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Extracellular ATP and its derivates mediate a signaling pathway that might be
pharmacologically targeted to treat inflammatory conditions. Extracellular
adenosine, the product of ATP hydrolysis by ectonucleotidase enzymes, plays
a key role in halting inflammation while promoting immune tolerance. The rate-
limiting ectoenzyme ENTPD1/CD39 and the ecto-5′-nucleotidase/CD73 are the
prototype members of the ectonucleotidase family, being responsible for ATP
degradation into immunosuppressive adenosine. The biological effects of
adenosine are mediated via adenosine receptors, a family of G protein-
coupled receptors largely expressed on immune cells where they modulate
innate and adaptive immune responses. Inflammatory bowel disease (IBD) is a
serious inflammatory condition of the gastrointestinal tract, associated with
substantial morbidity and often refractory to currently available medications.
IBD is linked to altered interactions between the gut microbiota and the immune
system in genetically predisposed individuals. A wealth of studies conducted in
patients and animal models highlighted the role of various adenosine receptors in
the modulation of chronic inflammatory diseases like IBD. In this review, we will
discuss the most recent findings on adenosine-mediated immune responses in
different cell types, with a focus on IBD and its most common manifestations,
Crohn’s disease and ulcerative colitis.
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Introduction

Purinergic and adenosine signaling modulate innate and adaptive immune responses
virtually in all tissues. Extracellular ATP is released as result of damage or pathological
conditions, and rapidly accumulates in inflamed tissues where it is hydrolyzed into
adenosine by different enzymes including ectonucleotidases, ectonucleotide
pyrophosphatase/phosphodiesterase, alkaline phosphatase and adenylate kinase
(Yegutkin and Boison, 2022). Prototype members of the ectonucleotidase family are
ENTPD1/CD39, responsible for hydrolyzing ATP and ADP into AMP, and the ecto-5′-
nucleotidase/CD73, which converts AMP into adenosine (Allard et al., 2017; Savio et al.,
2020). Both ectonucleotidases along with adenosine limit inflammation and restore
physiological homeostasis after inflammation-related injury. Additional cell membrane-
expressed ectonucleotidases include NTPDase 3 and 8 that preferentially hydrolyze ATP
and NTPDase 2 that hydrolyzes ATP only (Kukulski et al., 2005). Cell membrane-expressed
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ENTPDase 1, 2, 3 and 8 are also present in circulating microparticles
in human plasma (Jiang et al., 2014). In the context of inflammatory
bowel disease (IBD), a recent study showed that NTPDase8, the
dominant enzyme responsible for nucleotide hydrolysis in the gut
lumen, protects the intestine from inflammation (Salem et al., 2022).
Extracellular nucleosides modulate cellular responses by entering
target cells via nucleoside transport mechanisms, based on active
transmembrane sodium gradient or facilitated-diffusion carriers
(Thorn and Jarvis, 1996). The biological effects of adenosine are
mediated also through adenosine receptors (AR), a family of G
protein-coupled heptahelical transmembrane receptors, classified
into four types: A1R, A2AR, A2BR, and A3R (Hasko et al., 2008).
Adenosine receptors are largely expressed on immune cells and have
been involved in the modulation of inflammatory conditions,
including IBD (Thiel et al., 2003; Sitkovsky et al., 2008; Cronstein
and Sitkovsky, 2017).

Ulcerative Colitis (UC) and Crohn’s disease (CD) are the
most common manifestations of IBD, the incidence of which has
increased significantly over the last decades (Ng et al., 2017). IBD
has a relapsing/remitting course and often becomes refractory to
current therapies. The condition likely results from altered
interactions between the gut microbiota and the immune
system and is characterized by an imbalance between effector
and regulatory immune responses. Mounting evidence has
pointed to a pivotal role of adenosine signaling in the
modulation of innate and adaptive immunity, proposing it as

a therapeutic target in chronic inflammation like in IBD (Vuerich
et al., 2020).

Innate immune responses

Macrophages

Adenosine immunoregulatory effects on macrophages are
supported by clinical and experimental evidence. In patients with
ankylosing spondylitis, human M2-like macrophages display
dysfunctional A2AR that fails to control MMP8 expression,
this being associated with disease activity (Sadatpour et al., 2022).
In a murine macrophage cell line, exposure to extracellular
adenosine, decreases LPS-induced expression of the NADase/
ADP-ribosyl-cyclase CD38, as well as the immunomodulatory
molecule CD83, while boosting M2 markers and Th2 suppressive
cytokines (Devi et al., 2023). In mouse peritoneal macrophages,
adenosine suppresses LPS-induced IL-1β release, ROS and nitrite
production (Ryzhov et al., 2008), while stimulation of A2BR boosts
IL-10 production (Nemeth et al., 2005) and contributes to
suppression of TNF-α release (Kreckler et al., 2006). In another
study, A2BR simulation in LPS-activated murine macrophages
favors upregulation of the pro-inflammatory cytokine IL-6
(Ryzhov et al., 2008), suggesting that the effects of A2BR
activation might depend on the experimental setting. In murine

FIGURE 1
Adenosine receptor signaling in different immune cell types. (A) Adenosine mediates immature human plasmacytoid dendritic cells (PDCs)
recruitment to inflammatory sites, via A1 receptor (A1R) signaling. At the infection site, PDCs undergomaturation by decreasing A1R expression, in favor of
A2AR, which limits pro-inflammatory cytokine release. (B)Human andmurine Tregs express CD39 that initiates ATP/ADP hydrolysis to ultimately produce
adenosine. Expression of A2AR by Tregs enables adenosine to act in an autocrine manner that might favor themaintenance of the Treg-cell pool. (C)
In mouse peritoneal macrophages, adenosine suppresses LPS-induced IL-1β release, ROS, and nitrite production. A2BR stimulation boosts IL-10
production and suppresses pro-inflammatory responses (D) A3R can activate humanmast cells independently of IgE and triggers upregulation of growth
factors, cytokines, and chemokines. The effect of adenosine on humanmast cells also depends on A2BR, which promotes release of Th2 cytokines like IL-
4 and IL-13 to induce IgE synthesis in B lymphocytes.
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peritoneal macrophages, activated A2AR suppresses LPS-induced
TNF-α release (Kreckler et al., 2006) and promotes its own
internalization and degradation by directly boosting lysosomal
protease Cathepsin D activity. This latter mechanism is believed
to be a strategy for modulating adenosine signaling in inflammatory
processes (Skopal et al., 2022).

Dendritic cells

Adenosine regulates dendritic cells (DCs) upon activation of
A2AR, A2BR and A1R. Human DCs tune their response to adenosine
also by expressing adenosine deaminase (ADA) that scavenges the
nucleoside (Desrosiers et al., 2007).

Exposure to adenosine during LPS-induced maturation, drives
human monocyte-derived DC (mDC) differentiation towards an
anti-inflammatory phenotype, thus impairing mDC ability to
effectively prime CD8+ T-cells (Challier et al., 2013). Further,
adenosine mediates the recruitment of immature human
plasmacytoid dendritic cells (PDCs) to inflammatory sites, via
A1R signaling. At the infection site, PDCs undergo maturation by
decreasing A1R expression in favor of A2AR, which subsequently
limits pro-inflammatory cytokine-release (Schnurr et al., 2004). In
human immature DCs (iDCs) and mDCs, chronic A2AR stimulation

enhances macropinocytotic activity and membrane expression of
major histocompatibility complex class-I (MHC-I) and class-II
(MHC-II) molecules. Additional evidence has shown that human
DCs developed in the presence of adenosine display reduced ability
to support T-helper 1 (Th1) polarization. In mDCs, adenosine
stimulation inhibits TNF-α and IL-12 release while boosting IL-
10 secretion. iDC allostimulatory capacity is reduced upon
adenosine exposure (Panther et al., 2003), these data further
supporting the immunoregulatory properties of this metabolite.

Akin to human DCs, murine DCs, differentiated in the presence
of adenosine, display impaired allostimulatory capacity, and express
increased levels of angiogenic and tolerogenic factors, associated
with enhanced ability to promote tumors in vivo (Novitskiy et al.,
2008). A2AR signaling limits maturation and inflammatory
responses of re-oxygenated murine DCs after hypoxic exposure,
critically limiting ischemia reperfusion injury (IRI) (Liu et al., 2015).
A1R activation suppresses vesicular MHC-I cross-presentation in
murine resting DCs (Chen et al., 2008).

The development of Th17-cells from CD4 naïve
lymphocytes, has been linked to exposure to DCs-derived and
A2BR-induced IL-6 (Wilson et al., 2011). In this regard, A2BR
stimulation, drives differentiation of murine bone marrow-
derived DCs into a CD11c(+)Gr-1(+)subset that promotes Th17
responses (Wilson et al., 2011). Genetic A2BR ablation or

FIGURE 2
Adenosine-related pathways in IBD. Blood and lamina propria of Crohn’s disease patients are characterized by reduced frequencies of suppressive
CD39+ Th17-cells (supTh17), an immunoregulatory Th17-cell population that is impaired in IBD. In colon epithelial cells from UC patients, A3R is
downregulated, and its expression levels inversely correlate with mir-206. Increase in A2BR levels during intestinal IRI and acute hypoxia has been
implicated in reduced transepithelial resistance and increased epithelial damage. In the colonicmucosa of UC patients, A2AR is post-transcriptionally
downregulated by miR-16, this limiting A2AR anti-inflammatory effects.
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pharmacological blockade, significantly ameliorates murine
autoimmune encephalomyelitis symptoms, by limiting
adenosine-mediated IL-6 production by DCs along with
Th17-cell differentiation (Wei et al., 2013).

Neutrophils

Neutrophil recruitment is driven by extracellular ATP and
adenosine (Rubenich et al., 2021). Endothelium-derived
adenosine prevents activated human neutrophils from damaging
the microvasculature at inflammatory loci, by controlling their
response to complement-coated beads (Kubersky et al., 1989).
Adenosine produced by CD73 expressing human neutrophils,
limits excessive endothelial paracellular permeability, this
avoiding potentially deleterious disturbance in vascular function
during inflammation (Lennon et al., 1998). Neutrophil-derived
CD73 provides adenosine also in the intestinal lumen, triggering
IL-6 release by epithelial cells, which leads to neutrophil activation
and degranulation, an event that supports anti-microbial immune
responses (Sitaraman et al., 2001).

Adenosine exposure can have antithetical effects on neutrophil
function, depending on the adenosine receptor subtype involved.
Rapid and beneficial effects of adenosine administration have been
reported in COVID-19-related acute respiratory syndrome and
pneumonia (Correale et al., 2020; Spiess et al., 2021), which are
characterized by heightened neutrophil responses (Li et al., 2023).
Upon stimulation of A1R, low adenosine concentrations promote
neutrophil adherence to endothelium, chemotaxis towards the
inflammation site and FcγR function. Higher adenosine levels,
which may occur at sites of tissue damage, inhibit adherence,
FcγR function, degranulation, and generation of toxic oxygen
metabolites (Salmon and Cronstein, 1990; Cronstein et al., 1992;
Visser et al., 2000).

In human and murine neutrophils, A2AR activation suppresses
pro-inflammatory cytokine production (McColl et al., 2006) and
activates the cyclooxygenase-2 pathway, leading to anti-
inflammatory prostaglandin E2 release. This phenomenon could
be part of an early regulatory mechanism that favors anti-
inflammatory activities at inflamed sites (Cadieux et al., 2005).

In human neutrophils, A2AR expression and ligand affinity are
tightly influenced by the surrounding environment. In vitro
exposure of human neutrophils to LPS or Th1 cytokines boosts
A2AR expression (Fortin et al., 2006). On the other hand,
A2AR-ligand affinity is reduced in neutrophils isolated from
sepsis patients, this explaining the limited regulatory effects of
adenosine in this setting (Kreth et al., 2009). Moreover, A2AR
stimulation in neutrophils isolated from murine models or
patients with sepsis, fails to suppress cell death, slows aging, and
promotes a N2 phenotype, when compared to cells obtained from
controls (Lovaszi et al., 2022). In human polymorphonuclear
leukocytes, exposure to pro-inflammatory conditions limits A2AR
expression by boosting miRNA-214, miRNA-15 and miRNA-
16.These miRNAs could serve as useful markers to identify
patients more susceptible to severe inflammation (Heyn et al., 2012).

In a murine model of IRI, A2AR activation in neutrophils and
CD4+ T-cells, improves animal conditions by limiting inflammation
(Sharma et al., 2010). In LPS-induced acute lung injury,

downregulation of neutrophil trafficking and responses is noted
after A1R activation and is associated with beneficial effects
(Ngamsri et al., 2010). Notably, the oxygen-induced iatrogenic
exacerbation of acute lung injury is linked to the suppression of
A2AR-mediated lung tissue-protecting pathway. Intratracheal
injection of a selective A2AR agonist effectively restores the
protective effects of endogenous adenosine on lungs (Thiel
et al., 2005).

An immunoregulatory role has been noted for the low affinity
A2BR that suppresses oxidase activity in murine neutrophils (van der
Hoeven et al., 2011) in vitro and in an in vivomodel of acute kidney
injury, by curbing neutrophil-dependent TNF-α release (Grenz
et al., 2012). Similar results have been obtained in murine models
of peritonitis and peritonitis-related sepsis, where selective
inhibition of CXCR4 and CXCR7 ameliorates disease, limiting
neutrophil infiltration at the inflammatory site in an
A2BR-mediated manner (Ngamsri et al., 2020).

Human and murine neutrophils can actively contribute to the
metabolic control of the inflammatory milieu, by releasing ATP
through connexin 43 hemichannels in a protein/phosphatase-A-
dependent manner (Eltzschig et al., 2006).

A3R and P2Y2R play an important role in neutrophil
chemotaxis. Experiments conducted in murine models of sepsis,
revealed that both receptors are closely involved in neutrophil
migration to the lungs, suggesting that pharmaceutical
approaches targeting these receptors might help in controlling
acute lung tissue injury in this condition (Inoue et al., 2008).
Human neutrophil recruitment is also positively modulated by
A3R (Butler et al., 2012).

NK/NKT-cells

In inflammatory conditions, a counteracting mechanism to
prevent deleterious inflammatory responses, is represented by
upregulation of adenosine signaling mediators in NK-cells.

In sickle cell disease (SDC), the widely disseminated
microvascular IRI boosts A2AR expression in human and murine
CD4+invariant-natural-killer-T (iNKT)-cells, via nuclear factor-
kappaB (NF-κB)-signaling (Lin et al., 2013). A SCD phase-1 trial
of the A2AR agonist regadenoson, resulted in decreased activation of
iNKT-cells without significant side effects (Field et al., 2013). Ex vivo
activated iNKT-cells from healthy donors, upregulate anti-
inflammatory purinergic mediators like A2AR, CD39 and CD73
(Yu et al., 2018). iNKT-cells from SCD patients also express elevated
levels of CD39 (Yu et al., 2018). In another study, CD39+ NK-cells
were found to be induced by IL-15 and to display more effective
cytotoxicity when compared to CD39− NK-cells. There is evidence
that A2AR stimulation opposes IL-15-induced generation of human
CD39+ NK-cells, by blocking IL-15 signaling (Kang et al., 2023). In
the same cells, A2AR is also associated with IL-4 production, which is
inhibited by receptor blockade. These data are further corroborated
by the evidence that A2AR-deficient mice are characterized by a
marked decrease in IL-4, IL-10 and TGF-β, while concomitantly
displaying increase in IFN-γ (Nowak et al., 2010). Importantly,
adenosine and its analogues have been found to limit NK cell lytic
activity (Raskovalova et al., 2005). In murine models of liver IRI, the
CD1d-dependent NKT-cell inflammatory response, is abrogated by
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A2AR activation (Lappas et al., 2006). Similarly, the NKT-cell-
mediated liver injury associated to Concanavalin-A-induced acute
hepatitis, is abolished by the A2AR agonist CGS21680 and
exacerbated in A2AR-deficient mice (Subramanian et al., 2014).
Adoptive transfer of murine iNKT and NK-cells with induced
A2AR activation into SCD mice improves pulmonary function
and prevents exacerbation of hypoxia-reoxygenation-induced
pulmonary injury (Wallace and Linden, 2010).

Mast cells

Mast cells play an important role in asthma, where their
activity is strongly boosted by adenosine. In ADA-deficient
mice that naturally develop lung inflammation reminiscent of
asthma, ADA enzyme therapy has beneficial effects, preventing
accumulation of adenosine and mast cell degranulation (Zhong
et al., 2001). In mouse, airway response to aerosolized adenosine
largely depends on mast cells and A3R activation (Tilley
et al., 2003).

A3R can activate human mast cells independently of IgE and
triggers upregulation of growth factors, cytokines and chemokines,
by coupling to the cellular target of receptor mimetic basic
secretagogues Gi3 (Baram et al., 2010). The pro-inflammatory
effects of adenosine, in murine mast cells, are phosphoinositide
3-kinase gamma (PI3Kgamma)-dependent (Laffargue et al., 2002).
Data generated in human A3R-expressing mice, revealed that the
human A3R response per se is not sufficient to activate PI3Kgamma-
dependent signaling pathways, and to mediate adenosine effects
(Yamano et al., 2005). The impact of adenosine on human mast cells
also depends on A2BR that triggers release of Th2 cytokines,
including IL-4 and IL-13, which, in turn, induce IgE synthesis by
B lymphocytes (Ryzhov et al., 2004).

Th1/Tc1-cells

The effect of adenosine on murine Th1 and Tc1 responses has
been largely investigated. Adenosine receptor activation inhibits type I
cytokine secretion, especially IL-2, limiting expansion in vivo
(Erdmann et al., 2005). In mouse, A2AR stimulation, can inhibit
nonalcoholic steatohepatitis development by reducing Th17-cell
expansion and IL-17-induced JNK-dependent lipotoxicity (Alchera
et al., 2017). Inosine administration can also reduce inflammation and
mortality in a model of endotoxemia in mice, through abrogation of
pro-inflammatory Th1 cytokine production by macrophages and
splenocytes. The effect is partially reversed by blockade of A1R and
A2AR (Hasko et al., 2000). Further supporting these studies is the
evidence that Leishmania infantum parasites stimulate A2AR
signaling, limiting the development of Th1 adaptive immunity and
favoring parasitic colonization (Lima et al., 2017).

Th17-cells

Adenosine signaling can trigger different responses in human
and murine Th17-cells, these depending on the adenosine
receptor involved.

In PBMCs from asthma patients, A2AR mRNA levels correlate
positively with Treg- and negatively with Th17-cell markers and
asthma severity. Accordingly, in a murine model of OVA-induced
lung inflammation, pharmacological A2AR stimulation triggers Treg
responses, while inhibiting Th17 lung infiltration (Wang et al.,
2018). Low levels of CD39 and A2AR expression have been
detected in Th17-cells and found to support inflammation in
juvenile patients with autoimmune liver disease (Liberal et al., 2016).

A2BR is upregulated in DCs fromMS patients, and its occupancy
by adenosine triggers IL-6 secretion that promotes Th17-cell
differentiation. In line with this, pharmacological A2BR blockade
alleviates murine experimental autoimmune encephalomyelitis, via
inhibition of the DCs/IL-6-Th17 axis (Wilson et al., 2011; Wei
et al., 2013).

In Trichinella spiralis infection, A2AR upregulation accelerates
post-infectious irritable bowel syndrome by promoting polarization
of CD4+ T-cells into Th17 lymphocytes (Dong et al., 2022).

Th2-cells

In human and mouse, Th2 responses are driven upon
activation of different adenosine receptors. In IL-33-activated
murine bone-marrow-derived group 2 innate lymphoid cells,
A2BR stimulation suppresses IL-13 and IL-5 levels while A2AR
activation triggers IL-5 production without affecting IL-13
release (Csoka et al., 2018). In a cockroach allergen model of
murine asthma-like pulmonary inflammation, systemic or
myeloid A2BR deletion, has beneficial effects associated with
decreased Th2-type airways responses, i.e., reduction of lung
IL-4, IL-5, and IL-13 (Belikoff et al., 2012).

A1R removal in ADA-deficient mice, leads to enhanced
pulmonary inflammation-related damage, associated with
increased expression of the Th2 cytokines IL-4 and IL-13 in the
lung (Sun et al., 2005).

Tregs

Human and murine Tregs express CD39 that initiates ATP/
ADP hydrolysis to ultimately generate adenosine. Expression of
A2AR by Tregs enables adenosine to act in an autocrine manner,
favoring the maintenance of the Treg pool. A2AR stimulation
further boosts CD39 and CD73 expression in Tregs isolated
from septic mice (Bao et al., 2016). Notably, A2AR stimulation
effectively counteracts Treg deficiency that drives autoimmunity in
scurfy mice (He et al., 2017).

Adoptively transferred CD73-deficient or A2AR-deficient Tregs,
fail to confer protection in a murine IRI model, while
pharmacological A2AR stimulation augments the protective effect
of wild-type and CD73-deficient Tregs (Kinsey et al., 2012). In
OVA-induced lung inflammation, pharmacological A2AR activation
promotes anti-inflammatory Treg responses (Wang et al., 2018).
The same receptor mediates Treg homing to the site of inflammation
in a murine model of experimental autoimmune uveoretinitis, and
in cells from human uveitis patients, in vitro (Peters et al., 2023). In
contrast, A2BR inhibits Treg cell infiltration in a murine heterotopic
tracheal model of bronchiolitis obliterans (Zhao et al., 2010),
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postulating a different role of this receptor in this disease setting.
Figure 1 represents adenosine receptor signaling in immune cells.

Supplementary Table S1 summarizes the effects of adenosine
receptor activation in different cell types and disease models.

Adenosine signaling in IBD

Several studies support the beneficial effects of adenosine in IBD.
Increasing evidence suggests that agonism or inhibition of adenosine
receptors A2AR, A2BR and A3R might be exploited therapeutically
(Vuerich et al., 2020).

A2AR

A2AR signaling is often impaired in IBD. In the colonic mucosa
of UC patients, A2AR is post-transcriptionally downregulated by
miR-16, this limiting anti-inflammatory inhibition of NF-κB
signaling pathway (Tian et al., 2016).

The immunomodulatory role of A2AR in inflammation depends on
its effect on T-cells, in which expression levels are subset-specific. A2AR
expression is higher in CD4+ than CD8+ T-cells; however, upon T-cell
activation, the receptor levels are mainly boosted in the latter (Koshiba
et al., 1999). During CD8+ and CD4+ T-cell activation, A2AR signaling
inhibits cytotoxicity and cytokine-release activity, while only marginally
affecting proliferation (Ohta et al., 2009). A2AR stimulation favors also
CD4+CD25highFoxP3+ Treg expansion, and this is associated with
increased CTLA-4 levels and heightened suppression (Ohta et al.,
2012). Blood and lamina propria of CD patients display reduced
frequencies of suppressive CD39+ Th17-cells, an immunoregulatory
Th17-cell population resistant to the effects of adenosine, as a result of
heightened ADA and decreased A2AR levels (Longhi et al., 2014).

A2AR-deficient mice are more susceptible to tissue damage
induced by sub-threshold doses of inflammatory stimuli (Ohta
and Sitkovsky, 2001). These findings are corroborated by the
evidence that administration of the A2AR selective agonist ATL-
146e reduces intestinal mucosa inflammation by limiting leukocyte
infiltration and pro-inflammatory cytokine release in murine
experimental models of IBD (Odashima et al., 2005). Studies
have shown that electroacupuncture inhibits visceral pain in IBD
mice by boosting A2AR, A1R and A3R levels, while inhibiting A2BR in
colon tissue (Hou et al., 2019). In murine models of chronic colitis,
administration of ADA inhibitors results in beneficial effects
through enhanced activation of A2AR and A3R (Antonioli et al.,
2010). The immunosuppressive properties of A2AR are noted also in
murine cancer models (Sitkovsky et al., 2008). Genetic deletion of
A2AR in host animals favors rejection of immunogenic tumors and
anti-cancer immunity is restored only upon administration of A2AR
antagonists, or by silencing the receptor via siRNA pretreatment on
T-cells (Ohta et al., 2006).

Despite robust evidence of an immunosuppressive role in
cancer and experimental colitis models, a study showed that
increased A2AR expression as a consequence of T. spiralis
infection, promotes post-infectious irritable bowel syndrome by
inducing Th17-cell polarization in mouse (Dong et al., 2022); this
suggesting a different role of this receptor in specific
disease settings.

A2AR inhibitory effects on colonic motility are enhanced in the
presence of bowel inflammation, as noted when colonic longitudinal
muscle preparations from healthy rats or with experimental colitis are
used (Antonioli et al., 2006). Ex vivo treatment with a highly polar,
perorally nonabsorbable A2AR selective agonist, significantly
ameliorates acetylcholine-induced contractions in ileum/jejunum
preparations from inflamed rats (El-Tayeb et al., 2011). In
comparable settings, A2AR stimulation, or A2BR blockade, prevents
inflammation-induced contractile disturbance (Michael et al., 2010).

In various experimental models of colitis in rats, administration of
the A2AR agonist polydeoxyribonucleotide restores tissue structural
integrity by reducing inflammatory cytokine expression,
myeloperoxidase activity, and malondialdehyde. Accordingly, all
the beneficial effects are abrogated by concomitant administration
of A2AR antagonist DMPX (Pallio et al., 2016).

A2BR

The pro-inflammatory, low affinity A2BR is the predominant
adenosine receptor expressed in the colon.

There is evidence that A2BR depletion ameliorates the course of
experimental colitis in different murine models (Kolachala V. L.
et al., 2008). In DSS-induced colitis, administration of the A2BR
antagonist ATL-801 prevents weight loss and suppresses the
inflammatory infiltrate in the colonic mucosa (Kolachala V.
et al., 2008). In a mouse model of IRI and in a cell model of
acute hypoxia, A2BR antagonism improved the intestinal epithelial
structure and barrier function, further supporting the pro-
inflammatory role of A2BR activation (Yang et al., 2014).

Conversely, other studies provided evidence of a selective role for
epithelial A2BR signaling in attenuating colonic inflammation in the
context of DSS-induced colitis (Aherne et al., 2015). Similarly, additional
investigations in the setting of DSS colitis in mice with partial genetic
deficiency of netrin-1, a molecule implicated in the modulation of
leukocyte trafficking, indicate a role for A2BR in mediating netrin-1
protective effects (Aherne et al., 2012). A2BR-mediated
immunosuppression is critically involved in cancer immune escaping.
A2BR pharmacological inactivation or genetic depletion prevents effector
T-cell inhibition by the hypoxic tumor microenvironment, thus
facilitating tumor rejection (Lukashev et al., 2007).

A3R

The Gi protein-associated A3R has been proposed having both
anti- and pro-inflammatory properties. A study by Rybaczyk and coll
showed a positive correlation between A3R downregulation and acute
inflammatory score, disease chronicity and purine genes dysregulation,
when considering colonic mucosal biopsies or PBMCs obtained from
CD, UC or control subjects (Rybaczyk et al., 2009). In line with this, in
colonic epithelial cells from UC patients, A3R activation mitigates pro-
inflammatory cytokine production, by curbing NF-κB signaling (Ren
et al., 2014; Ren et al., 2020). In another study on colonic epithelial cells
from UC patients, A3R is downregulated and its expression levels
inversely correlate with those of mir-206, a post-translational regulator
associated with disease histological activity (Minacapelli et al., 2019)
and linked to exacerbation of DSS colitis in mice (Wu et al., 2017). In
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mice with DSS-induced colitis downregulation of A3R is partially
limited following miR-206-antagomir treatment (Wu et al., 2017).

Treatment of chronic colitis induced by 2,4,6-trinitrobenzene
sulfonic acid using the A3R agonist N (6)-(3-iodobenzyl)-adenosine-
5-N-methyluronamide (IB-MECA), further supports the protective role
of this adenosine receptor. The treatment contains the colitis-induced
upregulation of several pro-inflammatory genes including P2X1R,
P2X4R, P2X7R, P2Y2R, and P2Y6R, downregulated P2X2R, P2Y1R,
and P2Y4R, significantly reducing the inflammatory score and
ameliorating disease course in animals (Guzman et al., 2006).
Additional investigations showed that the A3R agonist
AR170 contrasts inflammatory cell infiltration of the colon and
decreases pro-inflammatory cytokine levels also in 2,4-
dinitrobenzene sulfonic acid-induced colitis in rats (Antonioli et al.,
2020). In contrast to the above studies, genetic deletion of A3R resulted
in disrupted intestinal transit, conferring protection against DSS colitis
(Ren et al., 2011). In line with these findings, Ochaion and coll reported
upregulation of A3R levels in PBMCs from patients affected by
rheumatoid arthritis, psoriasis, and CD. A3R upregulation was found
to be related to NF-κB and CREB protein pathways (Ochaion et al.,
2009). Figure 2 shows adenosine-related pathways in IBD.

Future perspectives and conclusions

We have briefly discussed how adenosine signaling modulates
immune function and dictates outcomes in experimental and human
IBD. How to fine-tuning adenosine-mediated immune responses to
selectively halt inflammation at the sites of interest, while inducing
homeostasis remains unclear. The development of purinergic signaling-
based therapies, in combination with conventional treatments, could
help promoting and maintaining immunotolerance in IBD and other
immune-mediated chronic conditions.
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