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Regeneration is vital for many organisms, enabling them to repair injuries and
adapt to environmental changes. The mechanisms underlying regeneration are
complex and involve coordinated events at the cellular and molecular levels.
Moreover, while some species exhibit remarkable regenerative capabilities,
others, like mammals, have limited regenerative potential. Central to this
process is the regulation of gene expression, and among the numerous genes
involved, MYC emerges as a regulator of relevant processes during regeneration
with roles conserved in several species, including Drosophila. This mini-review
aims to provide valuable insights into the regeneration process in flies, focusing
on significant organs where the role of MYC has been identified: from the
imaginal discs, where MYC regulates cell growth, structure, and proliferation,
to the gut, where it maintains the balance between renewal and differentiation of
stem cells, and the central nervous system, where it influences the activities of
neural stem cells and the interaction between glia and neuronal cells. By
emphasizing the molecular mechanisms regulated by MYC, its significance in
controlling regeneration mechanisms, and its conserved role in flies, we aim to
offer valuable insights into the utility of Drosophila as a model for studying
regeneration. Moreover, unraveling MYC’s function in Drosophila during
regeneration may help translate findings into the mechanisms underlying
human tissue repair.
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1 Regeneration

The ability to regenerate and restore lost body parts after injury reflects key
physiological pathways governed by developmental processes; regeneration capacity is
widespread in animals and, in some species, has been lost during evolution, contributing to
the variations in regenerative capacities across species (Losner et al., 2021). While
remarkable abilities are observed in cnidarians, crustaceans, salamanders, and certain
vertebrates, humans have limited regenerative potential (Wells and Watt, 2018),
underscoring the need to understand molecular mechanisms of tissue and organ
development for regenerative medicine.

Animal regeneration is categorized into five types: 1) structural regeneration, seen in the
distal regrowth of appendages in vertebrates and arthropods; 2) organ regeneration, where
damaged organs restore their mass; 3) tissue regeneration, responding to damaged epithelial
or epidermis; 4) whole-body regeneration, involving the regrowth of an organism’s central
axis; and 5) cellular regeneration, such as the regrowth of severed nerve axons (Bely and
Nyberg, 2010). Regeneration, depending on tissue and damage types, involves distinct steps,
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including wound healing, the formation of a proliferative blastema,
cellular differentiation, and tissue patterning. The blastema,
comprised of progenitor cells responsible for the regeneration
process, is formed temporarily at the injury site and undergoes
morphogenesis through cell migration and proliferation to
regenerate the missing organ (King and Newmark, 2012; Slack,
2017). Additionally, immune cells at the injury site play a crucial role
in debris clearance and secretion of signaling molecules, initiating
specific cellular proliferation and differentiation processes necessary
for thriving tissue regeneration (Julier et al., 2017). Despite the
progress made in understanding tissue regeneration, identifying
novel signaling pathways that govern reprogramming
mechanisms remains a significant challenge. Consequently,
simple animal models are indispensable for gaining a deeper
understanding of these intricate processes.

AlthoughDrosophila does not possess the extensive regenerative
abilities of some other species, its advanced genetic technology,
previously used to uncover the complex genetic networks governing
development, framework, which connects body parts and identity
genes (such as the Hox genes), as well as pattern formation
components (like Hedgehog, Decapentaplegic (Dpp), and
Wingless (Wg) analogous to vertebrate Wnt), can now be
utilized to investigate the molecular basis of regeneration (Fox
et al., 2020). Here, we review the role of MYC in regeneration
models such as wing imaginal discs, gut, and neuronal-glia cells,
where processes like cell growth, division, and apoptosis may
depend critically on MYC’s function.

2 Drosophila MYC

The MYC/MAX/MAD network in Drosophila stands out for its
lack of redundancy, as the Drosophila genome contains a single gene
for each component (Gallant, 2006). Despite being only 26%
identical to its human counterpart, the Drosophila MYC protein
shares highly conserved functional domains such as Box I and II, the
degron sequences, and the basic-helix-loop-helix leucine zipper
(bHLH/LZ) domain, to mediate MYC: MAX heterodimers that
bind the E-box sequences on target genes (Orian et al., 2003;
Hulf et al., 2005). The discovery that MYC mutants, also called
diminutive, are composed of smaller cells (Johnston et al., 1999)
paved the way for genetic experiments that revealed MYC’s role in
controlling growth and ribosomal biogenesis. The similarity in
phenotypes between MYC mutants and those of the insulin (InR/
IRS/chico) (Bohni et al., 1999) and Target of Rapamycin (TOR/S6K)
(Montagne et al., 1999) pathways has contributed to unveiling how
growth pathways influence MYC activity in flies (Bellosta and
Gallant, 2010; Parisi et al., 2011). These studies revealed the
control of MYC protein stability by growth factors signaling
through the phosphorylation of conserved domains (degrons) by
Ras-ERK/MAPK and GSK3ß kinases, confirming this pathway of
MYC protein degradation in flies (Galletti et al., 2009;
Schwinkendorf and Gallant, 2009). Furthermore, MYC levels
increase during starvation in the fat body, a metabolic tissue that
parallels the function of vertebrate adipose tissue and the liver
(Teleman et al., 2008; Parisi et al., 2013). Indeed, we showed that
MYC increases metabolic processes like glycolysis and
glutaminolysis during nutrient starvation (Parisi et al., 2013; de la

Cova et al., 2014) and promotes the catabolic process autophagy in
the fat cells, leading to survival (Nagy et al., 2013; Paiardi
et al., 2017).

MYC’s control over ribosome biogenesis is highlighted by its
coordination of RNA polymerases I, II, and III activities. MYC
facilitates the recruitment of RNA polymerase I to rDNA, ensuring
proper rRNA synthesis with the transcription of ribosomal proteins
(Destefanis et al., 2020). MYC’s role in regulating ribosomal
biogenesis led to the discovery of its role in cell competition; a
physiological process initially observed in flies heterozygous for the
Minute ribosomal proteins (Morata and Ripoll, 1975). In this
process, cells with higher MYC levels outcompete unfit
neighboring cells (with lower MYC), leading to their apoptosis
(de la Cova et al., 2004; Moreno and Basler, 2004). This property
of MYC was later demonstrated in the development of vertebrates
(Claveria et al., 2013; Ellis et al., 2019), and it may underscore a role
for MYC in mechanisms of tissue repair and regeneration across
diverse organisms (Gogna et al., 2015; Yusupova and Fuchs, 2023).

3 Organ-specific regeneration: the
wing imaginal discs, gut, and neural
cells, three models to study
regeneration

3.1 Wing imaginal discs

Imaginal discs in Drosophila larvae are sac-like structures of
epithelial tissue (Figure 1A) and they are the precursors of adult
organs. Due to their accessibility and the availability of a wide range
of genetic tools, imaginal discs have become, in the last decade, an
invaluable tissue for studying regeneration. They also provide an
excellent platform for analyzing evolutionarily conserved pathways
identified in the regeneration (Hariharan and Serras, 2017; Fox et al.,
2020). Early studies on regeneration demonstrated that when
imaginal wing discs were cut into small pieces and transplanted
into either adult female abdomen, which served as natural culture
chambers, or young larvae, they regenerated to their correct size and
shape (Bergantinos et al., 2010b; Worley and Hariharan, 2022). This
indicated the ability of the discs to resume proliferation and
regenerate the missing part. These pioneering experiments
demonstrated the regenerative potential of imaginal discs and
unveiled their plasticity. In addition, fragments of discs cultured
through prolonged transplantation cell-fate changes such as leg-to-
wing, leading to the regeneration of alternative organs, in a
phenomenon called transdetermination. This phenomenon
demonstrates the capacity of Drosophila imaginal cells to be
reprogrammed to various lineages (McClure and Schubiger,
2007). The refinement of surgical ablation of imaginal discs
facilitated the exploration of regeneration during larval and pupal
development. This technique revealed the critical role of cell division
and the timing of ablation during development in shaping the
regeneration timing (Diaz-Garcia and Baonza, 2013). More
advanced technology was developed using genetic tools to induce
apoptosis in specific domains of the disc and monitor tissue
recovery, utilizing the binary UAS/Gal4 system (Brand and
Perrimon, 1993). This widely used technique was adapted to
study regeneration by temporally inducing the expression of
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apoptotic genes in the wing disc, regulated by the temperature-
sensitive allele Gal80ts, an inhibitor of Gal4 (Figure 1B) (Smith-
Bolton et al., 2009; Bergantinos et al., 2010a). Furthermore, the
UAS/Gal4 system was combined with an engineered LexA-LexAop
system, enabling precise temporal induction of cell death
(Santabarbara-Ruiz et al., 2015). These methods allowed the
identification of crucial genes involved in blastema formation,
including Wg, a key regulator of regeneration in many species,
and MYC (Smith-Bolton et al., 2009; Worley et al., 2012). Indeed,
MYC was found to be upregulated in the proliferating cells
surrounding the blastema, and its reduction partially impeded
regeneration in the wing pouch (Smith-Bolton et al., 2009).
Subsequent research demonstrated that MYC reduction, combined
with reaper ablation, significantly hindered regeneration in the wing
disc. Conversely, under the same conditions, MYC overexpression
improved both the size and morphology of the adult wings,
confirming its crucial role in the regeneration process (Harris
et al., 2020). Additionally, MYC has been identified to regulate
Yorkie (Yki), the unique Drosophila ortholog of YAP/TAZ, a
component of the Hippo tumor suppressor pathway, in a feed-
back mechanism that restrains the growth of the imaginal discs
(Neto-Silva et al., 2010; Ziosi et al., 2010). In mammals, the
Hippo-YAP/TAZ pathway regulates regeneration by controlling
cell proliferation, apoptosis, and stem cell maintenance to ensure
proper tissue growth and repair (Moya and Halder, 2019). Thus,
MYC’s regulation of Yorkie (Yki) could be crucial for balancing cell

proliferation and tissue growth in response to damage. This
coordination is vital for developmental processes and organ
growth, where MYC and the Hippo pathway are key players (de la
Cova et al., 2004; Pan, 2007). Cells at the regeneration site stimulate
proliferation through non-autonomous mechanisms such as
apoptosis-induced proliferation (AiP), compensating for the
apoptotic zones by triggering cell proliferation (Fogarty and
Bergmann, 2017). The mechanisms controlling AiP are still under
investigation; however, one hypothesis is that the release of ROS by
the dying cells activates the ROS-sensitive kinase 1 (Ask1), expressed
during regeneration, and its signal attenuated by Akt1/PKB/InR in
living cells surrounding the blastema modulates moderate JNK/
p38 signaling, which is crucial for controlling apoptosis in the
regenerative response (Santabarbara-Ruiz et al., 2019; Esteban-
Collado et al., 2021). Recent single-cell transcriptomics analysis of
blastema from wing imaginal discs identified Ets21C, a transcription
factor that controls patterning and organ development. This factor is
induced by cell damage and is essential for the expression of genes
crucial for regeneration (Worley et al., 2022). Interestingly, our RNA
sequencing data reveals that both Ets21C andMYC are upregulated in
wing disc cells undergoing apoptosis induced by proteotoxic stress
(not published), suggesting that their expression may share
components in the stress response pathways still to be investigated.

Finally, we would like to briefly address the critical role of the
steroid hormone ecdysone during regeneration and its relation with
MYC. Ecdysone controls cellular and specific pathways that regulate

FIGURE 1
Models to study regeneration. (A) Schematic view of third instar larvae indicating the brain, wing imaginal discs, and the gut. (B) Third instar wing
imaginal discs in which apoptosis is induced in the pouch using a specific Gal4-promoter. (Left) The induction of the apoptotic gene occurs through a
controlled temperature switch. At 18°C, Gal80 binds to Gal4, repressing its activity and preventing its expression. However, when the temperature is
switched to 29°C, Gal80 expression is suppressed, releasing Gal4 from inhibition and initiating the expression of the apoptotic gene and cell death
(Hariharan and Serras, 2017). (Middle) After a few hours, animals are switched to the permissive temperature of 18°C to block apoptosis, allowing
regeneration to occur with the formation of the blastema (green) that expands until a fully recovered pouch is obtained (Right). (C) Representation of the
adult gut with the zone that characterizes its function (R0-5) (Buchon et al., 2013). (D)Model of the midgut epithelium where regeneration occurs upon
injury. Cells are color-coded as in panel (E), where the stem-cell niche is represented: ISC: Intestinal Stem Cell, EB: Enteroblast, EE: Enteroendocrine cell,
EC: Enterocyte. (F) Schematic representation of the adult brain indicating themost common structures MB: mushroom body, OL: Optical Lobe. The inset
represents a site of injury with neuron and glial cells represented in green and brown. (G) Representation of neuroblasts division. Neuroblasts (NB) divide
asymmetrically, generating a ganglion mother cell (GMC), which then divides to produce a postmitotic neuron or glial cell (Homem and Knoblich, 2012).
(H) Schematic representation of a third instar larva indicating themushroombody (MB), theOptical lobe (OL) and the neurons (green). In red is a common
site for injury in the Ventral Neural Cord (VNC). The figurewas created using BioRender Premium, license (XV26VCD8GB), and further refined using Adobe
Photoshop for its final appearance.
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physiological organ growth and developmental timing (Andersen et al.,
2013). Ecdysone is produced by the prothoracic gland (PG) at specific
development times to regulate larval molting and metamorphosis
(Edgar, 2006; Tennessen and Thummel, 2011). In the regeneration
process, ecdysone levels determine the timing after which larvae
terminate their window of regenerative potential by controlling the
state of epithelial cell progenitors through regulating the transcription
factors chinmo and broad (Narbonne-Reveau and Maurange, 2019;
Karanja et al., 2022). Moreover, the release of ecdysone by the PG is
indirectly controlled by the dying cells in the regenerating discs that
secrete Dilp8, a peptide belonging to the insulin/relaxin-like growth
factor family, which binds to the LGR3 receptor in the brain. This
inhibits the release of ecdysone from the PG (Colombani et al., 2015;
Vallejo et al., 2015) and slows down the development, allowing the
damaged cells of the discs to complete their regeneration process
(Blanco-Obregon et al., 2022; Karanja et al., 2022). Moreover, the
physiological reduction of ecdysone at specific development points
corresponds to an increase inMYC in the fat body (FB) (Delanoue et al.,
2010). MYC in the FB favors the storage of nutrients (fat and sugars)
and activates survival pathways such as autophagy to survive starvation
(Parisi et al., 2013; Paiardi et al., 2017). It is known that regeneration in
wing discs is affected by pathways regulated by nutrients (Esteban-
Collado et al., 2021), and animals allowed to regenerate in starvation do
not complete this process (Figure 2). The observation that animals in
starvation have a reduced ability to regenerate suggests that non-
autonomous signals from the FB are necessary to complete this
process. Although MYC is upregulated in the FB of starved animals
(Teleman et al., 2008; Parisi et al., 2013), the impaired regeneration
observed under starvation conditions indicates that the upregulation of
endogenous MYC activity in the FB is insufficient to sustain
regeneration. Alternatively, starvation may prevent the storage of
nutrients in the FB or hinder the production/secretion of factors
necessary for regeneration.

3.2 Gut

Research onDrosophila gut regeneration offers valuable insights
into repair mechanisms relevant to regenerative medicine, given the
similarities in tissue composition, anatomy, and physiological

functions with the human intestine. To investigate regeneration,
various methods are employed to induce stress and cell damage,
such as chemical exposure (e.g., Dextran Sulfate Disodium (DSS),
bacterial infection, heat stress, oxidative stress (e.g., H2O2), and
mechanical damage (Apidianakis and Rahme, 2011; Zhang and
Edgar, 2022) Drosophila gut comprises an anterior, middle, and
posterior hindgut (Figure 1C); however, regeneration primarily
occurs in the midgut, where the Intestinal Stem Cells (ISCs)
generate a niche initiated by Notch (Ohlstein and Spradling,
2007). These cells divide asymmetrically and give rise to a new
ISC and an Enteroblast (EB) that will differentiate into Enterocytes
(ECs) or Enteroendocrine cells (EE) in the absence of cell division
(Figures 1D,E) (Mathur et al., 2010; Amcheslavsky et al., 2014). Wg
is necessary to maintain ISCs self-renewal and is the balance
between Notch and Wg signaling that controls the equilibrium
between the proliferation and differentiation of ISCs (Zhang and
Edgar, 2022). MYC plays a crucial role in mediating gut fitness both
in ISCs and in ECs. MYC activity is essential for their differentiation
and proliferation and acts downstream of stress-dependent and
growth factor pathways such as JAK-STAT, Wg, Hippo, and EGFR
(Ren et al., 2013). MYC is also crucial in maintaining gut health in
response to different diet conditions. A nutrient-rich diet
suppresses MYC in ECs, increasing cell death and gut
permeability and shortening lifespan. Conversely, dietary
restriction boosts MYC, enhancing EC fitness, gut integrity, and
lifespan (Akagi et al., 2018). This may occur through MYC-
inducing cell competition, which is crucial for maintaining the
fitness of adult enterocytes (ECs), especially during dietary
changes. Interestingly, this is similar to what was previously
described in intestinal ISCs for Minute genes, many of which
are MYC targets, where both ISC and differentiatedMinute/+ cells
were eliminated through cell competition to promote the
proliferation and self-renewal of wild-type stem cells (Kolahgar
et al., 2015). Recent evidence also reveals the role of MYC as a
regulator of the amino acid transporter arcus (acs) in ECs (Socha
et al., 2023). This signal is coordinated with the activation of the
insulin pathway that favors aminoacidic absorption and ECs
recovery after bacterial-mediated toxin damage, suggesting
another active role for MYC in the gut to favor the
regeneration of these cells.

FIGURE 2
Starvation affects wing regeneration. (A-C)Wings from animals that underwent regeneration while subjected to amino acid starvation. Reaper was
temporarily induced in the spalt domain (green), three days after egg laying in larvae of the genotype: SpaltPE-Gal4/tub-Gal80ts; UAS-rpr. Animals were
kept in a starvation medium (PBS/20% sucrose) until eclosion. (A) Wings from flies not expressing reaper. (B, C) or in which reaper was induced. These
images highlight the morphological defects observed in the wings due to the incomplete regeneration process. Scale Bar 1 mm.
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3.3 Neuronal cells

Drosophila’s neural stem cells (NSCs), or neuroblasts, are pivotal
for brain development. They exhibit remarkable plasticity,
transitioning between quiescent and active states in response to
environmental cues or injury. This dynamic regulation underscores
their importance in maintaining brain homeostasis and promoting
tissue repair. Neuroblasts (NB) play a crucial role in larval
development, undergoing asymmetric division to generate
neuroblasts and smaller ganglion mother cells (GMC). These
GMCs divide further to produce post-mitotic neurons or glial
cells (Figure 1G) (Homem and Knoblich, 2012; Otsuki and
Brand, 2020). The neurons establish identities via proneural and
selector genes, resulting in four classes (I-IV) of dendritic
arborization (da) sensory neurons. Class IV-ddaC neurons,
known for their intricate dendritic arbors sensitive to mechanical
stimuli, serve as models for dendrite repair and the study of
neurodevelopmental disorders (Grueber et al., 2007; Liu et al., 2023).

Methods for investigating neuronal regeneration during
development include gently crushing the larval segmental nerve
to maintain larval viability or employing laser ablation (Figure 1H).
This approach involves labeling specific axon patterns using GFP
expressed by neuronal-specific promoters, facilitating the
visualization of cells during regeneration events throughout larval
development (Pfeiffer et al., 2008). In adult flies, few models exist for
studying neuronal regeneration. Experimental stab lesions to either
the optic lobes (OL) or the central brain result in local neurogenesis
days after injury (Figure 1F). This response was attributed to
dormant neural progenitor cells (qNPs) activation (Moreno et al.,
2015; Crocker et al., 2021). Glial cells respond to nervous system
damage by increasing their number and changing morphology after
neuronal cell death. This process is conserved across regions of the
peripheral nervous system and involves Dpp and Hh signaling, with
the JNK pathway contributing to glial migration (Velarde et al.,
2021). Glial cells exhibit an immune response like microglia,
expressing the phagocytic receptor draper (drpr), crucial for axon
regeneration and debris clearance. While macrophages aid central
nervous system (CNS) regeneration in vertebrates, their role in
Drosophila neural injury remains unclear (Losada-Perez et al., 2021).

Recent discoveries highlight the crucial role of NSCs in
maintaining and regenerating adult brain tissues (Li and Hidalgo,
2020). In contrast to adult mammals, Drosophila NSCs can be
activated by different diets or exercises initiated by larval
hatching. However, the mechanisms by which NSCs transition
between quiescence and activation remain elusive (Ding et al.,
2020). Brain injuries in adult flies are thought to trigger the
recruitment of quiescent neural progenitors (qNPs) near the
injury site, facilitated by damage-responsive neuroglial clusters
(DNGCs). These clusters stimulate the proliferation of distant
qNPs, thereby expanding the zone of stem cell activation through
the reactivation of dormant qNPs (Moreno et al., 2015; Crocker
et al., 2021). Since previous research has shown that a ubiquitous
pulse of MYC promotes qNP division (Fernandez-Hernandez et al.,
2013), it is possible that MYC could induce growth factors in qNPs
through injury-induced secretion, allowing these cells to survive and
proliferate. MYC has also emerged as a non-autonomous regulator
of metabolism in retinal ganglion glial cells, where using a model of
reprogrammed glial cells that activate PI3K and EGFR pathways

(RGCPE), MYC activity was shown relevant for the regeneration of
neurons by mediating pro-regeneration metabolic pathways in glia
(Li et al., 2020), including the glia-neuron lactate shuttle essential for
neuronal survival (Volkenhoff et al., 2015). This highlights its
important role in inducing nonautonomous signals that control
axon regeneration.

4 Discussion

Studying regeneration in Drosophila has unveiled complex
cellular and molecular mechanisms guiding tissue repair and
organ regeneration across species. Although tissues display
differing regenerative abilities, common pathways and
principles govern regeneration. The pivotal role of MYC
emphasizes its importance in regulating fundamental conserved
processes, connecting metabolism and growth, influencing cell
competition, and highlighting regeneration’s complexity.
Insights from Drosophila research hold potential for future
advancements in regenerative medicine. Further exploring
molecular mechanisms across organisms is fundamental to
developing novel therapeutic strategies to enhance human tissue
repair and organ regeneration.
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