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Familial amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder
that is due tomutations in one of several target genes, including SOD1. So far, clinical
records, rodent studies, and in vitro models have yielded arguments for either a
primary motor neuron disease, or a pleiotropic pathogenesis of ALS. While mouse
models lack the humanorigin, in vitromodels using human induced pluripotent stem
cells (hiPSC) have been recently developed for addressing ALS pathogenesis. In spite
of improvements regarding the generation ofmuscle cells from hiPSC, the degree of
maturationofmuscle cells resulting from these protocols has remained limited. To fill
these shortcomings, we here present a new protocol for an enhanced myotube
differentiation from hiPSCwith the option of further maturation upon coculture with
hiPSC-derived motor neurons. The described model is the first to yield a
combination of key myogenic maturation features that are consistent sarcomeric
organization in association with complex nAChR clusters in myotubes derived from
control hiPSC. In this model, myotubes derived from hiPSC carrying the SOD1D90A
mutation had reduced expression of myogenic markers, lack of sarcomeres,
morphologically different nAChR clusters, and an altered nAChR-dependent Ca2+

response compared to control myotubes. Notably, trophic support provided by
control hiPSC-derived motor neurons reduced nAChR cluster differences between
control and SOD1 D90A myotubes. In summary, a novel hiPSC-derived
neuromuscular model yields evidence for both muscle-intrinsic and nerve-
dependent aspects of neuromuscular dysfunction in SOD1-based ALS.
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is an adult-onset
neuromuscular disorder which is characterized by progressive
muscle atrophy and weakness and a survival time after diagnosis
of two to 4 years (Longinetti and Fang, 2019). While most cases of
ALS are sporadic, about 10% of patients develop a familial and
genetically inherited form of the disease. The first causative gene of
ALS, SOD1, was identified in 1993 (Rosen et al., 1993). This
ubiquitously expressed protein is a copper/zinc superoxide
dismutase and catalyzes the inactivation of toxic superoxide into
oxygen and hydrogen peroxide. Mutations in the SOD1 gene might
result in an aberrant redox chemistry through either loss or gain of
protein function, and give rise to a wide range of cellular alterations
(Kaur et al., 2016). Regarding the pathogenesis of ALS, diverse
hypotheses have been proposed. For many years, ALS was
considered a classical motor neuron disease. According to the
“dying-forward” hypothesis, ALS would initiate at the level of
upper motor neurons, followed by progressive involvement of
lower motor neurons and muscle fibers, ultimately leading to
muscle weakness due to lack of innervation and trophic support
(Eisen et al., 2024). However, although the loss of motor neurons is
an undisputed component of ALS, several experimental and clinical
findings advocate for a pleiotropic or a more muscle-centered
scenario. Concerning a pleiotropic or non-neuronal cell
autonomous origin, experimental models delivered evidence for a
causal role of astrocytes (van Damme et al., 2007; Birger et al., 2019;
Varcianna et al., 2019; Rajpurohit et al., 2020; Afonso et al., 2023),
microglia (Boillée et al., 2006; Christoforidou et al., 2020; Vahsen
et al., 2023), and skeletal muscle fibers in motor neuron decay.
Notably, some of these models used conditional transgenes
expressing mutated proteins only in the cell type of interest and
still led to motor neuron decay and ALS-like phenotypes. Regarding
the more muscle-centered scenario, defects in skeletal muscles were
observed prior to motor neuron death in SOD1G93A mice (Loeffler
et al., 2016). Moreover, various cellular and molecular mechanisms
were found to be altered in ALS skeletal muscle and satellite cells,
independent of any neuronal component, such as mitochondrial and
RNA metabolism, proteostasis, and neuromuscular-related
signaling (Dobrowolny et al., 2018b; Quessada et al., 2021;
Anakor et al., 2022a; Shefner et al., 2023). Recently, also the
skeletal muscle secretome has been incriminated as its contents
were shown to induce neurotoxicity and/or loss of neurotrophic
factors in the ALS condition (Anakor et al., 2022b; Le Gall et al.,
2022; Afonso et al., 2023; Stella et al., 2023), underpinning a
multisystem pathogenesis relying on dysfunctional intercellular
communication. Specifically, and besides the concept of skeletal
muscle cells as a source of vesicle-mediated toxicity, the
neuromuscular synapse might be of prime importance in ALS
progression as these specialized structures are located at the
interface of motor neurons and skeletal myofibers. As reported
previously, altered skeletal muscle mechanisms supporting
neuromuscular junction (NMJ) integrity might contribute to
motor neurons demise (Dobrowolny et al., 2018b; Shefner et al.,
2023), supporting a critical involvement of muscle cells in the
genesis of ALS.

Mutant-SOD1 mouse models have been used extensively to
investigate ALS pathology, but drawbacks associated with animal

models led to difficulties in translation to human pathology. To
bridge the gap, in vitro models have been developed as recently
reviewed (Zhou et al., 2023). Human induced pluripotent stem cells
(hiPSC) can be exploited for a deeper understanding of
developmental biology, disease modeling, and testing of drugs or
therapeutic efficiency (Okano et al., 2023) and are therefore valuable
tools for addressing ALS pathogenesis. Pioneered by Takahashi and
Yamanaka (Takahashi and Yamanaka, 2006), iPSC technology has
experienced rapid development, eliciting hiPSC determination
towards various lineages. However, induction of skeletal muscle
cell fate has appeared to be a difficult task. While protocols originally
relied on overexpression of myogenic transcription factors
combined with purification by cell sorting, extensive knowledge
of developmental mechanisms (Esteves de Lima and Relaix, 2021)
led to protocols recapitulating stepwise signaling cues from
embryonic myogenesis (reviewed by Sato, 2020; Caron et al.,
2023). In spite of improvements regarding the generation of
muscle cells from hiPSC, the degree of maturation of muscle cells
resulting from these protocols has remained limited. To fill these
shortcomings with in vitro muscle cell culture, various stimulation
protocols have been implemented such as electrical (Banan
Sadeghian et al., 2018; Nagamine et al., 2018; Khodabukus et al.,
2019; Nikolić and Aas, 2019; Villanueva et al., 2019; Marš et al.,
2021), mechanical (Candiani et al., 2010; Aguilar-Agon et al., 2019;
Somers et al., 2019; Moustogiannis et al., 2020; Wang et al., 2020),
ultrasound (Abrunhosa et al., 2014; Salgarella et al., 2017) and opto-
genetic stimulation (Asano et al., 2015; Asano et al., 2017). This went
along with a rising interest in tissue-engineered skeletal muscle
models, thus embracing 3D-bioprinting and chemical cues provided
by matrix (reviewed by Dessauge et al., 2021; Khodabukus, 2021;
Samandari et al., 2022) as well as skeletal muscle organoid
generation (Mavrommatis et al., 2023; Shahriyari et al., 2023).
Additionally, myogenic maturation features such as sarcomeric
striation and spontaneous contraction have been described using
sphere-based cultures of myogenic progenitors derived from hiPSC
(Hosoyama et al., 2014; Jiwlawat et al., 2017). Even though these
methods significantly enhanced the general degree of maturation
that myotubes can reach in vitro, achieving the formation of
neuromuscular synapses similar in function and/or morphology
to NMJs remained challenging (reviewed in Luttrell et al., 2021;
Lynch et al., 2022; Gazzola and Martinat, 2023; Kim et al., 2023).

Indeed, NMJs are specialized synapses transmitting electrical
signals from motor neurons to skeletal muscle fibers to promote
muscle contraction via the neurotransmitter, acetylcholine (ACh),
that activates nicotinic acetylcholine receptors (nAChR) followed by
excitation-contraction coupling (ECC). During embryonic
myogenesis, nAChR are pre-patterned in clusters without any
neuronal input (Lin et al., 2008). These aneural nAChR were
shown to guide motor neuron apposition. Perinatally, the nAChR
subunit composition in NMJs switches from γ to ε (Mishina et al.,
1986; Witzemann et al., 1987; Witzemann et al., 1989; Charbonnier
et al., 2003), nAChR cluster shape changes relying on cytoskeleton
remodeling (Dai et al., 2000; Alvarez-Suarez et al., 2021), and
subsynaptic nuclei acquire specific transcriptional profiles that
contribute to local enrichment of proteins required for NMJ
functioning (Sanes and Lichtman, 2001; Schaeffer et al., 2001; Shi
et al., 2012; Ohkawara et al., 2023). In existing in vitro models,
nAChR clustering is usually enhanced by coculturing muscle cells
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with motor neurons, but only few publications use fully hiPSC-
derived models (Bellmann et al., 2019; Andersen et al., 2020; Badu-
Mensah et al., 2020; Guo et al., 2020; Lynch et al., 2022). Partially,
these studies identified differences in AChR plaque formation as well
as contractile and metabolic characteristics between healthy and
ALS-derived cell cultures (Lynch et al., 2019; Badu-Mensah et al.,
2022). However, myotubes showed a limited differentiation level
and the occurrence of nAChR plaques was rare (Badu-Mensah et al.,
2020). Other options used co-differentiation of muscle cells and
motor neurons in a dish (Mazaleyrat et al., 2020; Urzi et al., 2023) or
organoid generation (Faustino Martins et al., 2020; Bombieri
et al., 2024).

In this study, we derived hiPSC-derived skeletal muscle cells
from control and SOD1 D90A mutant hiPSC cells and found
altered expression of myogenic markers and nAChR-dependent
Ca2+ responses in mutant myotubes compared to control cells.
Moreover, in vitro culture conditions were optimized to display
enhanced myotube maturation, thus allowing the formation of
more complex nAChR clusters in mono- and co-culture
conditions with control motor neurons. This revealed intrinsic
differences in nAChR cluster morphology between mutant and
control myotubes that were reduced by coculture with control
motor neurons.

2 Materials and methods

2.1 hiPSC culture

hiPSC cultures were maintained under feeder-free condition on
hESC-qualified Geltrex (Invitrogen, cat. no. A1413302) coated
standard 6-well tissue culture plates in mTeSR1 medium
(STEMCELL Technologies, cat. no. 85850) with daily medium
changes. Once reaching 70%–80% of confluency, hiPSC were
routinely passaged with Versene (Invitrogen, cat. no: 15040-066)
at a 1:6 ratio. hiPSC and hiPSC-derived cell cultures were cultured at
37°C and 5% CO2 in a humidified incubator. Control hiPSC lines
(KOLF1.2; 028#1 and 009#3 provided by Philipp Koch, HITBR
Hector Institute for Translational Brain Research, Mannheim,
Germany) and WC034i-SOD1-D90A (WiCell Research Institute,
Madison, WI, United States) were used.

2.2 hiPSC skeletal myogenic determination

hiPSC were induced towards skeletal myogenic fate following a
previously published protocol (Chal et al., 2016) with minor
adjustments. Briefly, 70%–80% confluent hiPSC were treated for
2 h with 10 µM Y-27362 dihydrochloride (ROCKi; Cell Guidance
Systems, cat. no. SM02-10) in mTeSR1. hiPSC were washed once
with phosphate-buffered saline (PBS) and cells, cultured in 6-well
tissue culture plates, were incubated for 5 min with 2 mL TrypLE
Express (Invitrogen; cat. no: 12605028). Singularized hiPSC were
collected into DMEM/F12 (Capricorn; cat. no: DMEM-12-A) and
counted. Cells in suspension were centrifuged at 300 × g for 5 min,
and subsequently seeded at a density of 20,000 cells/cm2 in
mTeSR1 supplemented with 10 µM ROCKi into standard 6-well
tissue culture plates coated with hESC-qualified Geltrex. mTeSR

medium was refreshed daily. Once 15%–20% confluency was
reached, skeletal myogenic targeted determination was induced
(D0) based on sequenced media. At D0, hiPSC cultures were
switched to DiCL medium containing DMEM/F12 supplemented
with 1% Insulin Transferrin Selenium (Invitrogen; cat. no:
41400045), 1% nonessential amino acids (Capricorn; cat. no:
NEAA-B), 1% Glutamax (Invitrogen; cat. no: 35050038), 0.2%
penicillin/streptomycin (P/S; Capricorn; cat. no: PB-B), 3 µM
CHIR99021 (Bio-Techne; cat. no: 4423) and 0.5 µM LDN-193189
(Cell Guidance Systems; cat. no: SM23). At D3, DiCLF medium was
applied, and consisted of DiCL medium supplemented with 20 ng/
mL recombinant murine FGF-2 (Peprotech; cat. no: 450-33). When
reaching D6, cells were switched to DKHIFL medium containing
DMEM/F12 supplemented with 15% Knock-out serum replacement
(Invitrogen; 10828028), 1% nonessential amino acids, 1% Glutamax,
0.2% P/S, 0.1 mM 2β-mercaptoethanol (Invitrogen; cat. no: 21985),
10 ng/mL recombinant murine HGF (Peprotech; cat. no: 315-23),
2 ng/mL recombinant human IGF-1 (Peprotech; cat. no: 100-11),
20 ng/mL recombinant FGF-2 and 0.5 µM LDN-193189. At d8, DKI
mediumwas applied and consists in DMEM/F12 supplemented with
15% KSR, 1% nonessential amino acids, 1% Glutamax, 0.2% P/S,
0.1 mM 2β-mercaptoethanol and 2 ng/mL recombinant IGF-1.
From D0 to D11, medium was refreshed daily. From D12 on,
medium was switched to DKHI medium whose composition is
similar to DKI medium with addition of 10 ng/mL recombinant
HGF. Cells were maintained in DKHI medium until D50 with
medium refreshment every other day. Throughout the sequenced
media protocol, all media containing knock-out serum replacement
were kept away from direct light and stored in light-protected
containers. After 50 days of myogenic determination from hiPSC,
hiPSC-derived cells were composed of a mixedmyogenic population
containing myoblasts, myotubes, and satellite-like cells. Myoblasts
were purified and subcultured myoblasts were expanded in skeletal
muscle cell growth medium (SMCGM; PELOBiotech; cat. no: PB-
MH-272-0090) and further cryopreserved in SMCGM
supplemented with 10% dimethyl sulfoxide and 10 µM ROCKi.

2.3 Terminal differentiation

Myoblasts were seeded in SMCGM onto 96-well µ-Plate
(Ibidi; IbiTreat; cat. no: 89626) or 8-well µ-Slide (Ibidi;
IbiTreat; cat. no: 80806) previously coated with Geltrex, at a
seeding density of 100,000 cells/cm2 for control (028#1 line) and
SOD1 D90A lines, and at a seeding density of 150,000 cells/cm2

for KOLF1.2 and 009#3 lines. It is important to note that each
hiPSC line behaved differently (i.e., proliferation rate,
differentiation efficiency), and the seeding density therefore
had to be adjusted to each hiPSC line to afford a comparable
differentiation index amongst lines. 10 μM ROCKi was added
upon seeding, and 24 h later, SMCGM was refreshed. Myoblasts
were kept for 6 days in proliferating SMCGM with medium
refreshment every other day and were then induced to
terminally differentiate by switching to N2-based medium
containing DMEM/F12 supplemented with 1% Insulin
Transferrin Selenium, 1% N2 (Invitrogen, cat. no: 17502048),
0.2% P/S, 1% Glutamax. Cells were cultured in this medium for
4 days, and medium was refreshed every other day.

Frontiers in Cell and Developmental Biology frontiersin.org03

Couturier et al. 10.3389/fcell.2024.1429759

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1429759


2.4 Fluo4-mediated Ca2+ live-cell imaging

Four days differentiated myotubes were grown in 96-well
µ-Plates (Ibidi; IbiTreat; cat. no: 89626) as described in Section
2.3, and incubated for 30 min at + 37 C, 5% CO2 with 1 µM
Fluo4 calcium indicator (Invitrogen; cat. no: F14201) diluted in
N2-based medium supplemented with 10 µM ROCKi. Cells were
washed once with N2-based medium and incubated for 20 min at
room temperature (RT) additionally to allow the de-esterification of
acetoxymethyl moieties of Fluo4 dye. In the condition where cells
were pre-treated with α-bungarotoxin (αBGT) before imaging, 3 μg/
mL αBGT-AF647 (Invitrogen, cat. no: B35450) was diluted into N2-
based medium supplemented with 10 µM ROCKi and incubated at
RT for 20 min, before being washed with N2-based medium.
Acetylcholine solution (ACh; Tocris; cat. no: 2809) was prepared
in N2-based medium supplemented with 10 µM ROCKi. After 30 s
of imaging, N2-basedmediumwas added to verify the independency
of intracellular calcium transients upon fluid addition into the
culture well. After 1 min of imaging, ACh solution was applied
on cells at a final concentration of 500 nM. Imaging settings are
described in Section 2.7.

2.5 Optimized myogenic
maturation protocol

Myoblasts were seeded in 96-well µ-Plates (Ibidi; IbiTreat; cat.
no: 89626) and left for proliferation for 6 days in SMCGM before
switching to differentiation (d0) in N2-based medium as described
in 2.3. After 2 days of differentiation (d2), medium was partially
removed leaving 10 μL of residual medium in the well. 85 µL/well of
heSC-qualified Matrigel (Corning; cat. no: 354277) diluted into N2-
based medium at a ratio of 1:1 was shortly applied to cells, and
subsequently incubated for 45 min at +37°C, 5% CO2. 350 μL of N2-
based medium was added to fill up the well. At d3, medium was
switched to maturating medium, with a composition adapted from
Hörner et al. (2021). Its base medium contained neurobasal medium
(Invitrogen; cat. no: 21103049) and DMEM/F12 medium without
HEPES (Invitrogen; cat. no: 10565018) in a 1:1 ratio, 1% P/S, 1%
GlutaMAX, 0.5X NeuroCult SM1 Supplement (STEMCELL
Technologies; cat. no: 05711), 0.5X N2 Supplement, and
supplemented with 0.1 mM ascorbic acid (Carl Roth; cat. no:
3525.1), 3 µM CHIR99021, 2 µM DMH1 (Bio-Techne; cat. no:
4126), and 2 µM SB431542 (Bio-Techne; cat. no: 1614). This base
medium was supplemented with 0.1 µM purmorphamine (Cell
Guidance Systems; cat. no: SM30), 0.5 µM all-trans retinoic acid
(STEMCELL Technologies; cat. no: 72264), 10 ng/mL recombinant
human BDNF (Cell Guidance Systems; cat. no: GFH1AF), 10 ng/mL
recombinant human GDNF (Cell Guidance Systems; cat. no:
GFH2AF), and 10 ng/mL recombinant human IGF-1. While
switching to maturating medium at d3, hiPSC-derived motor
neurons (iMN) were eventually added to the myogenic culture.
For this purpose, iMN were determined from hiPSC and
differentiated as described by Hörner et al. (2021). Briefly, at day
12, differentiating iMN were split into suspension culture. From this
step on, cells progressively aggregated into neurospheres. Medium
was changed every other day for 1 week by carefully replenishing
75% of medium volume in each well. Neurospheres were seeded

onto maturating myotubes at d3 of their differentiation. Maturating
mediumwas refreshed every other day by carefully replenishing 50%
of volume in each well until d8. This medium was carefully kept
away from light.

2.6 α-bungarotoxin sequential staining

Maturing myotubes were obtained as described in Section 2.5.
Once myotubes reached 7 days of differentiation, αBGT-AF488
[Invitrogen; cat. no: B13422; (5 μg/mL)] diluted in maturating
medium supplemented with 10 µM ROCKi was incubated with
living cells for 15 min at + 37°C, 5% CO2. Cells were washed
with maturating medium and placed back overnight at + 37°C
and 5% CO2. 24 h later, αBGT-AF647 [Invitrogen, cat. no:
B35450; (5 μg/mL)] diluted in maturating medium supplemented
with 10 µM ROCKi was incubated for 15 min at + 37°C, 5% CO2.
Cells were fixed with 4% PFA for 30 min at RT. Samples were
washed three times for 5 min with PBS at RT. Imaging was
performed as described in Section 2.7.

2.7 Immunofluorescence staining and
confocal microscopy

Cultures were fixed with 4% paraformaldehyde at room
temperature (RT) for 15 min for d4 differentiated myotubes and
for 30 min for d8 matured myotubes and washed three times with
PBS before being further processed with immunostaining. Samples
were permeabilized with 1x Tris-Buffered Saline (TBS) buffer
supplemented with 0.1% Tween-20, three times for 3 min at RT.
Cells were incubated in blocking solution containing 1x TBS
supplemented with 1% fetal bovine serum and 0.1% Triton-X100,
for 30 min at RT. Primary antibodies diluted in blocking solution
were incubated overnight at + 4°C. After three PBS washes,
secondary antibodies and dyes were diluted into blocking
solution and incubated for 3 h at RT. Samples were washed three
times for 5 min at RT with permeabilization buffer and one last time
with PBS before being imaged. Primary antibodies and dye
concentrations were as follows: anti-Myogenin (MyoG; LSBio;
cat. no: LS-C334865; dilution: 1/400), anti-Myosin Heavy Chain
1 (MYH1; DSHB; cat. no: MF20-c; dilution: 1/800), anti-α-actinin
(Invitrogen; cat. no: MA1-22863; dilution: 1/400), anti-vesicular
acetylcholine transporter (vAChT; Synaptic Systems; cat. no:
139 103; dilution: 1/400), 4’,6-Diamidino-2-Phenylindole (DAPI;
Roche; cat. no: 10236276001; 1 mg/mL; dilution 1:1000); αBGT-
AF488 (Invitrogen; cat. no: B13422; dilution: 1/500), αBGT-AF647
(Invitrogen; cat. no: B35450; dilution: 1/500), Donkey α-mouse AF-
488 (Invitrogen; cat. no: A21202; dilution 1:1000), Donkey α-rabbit
AF-555 (Invitrogen; cat. no: A32794; dilution 1:1000), Donkey α-
mouse AF-647 (Invitrogen; cat. no: A31571; dilution 1:1000).
Imaging was performed using an inverted Leica TCS
SP8 confocal microscope (Leica Microsystems) with HC PL APO
20x/0.75 IMMCORR CS2, and 405, 488, 561, and 633 nm lasers and
Leica Application Suite X software (version 3.5.7.23225). Mainly,
images were acquired as single focal plane images, with a resolution
corresponding to a pixel size of 0.28 μm × 0.28 μm. However, for
staining designated for αBGT abundancy quantification, z-stacks
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were imaged with 1 µm z-steps size corresponding to a pixel size of
0.56 μm × 0.56 μm and a voxel depth of 4 μm3. Calcium transient
recording was performed with HC PL APO 20x/0.75 IMM CORR
CS2 objective, 488 nm lasers, with 1024 × 1024 pixels resolution
corresponding to a pixel size of 0.56 μm × 0.56 μm and 2 s time
interval. Images acquired for nAChR clusters morphological
analysis and αBGT-AF488 positive puncta quantification were
performed with a HC PL APO 63 × /1,40 OIL CS2 objective, and
488 and 633 nm lasers. Images were acquired sequentially. Z-stacks
were acquired to capture the entirety of the imaged clusters. A z-step
size of 0.3 µm was set and images were acquired with a resolution
corresponding to a pixel size of 0.045 μm × 0.045 μm and a voxel
depth of 0.29 μm3. Randomized areas were imaged for all
experiments.

2.8 Image analysis and processing

Quantification of DAPI-stained and MyoG-positive nuclei was
achieved by using Cellpose (version 2.2.2) (Stringer et al., 2021).
Before automated quantification analysis, a dataset of five images for
each staining was used for testing and algorithm training.
Differentiation index was achieved in ImageJ software by
manually quantifying the number of nuclei within MYH1-
positive cells. For MyoG and MYH1 mean fluorescence intensity
quantification, MyoG-related regions of interest (ROI) generated in
Cellpose and MYH1-related ROIs created with thresholding in
ImageJ were used. To define the threshold, background
fluorescence intensity was measured in five regions per sum-z-
projected image, and the average and standard deviation were
calculated. Background average fluorescence intensity + 2×
(Standard deviation) was defined as threshold, and cell displaying
greater values in sum-z-projected images than the threshold was
counted as positive for the marker; otherwise, the cell was counted as
negative. Cell debris were excluded by deleting ROIs with an area
smaller than 500 mm2 and a circularity from 0.3 to 1.0. Ca2+

responses of myotubes upon ACh stimulation were analyzed with
ImageJ software. First, myotubes were manually segmented. The
mean fluorescence values within the segmented areas were
determined over time and normalized to the corresponding mean
signals 6 s before stimulation (F0). The change in fluorescence ΔF/
F0 = (F − F0)/F was plotted as a function of time. To obtain muscle
cell area quantifications, images of myogenic cultures stained for
myogenic markers (MYH1 or α-actinin) were processed in ImageJ
software with median filtering with a radius of two pixels. The
previously described thresholding method was used to segment
MYH1- and α-actinin-positive cells. ROIs were obtained from
binary masks. Cell debris were first removed by deleting ROIs
with an area smaller than 500 μm2 and a circularity from 0.3 to
1.0. Subsequently, remaining ROIs were segmented, allowing the
quantification of total muscle cell area. Myonuclear domain area was
calculated by the following formula: total muscle cell area/total
number of myonuclei. For αBGT-AF488 positive puncta
quantification, z-stack images were cropped to position nAChR
clusters at the center of a 40 µmmuscle cell length. By increasing the
contrast of αBGT-AF647 channel, the outline of myotubes became
visible, allowing manual segmentation. The quantification was
performed on the stack covering the entire thickness of the

cluster. The counting of αBGT-AF488-positive puncta was
performed manually in ImageJ software. Quantified values were
normalized to myotube volume. For segmentation and
morphological analysis of nAChR clusters, maximum-z-
projections were used. Single nAChR clusters were cropped from
images as rectangular ROIs, containing only signals from one cluster
for each ROI. Hereby, only “en face” clusters were chosen, while
clusters imaged from a side view were excluded to prevent distortion
of shape parameter measurement. ROI masks were created by
manual thresholding and contrasting αBGT-647 signal to
measure shape parameters including cluster area, perimeter, and
solidity were measured.

Image preprocessing for Supplementary Figure S1; Supplementary
Video S6were performed using ImageJ, specifically adjusting brightness
and contrast across all channels for optimal visualization. To accentuate
the distribution of vesicular acetylcholine transporter (vAChT) signals,
the relevant channel underwent additional processing. This involved
generating a binary image through Otsu thresholding, followed by 3D
morphological opening and dilation operations, each with a radius of
one voxel in three dimensions. Connected structures were identified
using the connected components labeling algorithm from the
MorpholibJ library. Subsequent to this labeling, size filtering was
applied to exclude structures smaller than 1,000 voxels or larger
than 115,000 voxels. An additional dilation step with a radius of two
pixels was then performed, and a new binary mask was created via Otsu
thresholding. This mask was used to selectively remove vAChT signal
outside of the identified binary labels. Videos were subsequently
generated using the visualization software, napari (Ahlers et al.,
2023), in conjunction with its dedicated animation plugin. This
combination facilitated dynamic visual representations of the data.

2.9 Data processing and statistics

Graphic representation of data was achieved with GraphPad
Prism (version 8.0.1). Using the same software, statistical tests were
performed as follows. Shapiro-Wilk test for normal distribution and
F-test for homoscedasticity were performed. Student’s t-tests were
used to statistically compare results shown in Figures 1, 2, 3. When
not pertinent, Student’s t-tests with Welch’s correction were applied
instead. Statistical analyses shown in Figure 4 were performed by
using ANOVA with Tukey’s multiple comparisons tests if
applicable, rank-based nonparametric Kruskal Wallis tests were
performed otherwise. p-value smaller than 0.05 was considered
significant and reported as *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001. The number of independent experiments performed
is indicated in the figure legends. Figures were prepared in Affinity
Designer (version 1.10.5.1342).

3 Results

3.1 Skeletal myotubes can be efficiently
differentiated from hiPSC

Determination and differentiation of hiPSC towards skeletal
muscle fate were achieved by applying a sequence of differentiation
factors on hiPSC, as described previously (Chal et al., 2016), but with
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FIGURE 1
Evolution of marker protein expression along terminal myogenesis indicates differentiation of skeletal myotubes from hiPSC. hiPSC were
determined and further differentiated for up to 60 days. (A-A9) Upper panels: schematic protocol timeline for hiPSC determination towards skeletal
myogenic fate (A) and hiPSC-derived myoblast terminal differentiation (A9). Lower panels: representative brightfield images of cell populations at various
determination and differentiation timepoints. Presomitic mesoderm cells, premyogenic progenitors and mixed cell population consisting of
myoblasts and myotubes were imaged at d-45, d-40 and d-22, respectively. hiPSC-derived myoblasts were obtained after 50 days of hiPSC
determination (A) andwere further induced to terminally differentiate intomyotubes after 6 days of proliferation and 4 days of differentiation in N2-based
medium (A9). Scale bars, 100 µm. (B–F) hiPSC-derived myoblasts were differentiated according to the protocol shown in A-A9, fixed at different
timepoints, and immunostained for myogenic markers. Skeletal muscle cells were derived from control and SOD1 D90A mutant hiPSC lines. (B)
Representative confocal images of samples immunostained for myogenin (MyoG) and myosin heavy chain (MYH1) at timepoints as indicated. Scale bars,
100 µm. (C,D)Quantification of the percentage of MyoG positive nuclei (C) and of percentage of nuclei within MYH1 positive cells (differentiation index;
D) as a function of differentiation time. Graphs depict mean ± SD. (E,F) Quantification of MyoG (E) and MYH1 (F)mean fluorescence intensity of positive
cells. At least three biological replicates were analyzed per condition. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 2
Control and SOD1 D90A mutant hiPSC-derived myotubes show differential nAChR-dependent Ca2+ responses. (A,B9) hiPSC-derived myotube cultures
differentiated for 50 + 4 days were subjected to Fluo4-mediated Ca2+ imaging in the presence of acetylcholine [ACh; (500 nM0)] ± α-bungarotoxin [αBGT; (3 μg/
mL)]. (A) Representative confocal pseudocolored images for all conditions at baseline (left panels) and peak upon ACh (right panels). Myotubes were stimulatedwith
ACheitherdirectly (A)or after pre-treatmentwithαBGT (A9). Thepseudocolor scalebar shows thecolordistributioncorresponding toFluo4fluorescence ratios.
Blue andgreen-red cues indicate lowandhigh values of Fluo4 fluorescence, respectively. Scale bars, 100 µm. (B-B9)ΔF/F0 Fluo4 kinetics for control and SOD1D90A
mutantmyotubesuponAChstimulation,without (B) andwith (B9)αBGTpre-treatment. Fluo4fluorescencewasnormalized tocorrespondingbaseline values.Curves
depictmean ± SE of at least three biological replicates. (C) Representative confocal images of control andmutantmyotubes showing fluorescence signals of nuclei
(blue),αBGT-stainednAChRclusters (red), andMYH1 (green). Inserts in rightpanelsdepict higher zoomsofnAChRclusters. Scalebars, 100 µm. (D,E)Quantificationof
nAChR clusters per 1000 µm2 of myotubes (D) and of αBGT integrated density (E) in control and mutant conditions. n = 3 independent experiments. **p < 0.01.
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slight modifications. Indeed, while the initial 50 days of the protocol
reaching the myoblast stage (Figure 1A) followed the earlier
accounts (Chal et al., 2016), we optimized the process of
myoblast proliferation and myotube differentiation by adapting i)
the myoblast seeding density prior to terminal differentiation

induction as well as ii) the duration of myoblast proliferation
and myotube differentiation. Regarding the control 28#1 and the
SOD1 D90A lines, 100,000 cells/cm2 were seeded, while for the
control lines KOLF1.2 and 009#3 (Supplementary Figure S1),
150,000 cells/cm2 were seeded. KOLF1.2 and 009#3 displayed

FIGURE 3
Optimized culture conditions enhance myotube maturation and highlight a lack of marker expression and sarcomeric organization in SOD1 D90A
myotubes. Myoblasts were expanded for 6 days (d-6 to d0) and then further differentiated for 4 or 8 days (d0 to d4/d8). In some conditions, maturating
myotubes were cocultured with control iMN, as indicated. (A) Comparison of protocols and timelines leading to newly differentiated myotubes (d4-
protocol) andmorematuremyotubes (d8-protocol). (B) Representative confocal fluorescence images of control and SOD1D90Amutantmyotubes
as obtained with the d4 and d8 protocols (indicated) in the absence of iMN. Fluorescence signals show nuclei (blue), αBGT-stained nAChR clusters (red),
and MYH1 or α-actinin (green). Scale bars, 100 µm. Dashed rectangles outline higher magnification areas shown in B’. (B9) Gray-scaled zooms of αBGT
and α-actinin staining in d8-differentiated control and mutant myotubes are shown. Scale bars, 50 µm. Inserts in right panels depict higher zooms of
individual myotube striations. (C–E) Quantification of myonuclear domain area (C), nAChR clusters per 1000 µm2 of muscle cell area (D) and α-actinin
mean fluorescence intensity (E) comparing d4 and d8myotubes inmono- (-iMN) and co-culturewith control iMN ( + iMN). Graphs depict mean ± SD and
were generated from data obtained from at least three individual experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 4
Differences in morphological parameters and stability of nAChR clusters between control and SOD1 D90A mutant myotubes are reduced upon
coculture with control iMN. Myoblasts were expanded for 6 days (d-6 to d0) and then further differentiated for 8 days (d0 to d8). In some conditions,
maturating myotubes were cocultured with control iMN, as indicated. At d7 and d8, αBGT-AF488 and αBGT-AF647, respectively, were added to live
cultures for 15 min. Then, samples were washed, fixed, and visualized with confocal microscopy. (A) Schematic protocol timeline to assess nAChR
cluster turnover through a sequential αBGT living cells staining. (B) Gray-scaled pictures of αBGT-AF647-stained nAChR clusters (left panels) and their
corresponding segmentation masks obtained by thresholding-based segmentation in ImageJ for all conditions (right panels). Scale bars, 5 µm. (C–E)
Quantification of cluster area (C), perimeter/area (D), and solidity (E). Red lines, mean values for each condition. (F) Representative images of d8 control
and SOD1 D90A myotubes cultured as mono- (upper panel; -iMN) or iMN co-cultures (lower panel; + iMN). Dotted lines outline myotubes. Scale bars,
5 µm. (G) Quantification of αBGT-AF488 positive puncta per 1,000 μm3 of muscle cell volume. Red lines, mean values for each condition. At least
50 nAChR clusters were analyzed per condition, and three independent experiments were performed. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Frontiers in Cell and Developmental Biology frontiersin.org09

Couturier et al. 10.3389/fcell.2024.1429759

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1429759


reduced mitotic frequency compared to 28#1 and SOD1 D90A lines.
KOLF1.2 and 009#3 lines required additionally a denser cell layer
prior to differentiation initiation to efficiently and reproducibly
shape myotubes after 4 days of differentiation. By increasing the
seeding density for the KOLF1.2 and 009#3 lines, reduced
proliferation rate and differentiation efficiency were
counterbalanced and allowed the obtention of myotubes with
comparable phenotypes amongst 28#1, SOD1 D90A,
KOLF1.2 and 009#3 cell lines after 4 days of differentiation (data
not shown). In total, this process lasted 6 days for myoblast
proliferation (days −6 to 0) and another 4 days for myotube
differentiation (days 0–4) (Figure 1A’). Differentiation batches
derived from 28#1 (hereafter named control) and SOD1 D90A
cells were directly compared. From days d-6 to d4, the
expression of the myogenic marker proteins, MyoG and MYH1,
gradually increased in both lines (Figures 1B–D). Indeed, on d-4
only a few myoblasts were observed in both lines, and MyoG was
barely expressed. On d0, MyoG expression was still low in control
(3.05% ± 0.09%; mean ± SD), while SOD1 D90A cells already
showed 47.09% ± 2.12% of total cells (mean ± SD) positive for
MyoG. By d4, both lines exhibited a similar degree of MyoG-positive
cells, although the intensity of MyoG-immunofluorescence signals
per cell was higher in control than in SOD1 D90A cells (Figures 1B,
E). As visible from the MYH1-staining data, myoblasts from both
lines started to fuse with each other around d0 and formed elongated
myotubes (see MYH1 staining in Figure 1B, d0). This process was
seen throughout the entire culture by d4 (Figure 1B, see
MYH1 panels). Accordingly, a strong increase of
MYH1 expression was observed during this time period. Indeed,
while at d0 2.01% ± 0.46% and 32.21% ± 9.24% (both mean ± SD) of
nuclei were found in MYH1-positive control and SOD1 D90A
myotubes, respectively, these numbers increased at d4 to
58.04% ± 2.07% and 87.07% ± 5.28% (mean ± SD), respectively
(Figures 1B–D). Similar as for MyoG fluorescence intensity (Figures
1B, E), the MYH1 fluorescence intensity per cell was higher in
control myoblasts and myotubes as compared to SOD1 D90A cells
(Figures 1B–F). In summary, the rise of expression of both myogenic
markers throughout the protocol indicated an efficient myogenic
process for both cell lines, however, with differences in time course
and protein expression height between control and
SOD1 D90A cells.

3.2 SOD1 D90A mutant hiPSC-derived
myotubes show altered nAChR-dependent
Ca2+ responses compared to
control myotubes

To characterize the myotube differentiation from a functional
point of view, their response to the natural agonist, ACh, was tested.
Physiologically, ACh activates nAChR at the NMJ, leading in
sequence to the formation of an endplate potential and an action
potential, the release of Ca2+ from internal stores, and muscle
contraction (ECC) (for recent review, see Salvage et al., 2023). To
investigate nAChR-dependent Ca2+ responses in control and SOD1
D90A myotubes, d4-myotubes were incubated with the intensity-
based Ca2+ indicator, Fluo4 (Gee et al., 2000). In both cell lines,
addition of 500 nM ACh led to immediate and robust cytoplasmic

[Ca2+] transients (Figures 2A, B; Supplementary Videos S1–S2).
Quantitative analysis showed that the transient peaks tended to be
smaller in SOD1 D90A compared to control myotubes determined
from three lines that showed comparable response (Figure 2B;
Supplementary Figure S1). To address, if the [Ca2+] transients
upon ACh stimulation were due to nAChR activation, the
selective nAChR antagonist, αBGT, was incubated prior to ACh
stimulation. In control myotubes, αBGT led to a significant drop of
43.6% of the transient peak compared to the condition lacking the
inhibitor. Conversely, in mutant myotubes αBGT preincubation led
only to a 12.4% reduction (Figures 2A’, B’; Supplementary Figure S1;
Supplementary Videos S3–S4). To verify whether the greater
cytoplasmic [Ca2+] transients in control myotubes could be
related to the nAChR total amount or the nAChR cluster
abundancy, d4-myotubes from both cell lines were stained for
nuclei (DAPI), MYH1, and nAChR (αBGT) and imaged with
confocal microscopy (Figure 2C). Quantification of the number
of nAChR clusters per muscle cell area and the integrated αBGT-
fluorescence density showed a significantly higher number of
nAChR clusters per muscle cell area in SOD1 D90A myotubes
compared to control myotubes (Figure 2D), associated with a
trend for increased integrated αBGT-fluorescence density
(Figure 2E). Taken together, these results demonstrated a slightly
reduced Ca2+ response upon ACh stimulation in SOD1 D90A
myotubes compared to control myotubes and suggest that this
occurred independent of the amount of nAChR or of their
clustering.

3.3 SOD1 D90A myotubes lack sarcomeric
striation upon enhanced myotube
maturation

While protocols to derive skeletal muscle cells from hiPSC are
constantly refined and have achieved high yields of myoblasts
(reviewed in Sato, 2020), the terminal differentiation into well-
matured myotubes has remained under-explored. To support
myotube maturation without the need of using complex
stimulatory or mechanical devices, we worked on optimizing the
in vitro culture conditions. In brief, at difference to the original
myotube differentiation protocol (termed protocol d4 in Figure 3A),
myotubes differentiated for 2 days were covered by a Matrigel layer
and then matured in a growth-factor-supplemented medium (see
Materials andMethods section) in the presence or absence of control
motor neurons (iMN) (Figure 3A, protocol d8). Protocol efficiency
was addressed by confronting myotube maturation parameters of
d4-myotubes (raised with protocol d4, Figure 3A) and d8-myotubes
(cultured according to protocol d8, Figure 3A). To that end,
myotubes were stained for nuclei (DAPI), MYH1 or sarcomeric
α-actinin (α-actinin), and nAChR (αBGT), followed by confocal
microscopy and quantitative analysis of the myonuclear domain
area (MND) and the density of nAChR clusters. Qualitatively, d8-
myotubes from both cell lines appeared to be longer, wider, and with
larger nAChR clusters as compared to d4-myotubes (Figure 3B). A
comparison of control and SOD1 D90A d8-myotubes showed
similar amounts of nAChR clusters (Figure 3B’, left panels).
However, while in most control d8-myotubes the α-actinin
staining showed extensive striations (Figure 3B, upper right
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panels, Supplementary Video S5), these were largely absent in the
SOD1 D90A d8-myotubes (Figure 3B’, lower right panels).
Quantitative analysis revealed that d8-myotubes in monoculture
of both, control and SOD1 D90A cells, exhibited significantly higher
myonuclear domain area compared to d4-myotubes (Figure 3C).
Upon coculture with iMN, the d8-myotube values remained
essentially unaltered (Figure 3C). As another maturation
parameter, the density of nAChR clusters was determined. For
both cell lines, nAChR cluster density significantly increased
from d4-myotubes to d8-monocultures (Figure 3D). As a trend,
the presence of iMN further augmented the nAChR density in
control and SOD1 D90A d8-myotubes (Figure 3D), but the effect
was not statistically significant. Similar to d4-SOD1 D90Amyotubes
showing reduced differentiation marker protein MYH1 (Figures
1B–F), d8-SOD1 D90A myotubes displayed significantly lower α-
actinin expression compared to control d8-myotubes (Figure 3E). Of
note, in the coculture setup, iMN established close contacts with
maturating myotubes (Supplementary Figure S2; Supplementary
Video S6). In summary, while contraction-induced muscle-cell
death needs to be further addressed, these results revealed
differences between control and SOD1 D90A myotubes with
respect to sarcomere formation, as illustrated by the absence of
α-actinin striation pattern and the reduced fluorescence intensity of
this staining.

3.4 Coculture with iMN consolidates nAChR
clusters and reduces morphological
differences between control and SOD1
D90A clusters

Although a quantitative assessment showed the similar
occurrence of nAChR clusters in d8 control and SOD1 D90A
myotubes (Figures 3B’–D), a morphometric analysis of nAChR
clusters and endocytic carriers was performed to identify more
subtle differences between both cell lines. To differentiate
between nAChR located in endocytic vesicles and clusters on the
cell surface, a sequential labeling with two differently fluorescent
αBGT species (coupled to either AlexaFluor488 or AlexaFluor647)
was performed (Figure 4A), similar to previous in vivo experiments
(Akaaboune et al., 1999; Röder et al., 2010; Strack et al., 2011). In
brief, myotubes were matured according to the d8-protocol in the
presence or absence of control iMN. On d7, surface-exposed nAChR
were pulse-labeled with αBGT-AF488 (old nAChR). 24 h later, new
nAChR were marked with αBGT-AF647 (new nAChR) and then
samples were fixed. First, we investigated whether nAChR clusters
exhibited morphological differences between control and SOD1
D90A myotubes in the absence of iMN. As a trend, nAChR
clusters forming on mutant myotubes were slightly smaller than
those in control cells, but the difference was not significant (Figures
4B, C). However, compared to control cells, mutant myotubes
showed increased nAChR cluster perimeter/area (Figures 4B–D)
and a decreased solidity (Figures 4B–E). Next, the effects of adding
control iMN on nAChR cluster morphology were adding control
iMN on nAChR cluster morphology were addressed. Essentially, this
led to marked alterations of cluster morphology in both cell lines
and reduced all differences observed between control and SOD1
D90A myotubes in the absence of iMN. In detail, the addition of

iMN decreased nAChR cluster area by 50.9% and, 44.1% in control
and SOD1 D90A myotubes, respectively, compared to their
corresponding monocultures (Figures 4B, C). Further, in the
presence of iMN, perimeter/area of nAChR clusters was
increased and solidity was decreased in control myotubes, while
in SOD1 D90A myotubes only the solidity of nAChR clusters was
significantly modified (Figures 4B–D, E). This reduced the
discrepancies regarding nAChR cluster morphology between both
cell types as observed in the absence of iMN. Finally, to investigate
whether the alterations in nAChR cluster morphology might be
reflected by nAChR trafficking and decay, the number of endocytic
nAChR puncta was determined under all conditions. Therefore,
nAChR clusters were identified in the αBGT-AF647 images (see
outlines in Figure 4F) and then, αBGT-AF488 positive puncta were
counted. In the absence of iMN, the amount of nAChR carriers per
myotube cell volume was higher in SOD1D90A compared to control
cells (Figures 4F–G). For both cell lines, the number of αBGT-AF488
positive puncta significantly decreased in the presence of iMN,
suggesting a consolidation of clusters under this condition
(Figures 4F, G). However, this did not abut the statistical
difference between control and SOD1 D90A myotubes.
Altogether, these data demonstrated intrinsic differences between
control and SOD1 D90A myotubes concerning nAChR cluster
morphology and endocytic carriers, which were partially reduced
by the presence of iMN.

4 Discussion

4.1 Tuning of chemical and mechanical
culture parameters enhances myotube
maturation and nAChR cluster formation

This study implemented a protocol to obtain mature myotubes
from hiPSC. Its originality relies on a specific maturation medium
with key myogenic factors and the provision of matrix-based
physical support. The protocol was devised to allow muscle
monoculture as well as their coculture with hiPSC-derived motor
neurons, supporting their intercellular crosstalk. Thus, to improve
myotube maturation, the initial 4-day protocol of myotube
differentiation (Figure 1A’) was prolonged to 8 days of culture in
specific media, including a 2-day myotube pre-differentiation step to
increase myoblast fusion initiation and a 6-day maturation period
during which myotubes were covered by a Matrigel layer
(Figure 3A). Compared to the previous protocol, this led to
significantly improved expression of differentiation markers and
an increase of nAChR cluster density (Figures 3B–D). We think that
the combination of Matrigel application and the specific medium
supplementation were key to efficient hiPSC-derived myotube
maturation. Matrigel is a solubilized basement membrane matrix
secreted from Engelbreth-Holm-Swarm mouse sarcoma cells, which
resembles the basement membrane found in muscle native tissue
(Sanes, 2003; Kleinman and Martin, 2005). Indeed, while main
components of Matrigel are laminin, collagen IV, and
proteoglycans, the native muscle extracellular matrix
environment is composed of laminin, collagen I, collagen IV,
elastin, and proteoglycans (Csapo et al., 2020). The importance
of the skeletal muscle extracellular matrix on development and
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muscle maintenance (Thorsteinsdóttir et al., 2011; Csapo et al., 2020;
Zhang et al., 2021) as well as the benefit of using Matrigel for skeletal
muscle cell culture in vitro have been reported (Lyles et al., 1992;
Grefte et al., 2012). In addition to laminins, which play a key role in
nAChR maturation (Nishimune et al., 2008; Chand et al., 2017),
Matrigel provides mechanical support and a near-physiological
stiffness. Physiologically, Young modulus in skeletal muscles
varies according to the myogenic state and ranges from 11.5 to
45.3 kPa (Collinsworth et al., 2002). Stiffer substrates were found to
support myoblast proliferation, while softer substrates ranging from
13 kPa to 20 kPa were more suited for differentiation (Boontheekul
et al., 2007; Romanazzo et al., 2012; Lacraz et al., 2015; van Santen
et al., 2022). These results highlight the unsuitability of commonly
used culture dishes to differentiate muscle cells due to their supra-
physiological stiffness in the MPa range (Engler et al., 2004). A
multitude of signaling pathways can be triggered by mechanical
cues, sensed at the sarcolemma, conveyed by the cytoskeleton
throughout the cytoplasm and transmitted to the nucleus via the
linker of nucleoskeleton and cytoskeleton complex (Nguyen et al.,
2024; reviewed in Olsen et al., 2019; Iyer et al., 2021; Jabre et al.,
2021; van Ingen and Kirby, 2021; Zhang et al., 2023). Thus,
mechanical cues eventually affect key processes of muscle
maturation (e.g., myofibrillogenesis) (Jorgenson et al., 2024).

Apart from Matrigel, our maturation protocol also included a
carefully designed media composition to enhance myotube
maturation, sustain motor neuron survival, and facilitate
neuromuscular crosstalk. The factor cocktail was chosen to
trigger pathways relevant for both cell types. On the one hand,
ascorbic acid (Duran et al., 2019; Diao et al., 2021), ALK5 inhibitor
SB431542 (Watt et al., 2010), Hedgehog/Smoothened agonist
purmorphamine (Kahane et al., 2013; Teixeira et al., 2018),
retinoic acid (Hamade et al., 2006; Ryan et al., 2012; Lamarche
et al., 2015; Thulabandu et al., 2022), and IGF-1 (Yoshida and
Delafontaine, 2020) were used for their positive influence on motor
neuron maturation and survival, and myotube differentiation. On
the other hand, the GSK-3 inhibitor and Wnt activator, CHIR99021
(Vertino et al., 2005; van Amerongen and Berns, 2006; Henriquez
et al., 2008; Jing et al., 2009; Cisternas et al., 2014; Girardi and Le
Grand, 2018), brain-derived neurotrophic factor (BDNF) (Gonzalez
et al., 1999; Wells et al., 1999; Clow and Jasmin, 2010; Kulakowski
et al., 2011; Je et al., 2013; Rentería et al., 2022), and glial cell line
derived neurotrophic factor (GDNF) (Nguyen et al., 1998; Keller-
Peck et al., 2001; Zwick et al., 2001; Wang et al., 2002; Stanga
et al., 2016; Stanga et al., 2020) were included to support motor
neuron survival and to favor nAChR clustering. Although the
new protocol significantly supported myotube maturation and
nAChR cluster differentiation, the amount of MYH1/α-actinin-
positive cellular debris was increased in the d8 condition, likely
representing remnants of well-differentiated myotubes that
contracted prior to imaging. This is probably due to an
accelerated maturation of cells that may contract powerfully
and detach from the stiff substrate. This is in line with
observations made by others (Osaki et al., 2018). Thus,
although Matrigel provided a more physiological environment
for myogenic differentiation, the plastic substrate was likely still
too stiff for more long-term maturation, asking for a further
adaption of the myogenic differentiation in a fully 3D and softer
environment.

4.2 Motor neuron coculture reduces
differences in nAChR cluster morphology
between control and mutant
monoculture myotubes

As SOD1D90Amyotubes displayed a reduced myogenic marker
expression compared to control, it was fitting to see that also aneural
nAChR clusters of SOD1 D90A myotubes differed morphologically
from control ones. In fact, in monoculture, SOD1 D90A cells
displayed a reduced nAChR cluster solidity and an increased
perimeter/area compared to control (Figures 4B–E). This finding
fits to fragmented NMJs described in ALS mouse models (Clark
et al., 2016; Dobrowolny et al., 2018b; Picchiarelli et al., 2019; Pereira
et al., 2021; Mukhamedyarov et al., 2023; Tu et al., 2023). Next, we
found that nAChR clusters of both, control and mutant myotubes,
underwent a significant morphological remodeling upon coculture
with motor neurons, i.e., a decrease in area and solidity and an
increase in perimeter/area (Figures 4B–E). Yet, the postsynaptic
remodeling upon motor neuron addition was less pronounced in
mutant myotubes compared to controls. This rendered
morphological features of nAChR clusters more similar between
mutant and control cells, suggesting an involvement of neuronal
factors in normalizing differences in the muscle-cell autonomous
nAChR cluster formation. In vivo, the development of vertebrate
NMJs is a step-wise process (Wu et al., 2010; Tintignac et al., 2015)
that involves both aneural and neural components (Lin et al., 2008).
First, with increasing differentiation, aneural myotubes show
enhanced nAChR subunit expression and eventually, these
prepattern in clusters. Subsequently, some clusters get contacted
by motor neurons, often by several neurons at a time. Around birth,
clusters usually appear as simple plaque-like structures that
increasingly gain complexity by a concentration of nAChR in
band-like arrangements that are interspersed by nAChR-free
zones of sarcolemma (Slater, 1982). During this period of
perinatal NMJ maturation, poly-innervation is eliminated by
synaptic pruning and nAChR exhibit a subunit switch from
embryonic α2βγδ to adult α2βεδ (Mishina et al., 1986;
Witzemann et al., 1987). In mice, mature, healthy NMJs show
nAChR in a typical pretzel-shaped pattern, in humans the
pattern is sometimes less complex, but also showing specific
gross morphological aspects (Flanagan-Steet et al., 2005; Kummer
et al., 2006; Boehm et al., 2020). To achieve specialization of the
postsynaptic apparatus of NMJs, at least three major processes are
known to be at work. First, motor neurons induce a specialization of
subsynaptic nuclei, whose transcriptional activity promotes
expression of genes functioning in synaptic transmission (Simon
et al., 1992; Ruegg, 2005; Tintignac et al., 2015; Saini et al., 2021).
Second, cytoskeletal networks and associated organelles and
proteins actively participate in postsynaptic organization,
maturation and maintenance by transporting synaptic
components to appropriate sites and by accumulating nAChR at
the postsynaptic membrane (Sealock et al., 1989; Yorifuji and
Hirokawa, 1989; Jasmin et al., 1990; Dai et al., 2000; Sanes and
Lichtman, 2001; Kummer et al., 2006; Proszynski et al., 2009;
Belhasan and Akaaboune, 2020; Lin et al., 2020; Osseni et al.,
2020; Ghasemizadeh et al., 2021). Third, clustering and turnover
of postsynaptic proteins, including nAChR, is regulated by neuronal
signals and may be relayed intracellularly by second messenger
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signaling, protein phosphorylation and ubiquitination and
regulation of postsynaptic protein trafficking and degradation
(Martinez-Pena y Valenzuela and Akaaboune, 2021; Rudolf,
2023). Accordingly, nAChR cluster stability was addressed by
analyzing nAChR internalization through a sequential αBGT live
cell staining that allowed to visualize and quantify endocytic/
lysosomal nAChR carriers. While SOD1 D90A myotube
monocultures featured an increased number of endocytic/
lysosomal nAChR-positive puncta per muscle volume compared
to controls, coculture with motor neurons significantly reduced
these numbers for both cell lines, thus, partly reducing nAChR
cluster stability differences observed between control and SOD1
D90A (Figures 4F, G). It has remained elusive, if the increased
number of endocytic/lysosomal nAChR-positive puncta was due to
an overall enhanced nAChR turnover, as it is observed in denervated
conditions in mice (Akaaboune et al., 1999; Tang and Goldman,
2006) or if a regular amount of endocytic nAChR was not
sufficiently cleared as described upon a block of the autophagic/
lysosomal degradation route (Carnio et al., 2014; Khan et al., 2014).
Yet, the postsynaptic instability observed in ALS muscle cells is in
accordance with observations made in ALS mouse models,
displaying reduced endplate stability (Clark et al., 2016;
Dobrowolny et al., 2018b; Badu-Mensah et al., 2022). Several
pathways and organelles have been highlighted in NMJ integrity
maintenance and ALS physiopathology and may support our
observations. First, mitochondrial breakdown has been linked to
oxidative stress and NMJ disruption (Chung and Suh, 2002; Dupuis
et al., 2009; Dobrowolny et al., 2018b; Zhou et al., 2019;
Belosludtseva et al., 2023). Another possible mode of action
leading to NMJ instability in ALS could be a direct influence of
the enzyme acetylcholinesterase (AChE). AChE contributes to
neuromuscular transmission by its capacity to hydrolyze ACh,
and therefore control synaptic ACh level, ensuring the
functionality and the integrity of the synapse (Taylor and Radić,
1994; Dudel and Heckmann, 1999; Adler et al., 2004; Campanari
et al., 2021). Downregulation of AChE in ALS motor endplates has
been suggested to trigger its instability (Fernandez et al., 1986).
Alternatively, Protein Kinase C (PKC) related pathways may
support NMJ abnormalities in ALS. PKC has been demonstrated
to be upregulated in ALS models and to trigger NMJ disintegration
(Dobrowolny et al., 2018b; Camerino et al., 2019) and it is involved
in nAChR clustering and NMJ formation (Lanuza et al., 2001;
Lanuza et al., 2002; Martinez-Pena y Valenzuela et al., 2013).

4.3 Aberrant nAChR-cluster-dependent
Ca2+ signaling in ALS muscle cells

Considering that muscle weakness and fatigability are major
symptoms in ALS patients, Ca2+ transients as a key component
underlying ECC were assessed in our model. ECC translates
motor neuron impulses into muscle contraction (recently
reviewed in Kaura and Hopkins, 2024). Although the
difference was not statistically significant, our live myotube
Ca2+-imaging reported a weaker nAChR-dependent Ca2+

response in mutant myotubes as compared to control
myotubes, without any obvious correlation with nAChR
cluster density (Figure 2; Supplementary Figure S1). This

result is in accordance with an earlier study (Beqollari et al.,
2016), that demonstrated reduced Ca2+ transient amplitudes in
SOD1G93A ex vivo myofibers using a voltage-clamp setup and
which may be explained by a decreased affinity of ACh for its
receptors (Palma et al., 2011; Palma et al., 2016) or by other
downstream alterations. Indeed, modification of ECC events
were also observed in SOD1-related ALS mouse models. As
such, EDL muscles of SOD1G93A mice displayed a
downregulation of Nav1.4 voltage-gated sodium channel
transcripts associated to a decreased amplitude of the action
potential and to impaired sarcolemmal excitability (Camerino
et al., 2019). Additionally, an uncoupling of triad junctions with
transverse tubules was suggested to amplify the excitation-
contraction coupling impairment in SOD1G93A mice
(Dobrowolny et al., 2008). Within the t-tubules of SOD1G93A

mice, downregulation of voltage-gated L-type Ca2+ channels
(Beqollari et al., 2016) and of Ryanodine receptor 1 (Camerino
et al., 2019) were reported and associated with a decreased Ca2+

release from the sarcoplasmic reticulum. This contrasts with
other reports demonstrating an increase in depolarization-
dependent Ca2+ transients in FDB fibers from SOD1G93A mice
(Zhou et al., 2010; Yi et al., 2011). Some ALS-related alterations
appeared to be fiber type-specific, such as differential protein
expression (i.e., dihydropyridine receptors) (Delbono and
Meissner, 1996; Payne and Delbono, 2004) and adaptation of
muscle metabolism (Smittkamp et al., 2014). In view of the ratio
variability between slow and fast fiber types amongst muscles and
of a fast-to-slow phenotype transition described in SOD1G93A

mice (Dobrowolny et al., 2018a; Camerino et al., 2019),
contradictory results may arise and accurate comparison
between studies remains delicate.

Next, to decipher which proportion of ACh-induced calcium
transients was nAChR dependent, we pretreated myotubes with
αBGT prior to ACh stimulation. αBGT induces a conformational
arrest of the nAChR α1-subunit binding sites via a non-competitive
and dominant effect (daCosta et al., 2015). Interestingly, αBGT pre-
treatment reduced the ACh-induced Ca2+ transients more strongly
in control than in mutant myotubes (45.2% vs. 18.6%, Figures 2A,B’;
Supplementary Figure S1), such that the residual transients were
now very similar between both cell types. This suggests two things:
first, that, comparing control andmutant cells, the Ca2+ mobilization
relied to a different extent on nAChR and, second, that in both cell
types there might be another ACh-dependent but nAChR-
independent Ca2+ component. The first aspect was already
discussed above. As for the second Ca2+ component, this might
be explained by activation of muscarinic acetylcholine receptors
(mAChR). mAChR are classified into five different subtypes;
amongst these M1, M3 and M5 are expressed in skeletal muscle
fibers and preferentially activate Gq/G11-type G-proteins (daCosta
et al., 2015). Muscarinic AChR downstream effectors have been
strongly implicated in muscle growth and atrophy (Wright et al.,
2009), and their dependent signaling pathways might be important
not only in the early developmental stages of the muscle cells, but
also after denervation of adult muscle fibers (Furlan and Godinho,
2005). mAChR synthesis was suggested to be characteristic of
aneural developing muscle fibers (Furlan and Godinho, 2005).
Further experiments utilizing antagonists of mAChR would be
necessary to verify this hypothesis.
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5 Conclusion

The described human NMJ model is the first to show complex
nAChR clusters in vitro with the option of further maturation in a
coculture setup with iMN. This model showed an altered nAChR-
dependent Ca2+ response in SOD1 D90A mutant myotubes,
supporting the idea of an impaired excitation-contraction
coupling in ALS-muscle. Furthermore, the study identified
reduced sarcomeric organization and limited motor neuron-
induced postsynaptic plasticity in mutant myotubes. Trophic
support provided by iMN induced a significant nAChR cluster
remodeling, and reduced nAChR cluster differences observed in
monocultures between the two lines.
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