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Editorial on the Research Topic
Self-organizing and excitable signaling networks in cell biology

Introduction

In the past 2 decades, advances in live cell imaging using fluorescent microscopy
have revealed that certain signaling networks display intriguing spatiotemporal
patterns characteristic of excitable systems. Classic examples of excitable systems
include electrical waves in neuromuscular cells, calcium waves in fertilized eggs,
and the Belousov-Zhabotinsky reaction. Excitable systems have been defined in
various ways but generally possess the following features: 1) the existence of a
resting, an excited, and a refractory state, and 2) the capacity to propagate the
excited state as waves. Upon receiving a suprathreshold stimulus, the system
transitions from the resting state into an excited state, followed by a refractory, or
unresponsive state before returning to the resting state. Waves in excitable systems
mutually annihilate due to the system’s inability to reactivate during the refractory
period. These properties are also evident in various signaling networks, including the
actin cytoskeleton and its regulators and the Ras/PI3K network that operates
downstream of numerous receptors. The high temporal resolution of live-cell
imaging has revealed that the activities of these networks spontaneously organize
into dynamic spatial patterns across a range of scales, spanning from individual cells to
populations of cells. While some stimuli trigger excitable activity, others can modulate
the threshold for excitation, providing a means to integrate multiple inputs to mediate
crucial cellular functions in both prokaryotic and eukaryotic cells (Loose et al., 2011;
Huang et al., 2013; Tang et al., 2014; Yang et al., 2018; Di Talia and Vergassola, 2022;
Gallagher et al., 2022) (Figure 1).
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Excitability of cortical actin network

Many cellular processes involve changes in cell morphology
driven by the polymerization of actin. Live imaging of actin and its
regulators revealed that the polymerization activity of the cortical
network propagates as mutually annihilating waves (Vicker, 2002;
Gerisch et al., 2004; Weiner et al., 2007). These cortical waves have
been observed in cells undergoing migration, mitosis, embryonic
development, and immune activation. Functionally, cortical
excitability coordinates the cellular morphological changes in
response to environmental stimuli.

In mast cells, traveling waves and oscillations of F-actin are
driven by feedback interactions between signaling molecules such as
Cdc42 and FBP17 (Wu et al., 2013). A research article in this issue by
Tong et al. provides molecular insights into the nucleation
mechanism of these actin waves through antagonism between
microtubule and actin polymerization. Specifically, they find that
the microtubule-binding formin FHDC1 (FH2 domain-containing
protein 1), when released from depolymerizing microtubules,
mediates actin polymerization to initiate actin waves. Disruption
of FHDC1 causes defective cell polarity and division. These findings
add to our understanding of the molecular mechanisms and
functions of cortical wave initiation.

Waves of F-actin and Rho activation have also been observed in
the eggs and embryonic cells of frogs and starfish. In these cells,
cortical waves are regulated by mitotic spindles and are implicated in

cytokinesis (Bement et al., 2024). Sepaniac et al. studied how actin
waves respond to wounding and change over the course of
embryonic development in the Xenopus embryo. They found that
wounding causes waves to converge and stop, pulling the cell-cell
junction toward the wound, possibly contributing to the healing
process. Interestingly, over the developmental time course, cortical
excitability is replaced by epithelial excitability in which waves of
actin and calcium propagate across the cell population rather than
individual cell cortices. This observation hints at possible roles of
excitability in both individual cells and across the cell population
during embryonic development, as has been demonstrated in other
processes discussed below.

From individual cells to cell populations
in receptor signaling networks

Ras/PI3K signaling in Dictyostelium discoideum has been a
particularly revealing model for signaling network excitability
operating at multiple scales (Devreotes et al., 2017). Matsuoka
et al. review recent progress in Dictyostelium cell migration
directed by the excitable network involving Ras GTPases and
their downstream effectors including PI3K, PTEN, and
phosphoinositides PI(3,4,5)P3 and PI(4,5)P2. Within an
individual cell, these signaling molecules can undergo
spontaneous symmetry breaking to generate polarity and

FIGURE 1
Functions of excitable signaling networks. The activity of an excitable signaling network, represented by a prototypical activator (A)-inhibitor (I)
system, can be tuned by various types of external stimuli, which can enter the network through different pathways to modulate the frequency of the
waves or pulses of activation. Excitability plays crucial roles in processes at both the cellular and organismal levels.
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coordinate remodeling of the actin cytoskeleton, driving cell
migration. When coupled to upstream gradient-sensing receptors,
excitation of the Ras/PI3K signaling network can be spatially biased
by chemical gradients to mediate chemotaxis. This excitable
behavior of Ras signaling can be simulated mathematically using
reaction-diffusion equations.

As a population, Dictyostelium cells respond to starvation by
initiating a developmental program that culminates in the formation
of fruiting bodies. In this process, periodic waves of cAMP, a
chemoattractant for Dictyostelium, propagate across the cell
population to coordinate the collective migration of cells toward
each other. Drawing on biochemical and genetic analyses, Jaiswal
et al. present an integrated model for the generation of outwardly
propagating multicellular waves of cAMP in developing
Dictyostelium. In their model, multiple positive and negative
feedback loops between MEK/ERK and cAMP/PKA signaling
pathways underlie the activation, adaptation, and re-activation
responses to cAMP. This model underscores the complexity of
molecular interactions involved in the generation of oscillatory
cAMP waves.

Findings in Dictyostelium have led to understanding excitable
Ras and actin signaling in higher eukaryotes. For example, waves of
Ras-PI3K activation and F-actin can generate protrusions in
mammalian epithelial cells, and induce pulsatile activation of
ERK, an important regulator of cell proliferation (Albeck et al.,
2013; Aoki et al., 2013; Regot et al., 2014; Yang et al., 2018; Goglia
et al., 2020; Zhan et al., 2020). Propagation of ERK activity waves
across the population can coordinate the collective migration and
survival of epithelial cells (Aoki et al., 2017; Hino et al., 2020; 2022;
Gagliardi et al., 2021), connecting excitable networks to the
physiological function of tissues.

Excitability in biological vs.
chemical systems

Excitable biochemical systems in eukaryotic cells, including the
actin and Ras signaling networks, generally involve complex
interactions between a large number of molecular species. Such
systems are very challenging to analyze in their intact state, due to
the difficulty of experimentally manipulating them in the
sophisticated ways required to dissect their molecular functions.
In contrast, simple excitable systems composed of a handful of
components have been found in prokaryotes and chemical reactions.
Riedl and Sixt compared the excitable dynamics of polymerizing
actin with that of the Belousov-Zhabotinsky reaction, a well studied
excitable chemical system composed of five reagents. Despite the
vastly different magnitude of their complexities, remarkable

similarities are shared between the two systems such as the
responses of the propagating waves to geometric constraints or
external fields as well as emergent collective behaviors.

Conclusion

The papers in this Research Topic capture various aspects of the
fascinating phenomenon of self-organized and excitable dynamics of
signaling networks in different organisms, highlighting their roles in
cell migration, embryonic development, and cell proliferation. Since
these processes are involved in the pathogenesis of many diseases,
future research into the molecular basis and the functions of
signaling excitability may lead to new targets for intervention.
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