved in mechano-sensing and -transduction in the cell
in a mechanical environment.
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1 Introduction

Mechanical environments, such as substrate rigidity, substrate topography, and spatial
confinement, are signals for the intracellular pathways in cell growth and differentiation
(Vogel and Sheetz, 2006; Vining and Mooney, 2017; Sheetz, 2019; Chaudhuri et al., 2020).
Intracellular signaling pathways activate the expression of downstream genes, which
modulate cellular responses. Thus, intracellular signaling activated by the mechanical
environment is critical to understanding how the mechanical environment leads to
gene expression through mechanosensing mechanisms.

Four-and-a-half-LIM domain 2 (FHL2) is a LIM domain (domain discovered in the
proteins, Lin11, Isl-1, andMec-3) family protein that contains a specific structure with a tandem
zinc-finger motif (Kadrmas and Beckerle, 2004; Anderson et al., 2021). Although a general zinc-
finger motif binds directly to DNA, the LIM domain mediates protein-protein interaction.
Previous studies have suggested that FHL2 mediates intracellular signaling under the control of
cytoskeletal regulators (Müller et al., 2002; Schiller et al., 2011). Importantly, FHL2 shuttles
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between the cytoplasm and the nucleus in this process. Previous studies
have reported that a transcriptional co-factor, such as YAP/TAZ and
MRTF/MAL, works as a mechanotransducer by shuttling between the
cytoplasm and the nucleus (Miralles et al., 2003; Dupont et al., 2011; Er
et al., 2022). FHL2 is the first molecule reported as an adhesion protein
that translocates from the adhesion site to the nucleus in response to
changes in extracellular matrix stiffness and intracellular contractility
(Nakazawa et al., 2016). Regarding the relationship between FHL2 and
cancer phenotypes, the expression level of the FHL2 gene is upregulated
in metastatic cell lines (Kleiber et al., 2007; Zhang et al., 2023). In
addition, previous studies have reported that ectopic expression of
FHL2 gene correlates with a pathological phenotype of tumor
progression and growth in human patients, mice, and rats (Ding
et al., 2009; Hua et al., 2016; Jin et al., 2016; Cai et al., 2018). This
suggests that understanding the function of FHL2 may be potentially
important for cancer therapy. Taken together, the function of FHL2 as a
mechanotransducer appears to be important for understanding the
links between mechanical effects on adhesion complexes and gene
expression in the cancer cell, which may contribute to new insights for
cancer therapy. Here, we discuss recent work on FHL2 functions as a
mechanotransducer for cell proliferation as it relates to cancer cell
dynamics in a mechanical environment.

2 FHL2 mediates mechanical signaling
from adhesion sites to the nucleus,
leading to gene expression

FHL2 at FAs binds directly to focal adhesion components,
including several integrins and FA kinase (FAK) (Wixler et al., 2000;
Gabriel et al., 2004; Samson et al., 2004). This suggests that FHL2 is a
potential scaffolding protein at FAs. A previous study indicates that the
cell without FHL2 shows impairment of FA maturation (Park et al.,

2008). However, this effect is due to the lack of ECM proteins through
the modulation of gene expression (Park et al., 2008). Since knocking
out of the FHL2 gene affects the expression of downstream genes, it is
still unclear whether FHL2 itself contributes to adhesion assembly.

To distinguish the functions of FHL2 as a scaffolding component
and a transcriptional co-factor, it might be necessary to elucidate the
function of each FHL2 domain on FA and to perform rescue
experiments with each domain in FHL2 in a knockout condition.
Another way to identify the functions of FHL2 in FA may be to
combine perturbation for FHL2 function and optogenetic tools such
as chromophore-assisted light inactivation (CALI) (Liao et al., 1994;
Ryu et al., 2021; Takemoto, 2021). Thus, it remains unclear how
FHL2 contributes to FA maturation, but recruitment of FHL2 to FAs
is Myosin II activity-dependent (Kuo et al., 2011; Wolfenson et al.,
2016). Since conserved mechanisms of the LIM domains facilitate its
localization to the actin filament, FHL2 recruitment may occur at the
end of FA maturation (Sun et al., 2020; Winkelman et al., 2020).
Although FHL2 silencing reduces cancer cell migration and invasion,
there is no direct evidence that FHL2 contributes to cell migration and
invasion as an adhesion component (Brun et al., 2013; Hua et al., 2016;
Wang et al., 2020; Jiao et al., 2022). However, distinguishing the
function of FHL2 may be important when considering FHL2-targeted
cancer therapy, as a strategy of cancer therapies generally depends on
the stage of cancer, in which case FHL2 may have different functions
at different cancer stages (Umar et al., 2012; Klein, 2020).

As mentioned above, FHL2 localization at FAs is dependent on
Myosin II activity (Kuo et al., 2011). This suggests that intracellular
tension of F-actin is critical for FHL2 localization to FAs. A rigid
substrate generally facilitates FAmaturation through tense actin stress
fibers. Our previous study demonstrated that FHL2 accumulates at
FAs in the cell on the rigid substrate (Figure 1) (Nakazawa et al., 2016).
Conversely, soft substrate facilitates the release of FHL2 into the
cytoplasm, resulting in its localization to the nucleus (Figure 1). Since

FIGURE 1
The functions of FHL2 as a mechanotransducer in the cell on a rigid or soft substrate (Left) FHL2 localizes at Focal adhesion or tense F-actin in the
cell on rigid substrate (Right) FHL2 localizes to the nucleus on soft substrate, resulting in its binding to a specific promoter of the gene with transcriptional
factor for cell proliferation.
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cells with perturbation of Myosin II activity of actin polymerization
show nuclear localization of FHL2, cell contraction is critical for
FHL2 localization. Our study found that cyclic stretch can rescue
FHL2 nuclear localization by the soft substrate (Cui et al., 2015;
Nakazawa et al., 2016). In this case, intracellular tension is important
for FHL2 localization in the nucleus rather than the
disassembly of FA.

FA kinase (FAK) is a non-receptor tyrosine kinase that plays
critical role in the maturation of FA (Dawson et al., 2021; Le Coq
et al., 2022). Previous studies have confirmed the biochemical
interaction between FAK and FHL2 (Gabriel et al., 2004;
Nakazawa et al., 2016). FAK phosphorylates Y93 in FHL2, which
facilitates the nuclear localization of FHL2 dependent on substrate
rigidity or intracellular tension. Other tyrosines, with the exception
of Y93, are phosphorylated by another non-receptor tyrosine kinase,
c-Abl. Therefore, phosphorylation of Y93 in FHL2 by FAK appears
to be specifically dependent on intracellular force and substrate
rigidity (Wang G.-F. et al., 2021).

Following its shuttling to the nucleus, FHL2 co-localizes with the
active RNA polymerase (Pol) II on the promoter sequence of p21/
CDKN1A gene. Since p21/CDKN1A is a negative regulator of cell
proliferation, thus FHL2 modulates cell proliferation through p21/
CDKN1A gene expression in a force- or substrate-rigidity-dependent
manner (Nakazawa et al., 2016). However, the molecular mechanisms
of FHL2 nuclear transport remain unclear so far. Since FHL2 is a small
protein (32.2 kDa), active transport to the nucleus might not be
required. One possibility is that phosphorylation of FHL2 by FAK
might enhance its concentration at the active RNA pol II site. Recent
studies on phase separation of the molecules suggest that protein
modification, including phosphorylation, impacts transcriptional
machinery (Hnisz et al., 2017; Boija et al., 2018; Sabari et al.,
2018). It is notable that LIMD1, another LIM domain protein, has
been reported to contribute to FA matulation through phase
separation (Wang Y. et al., 2021). Further research is required to
elucidate the effect of chemical modification in FHL2 on its
accumulation at the specific region in the nucleus.

3 FHL2 binds to F-actin directly in a
tension-dependent manner

Previous studies have reported that FHL2 localizes to F-actin. A
recent study observed that some LIMdomain family proteins, including
FHL2, HIC5, and Zyxin, are recruited to tense actin fibers (Sun et al.,
2020). Surprisingly, direct binding to tense actin fibers depends on a
conserved phenylalanine among these LIM domain proteins (Sun et al.,
2020; Sun and Alushin, 2023). Furthermore, FHL2 with mutations at
specific amino acid residues (F80A, F141A, F200A, F263A) accumulates
at the nucleus in the cell on a rigid substrate (Sun et al., 2020). These
findings indicate that FHL2 functions as a mechanosensor of actin
fibers, not only as a mechanotransducer.

4 Discussion and conclusion

In this review, we summarized the functions of FHL2 as a
mechanotransducer and a mechanosensor in the cell in a
mechanical environment. FHL2 localizes to FA in the cell on a

rigid substrate dependent on intracellular tension through F-actin.
At the same time, FHL2 recruitment is facilitated to tense F-actin.
FHL2 is released from FAs and F-actin when intracellular tension
becomes low on a soft substrate, which leads to shuttling to the
nucleus. Thus, FHL2 works as a transcriptional co-factor in the
nucleus to modulate gene expression for cell proliferation in a
tension-dependent manner.

To understand how FHL2 mediates mechanical signaling, the
overall picture of proteins interacting with FHL2 still needs to be
identified (Tran et al., 2016). Since binding partners of FHL2 may be
different at several locations in the cell on soft/rigid substrates,
proteome analysis focusing on the binding partners of FHL2 in the
cell on different substrate rigidity might be important to understand
how FHL2 functions as a multifunctional protein in a force-
dependent manner. In this sense, a technique to check a history
of protein-protein association, such as BioID, TurboID, and AirID,
might be a useful method to identify the binding partner of FHL2 in
different situations (Choi-Rhee et al., 2004; Roux et al., 2012; Branon
et al., 2018; Kido et al., 2020). Previous studies using BioID focusing
on components of FA have provided a new insight into the
interaction between scaffolding proteins (Dong et al., 2016;
Chastney et al., 2020; He et al., 2023). However, screening of
proteins that interact with FHL2 in different mechanical
environments has yet to be performed.

As mentioned, FHL2 in the nucleus modulates p21/CDKN1A
gene expression for cell proliferation in a force- or substrate rigidity-
dependent manner (Nakazawa et al., 2016). Although some
FHL2 target genes are reported, other downstream genes that are
regulated by themechanical environment in FHL2 dependentmanner
have not been explored (Morlon and Sassone-Corsi, 2003; Martin
et al., 2007; Labalette et al., 2008; Wong et al., 2012; Ng et al., 2014;
Dahan et al., 2017). Comparison of transcriptome analysis with and
without FHL2 in different mechanical environments will offer further
understanding of FHL2 functions for cancer metastasis from a
mechanobiological viewpoint.
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