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Selective serotonin reuptake inhibitors (SSRIs), including citalopram, are widely
used antidepressants during pregnancy. However, the effects of prenatal
exposure to citalopram on neurodevelopment remain poorly understood. We
aimed to investigate the impact of citalopram exposure on early neuronal
differentiation of human embryonic stem cells using a multi-omics approach.
Citalopram induced time- and dose-dependent effects on gene expression and
DNA methylation of genes involved in neurodevelopmental processes or linked
to depression, such as BDNF, GDF11, CCL2, STC1, DDIT4 and GAD2. Single-cell
RNA-sequencing analysis revealed distinct clusters of stem cells, neuronal
progenitors and neuroblasts, where exposure to citalopram subtly influenced
progenitor subtypes. Pseudotemporal analysis showed enhanced neuronal
differentiation. Our findings suggest that citalopram exposure during early
neuronal differentiation influences gene expression patterns associated with
neurodevelopment and depression, providing insights into its potential
neurodevelopmental impact and highlighting the importance of further
research to understand the long-term consequences of prenatal SSRI exposure.
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1 Introduction

Depression and anxiety disorders have been associated with
impaired serotonergic neurotransmission (Pollock, 2001). In the
adult brain, serotonin regulates stress responses, cognition,
attention, emotion, nociception, sleep and arousal (Brummelte
et al., 2017). During fetal neurodevelopment, serotonin acts as a
trophic factor and plays a crucial role in regulation of cell growth,
differentiation, migration, myelination and synaptogenesis
(Brummelte et al., 2017). Selective serotonin reuptake inhibitors
(SSRIs) comprise a class of antidepressants that impede the reuptake
of serotonin from the synaptic cleft of the pre-synaptic cell, thus
restoring extracellular serotonin levels and increasing serotonergic
neurotransmission (Sangkuhl et al., 2011). Consequently, there is
the possibility that SSRI-exposure during early embryonic
development could affect important neurodevelopmental
pathways associated with serotonin signalling.

SSRIs are the first-choice class of antidepressants during
pregnancy in many countries, and the reported use during
pregnancy ranges from 1%–7% in European countries and 5%–
8% in North America (Cooper et al., 2007; Mitchell et al., 2011;
Jimenez-Solem et al., 2013; Charlton et al., 2015; Zoega et al., 2015).
In Nordic countries, citalopram and its enantiomer escitalopram are
among the most prescribed SSRIs to pregnant women (Nordeng
et al., 2012; Charlton et al., 2015; Zoega et al., 2015). Some evidence
of altered behaviour in offspring has been reported in rodent studies
of early SSRI exposure (Ramsteijn and Olivier, 2020), whereas the
effect on human development and, in particular, long-term
neurodevelopmental outcomes is conflicting (Hjorth et al., 2019).
While some epidemiological studies have indicated increased risk of
depressive symptoms, social-behavioural disturbances (Klinger
et al., 2011; Hanley et al., 2015; Malm et al., 2016; Lupattelli
et al., 2018), Attention Deficit/Hyperactivity Disorder (ADHD)
and Autism Spectrum Disorder (ASD) (Kobayashi et al., 2016;
Andalib et al., 2017; Jiang et al., 2018; Morales et al., 2018),
others have not (Jiang et al., 2018; Morales et al., 2018).
Moreover, the methods and materials, as well as sample size and
quality of these studies varies profoundly.

Environmental exposures during pregnancymay disrupt normal
neurodevelopment and modulate the risk of neurodevelopmental
disorders (NDDs) in the child. Epigenetic modifications, including
DNAmethylation (DNAm), have been proposed as mechanisms for
this link (Kundakovic and Jaric, 2017). Epigenetic modifications are
essential for cellular differentiation and fetal neurodevelopment.
Prenatal exposures may impact these epigenetic modifications,
inducing long-term adverse effects on brain structure and
function (Kundakovic and Jaric, 2017). However, studies
assessing the causal underlying mechanisms involved in prenatal
exposure to SSRIs and increased risk of altered neurodevelopment
are sparse. Recently, we identified epigenetic patterns (i.e., DNAm)
in cord blood at birth from children exposed to maternal depression
and (es)citalopram during pregnancy and neurodevelopmental
trajectories in early childhood (Olstad et al., 2023).

SSRIs have previously been studied at therapeutic
concentrations using in vitro neuronal differentiation models. In
differentiating human hippocampal progenitors, exposure to
sertraline for 10 days increased neuronal differentiation (Anacker
et al., 2011). In human cortical spheroids, chronic exposure to

fluoxetine reversibly altered neuronal activity but did not induce
changes to synapse formation (Tate et al., 2021). Further, in human
iPSC-derived brain organoids, exposure to paroxetine for 8 weeks
induced changes to neurite outgrowth, synaptic markers,
myelination and cell composition (Zhong et al., 2020). However,
to the best of our knowledge, there are no studies that investigate the
effect of long-term exposure of citalopram to in vitro human
neuronal differentiation.

In the present study, we aimed to identify the effect of
citalopram exposure during early neurodevelopment using a
recently published in vitro platform of neuronal differentiation of
human embryonic stem cells (hESCs) towards telencephalic
neurons, corresponding to first trimester human development
(Samara et al., 2022a; 2022b). This model for studying the effects
of maternal medication intake on early fetal brain development
provides a unique opportunity to study the effect on gene expression
and DNAm in otherwise inaccessible window of development. We
focused specifically on citalopram exposure during early pregnancy
as this is considered a susceptible period for neurotoxicity, i.e., the
foundation of neurodevelopment is laid in the first trimester (Moore
et al., 2016). This is the time period with highest prevalence of
antidepressant use in pregnancy (Nordeng et al., 2012; Zoega et al.,
2015), when many women could be unaware of their pregnancy
status. A multi-omics approach with single-cell RNA sequencing
(scRNAseq), bulk RNAseq and DNAm was used to investigate
citalopram time- and dose-specific effects on gene expression and
DNAm during early neuronal differentiation, assessing the potential
molecular neurodevelopmental effects of citalopram.

2 Materials and methods

Critical reagents and resources are displayed in Supplementary
Table S1. All original code can be found at https://github.com/
maspil/Citalopram_multiomics.

2.1 hESC maintenance

Human embryonic stem cells HS360 (Karolinska Institutet,
Sweden, RRID:CVCL_C202) (Ström et al., 2010; Main et al.,
2020) were cultured as previously described (Samara et al.,
2022a). Briefly, cells were maintained in Essential eight medium
(E8, ThermoFisher) on Geltrex (ThermoFisher) pre-coated 6-well
culture plates.

2.2 Neuronal differentiation of hESCs and
exposure to citalopram

To study the in vitro effects of citalopram, HS360 hESCs cells
were differentiated according to Samara and Spildrejorde et al.,
2023; Samara et al., 2022a) with minor changes. Briefly, 70,000 cells/
well were seeded in Geltrex pre-coated 12-well plates at Day 0.
During Days 1–13, media was changed daily: cells were exposed to
media only (control) or media containing citalopram (Sigma-
Aldrich). The therapeutic concentration range of citalopram in
plasma is considered to be 150–340 nM (Hiemke et al., 2018),
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however lower concentrations have been measured in cord blood
(Hendrick et al., 2003; Rampono et al., 2009; Paulzen et al., 2017).
Thus, to cover concentrations relevant for the in vivo situation, cells
were exposed to 50, 100, 200 or 400 nM citalopram. Neural
induction started at Day 1 using base medium (Advanced
DMEM/F12 (ThermoFisher), 1% GlutaMAX (GIBCO), 1%
Penicillin/Streptomycin (ThermoFisher), 1% N2 supplement
(ThermoFisher)) containing 10 µM SB431542 (Sigma-Aldrich),
100 nM LDN-193189 (STEMCELL Technologies) and 2 µM
XAV939 (STEMCELL Technologies). At Day 7, cells were seeded
at 525,000 cells/well on 12-well culture plates sequentially coated
with polyornithine (Sigma-Aldrich), fibronectin (ThermoFisher)
and Geltrex, using base medium containing 1% B27 supplement
through till Day 13. Cells were harvested for downstream analysis at
Day 0, 6, 10 and 13.

2.3 Cell viability assay

HS360 cells were washed twice with PBS and collected using
Accutase (STEMCELL technologies) and seeded at 20,000 cells/well
in Geltrex-coated 96-well plates and incubated in E8 containing
10 µM Rock inhibitor (Y-27632, STEMCELL technologies) at 37°C/
5% CO2 for 24 h. Media was then changed to E8 alone (control) or
E8 containing 0.025, 0.05, 0.1, 0.2, 0.4, 0.8, 3.2, 12.8, 51.2 or 204.8 μ
M citalopram (Sigma-Aldrich) in quintuplicate wells. Cells were
incubated for 24 h at 37°C/5% CO2 and cell viability was assessed
using CellTiter-Glo® Luminescent Cell Viability Assay (Promega)
according to manufacturer´s instructions.

2.4 Flow cytometry

HS360 cells (Day 0) and cells differentiated to Day 13 were
washed twice with PBS, collected using Accutase and resuspended in
wash medium (Day 0: E8, Day 13: Ad. DMEM). Cells were then
centrifuged (300 x g for 4 min), supernatants were removed and
washed in PBS (300 x g for 4 min). Cells used with intracellular
markers against SOX1, β3-Tubulin and OCT4, were fixed as follows:
Supernatants were removed, cells were resuspended in 1 mL/1 × 107

cells Cytofix Fixation Buffer (BD Biosciences) and incubated for
20 min at room temperature (RT) in the dark. To permeabilize the
cell membranes, cells were washed twice (300 x g for 4 min) with
1 mL/1 × 107 cells 1X Perm/Wash buffer (BD Biosciences). Cells
were then resuspended in 1X Perm/Wash buffer and incubated for
10 min at RT. To block and stain cells, a total volume of 100 µL of
cells, antibodies and 1X Perm/Wash buffer were incubated for
30 min in the dark according to concentrations found in
Supplementary Table S2. Following incubation, cells were washed
twice (300 x g for 4 min) in 1 mL 1X Perm/Wash buffer and
resuspended in Stain Buffer (FBS) (BD Biosciences) to a
concentration of 1-3 x 106 cells/mL and data was acquired by
flow cytometry using Accuri C6 (Becton Dickinson, San Jose,
CA, United States). Raw data was analysed using FlowJo software
v.10. Delta median fluorescence intensity (Δ MFI) of gated
populations of live/singlets cells was calculated by subtracting the
MFI of corresponding isotype control to the MFI of antibody of
interest (n = 3). Results were visualized using R software (R Core

Team, 2021) and the Tidyverse R package v.1.3.1 (Wickham
et al., 2019).

2.5 DNA/RNA purification

Cells were washed with PBS and collected by direct lysis in the
cell culture well. Genomic DNA and total RNA were isolated from
the same biological sample using RNA/DNA purification kit
(Norgen Biotek Corp.) and RNA was purified using on-column
RNase-Free DNase I Kit (Norgen Biotek Corp.). Nucleic acid
quantification was performed using Qubit (ThermoFisher
Scientific), purity was measured using Nanodrop 2000
(ThermoFisher Scientific), while RNA and DNA integrity was
assessed using 2,100 Bioanalyzer (Agilent Technologies) and
4,200 TapeStation (Agilent Technologies), respectively.

2.6 Bulk transcriptome sequencing

The sequencing libraries were prepared with TruSeq
Stranded mRNA Library Prep (Illumina, San Diego, CA)
according to manufacturer’s instructions. The 89 libraries
(Supplementary Table S3) were pooled at equimolar
concentrations and sequenced on a NovaSeq 6000 S4 flow cell
with 150 bp paired end reads (Illumina, San Diego, CA). The
quality of sequencing reads was assessed using BBMap v.34.56
(Bushnell, 2014), and adapter sequences and low-quality reads
were removed. The sequencing reads were then mapped to the
GRCh38 index using HISAT2 v.2.1.0 (Kim et al., 2015). Mapped
paired end reads were counted to features using featureCounts
v.1.4.6 (Liao et al., 2014). Differential expression (DE) analysis
was conducted in R (R Core Team, 2021) using glmQLFTest
function in edgeR v.3.34.1 (Robinson et al., 2010; Zhou et al.,
2014; Lun et al., 2016). Benjamini–Hochberg was used to correct
for multiple testing and genes were considered significantly
differentially expressed with an FDR <0.01 and <0.05 for
control (Supplementary Figures S2, S3) and citalopram
comparisons, respectively. The linear time-response analysis
was conducted using the following model:
~ 0 +Day *Concentration, where Day was classified as
numeric and Concentration was classified as factors. The
non-linear time-response analysis was conducted using the
following model: ~0 +Concentration*X, where X was the
B-spline basis matrix for a natural cubic spline using Day as
predictor variable and degrees of freedom = 2. The linear dose-
response analysis was conducted using the following model:
~ 0 +Day *Concentration, where Day was classified as factors
and Concentration was classified as numeric. The non-linear
dose-response analysis was conducted using the following
model: ~0+ Day*X, where X was the B-spline basis matrix for
a natural cubic spline using Concentration as predictor variable
and degrees of freedom = 3. Normalized counts were visualized
using the Tidyverse package v.1.3.1 (Wickham et al., 2019). The
heatmaps were generated using Pheatmap package v.1.0.12
(Kolde, 2019). The gene set enrichment analysis (GSEA) of
pre-ranked gene lists, based on p-values and direction of
expression change, were performed using GSEA software
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(Subramanian et al., 2005) identifying biological processes (BP)
terms. The size of the analysed gene sets was restricted to
20–1,000 genes, and the chip annotation used was “Human_
ENSEMBL_Gene_ID_MSigDB.v7.4. chip”.

2.7 DNA methylation analysis

DNAm status of 89 samples (Supplementary Table S3) were
assessed using the Infinium MethylationEPIC BeadChip v.1.0_B3
(Illumina, San Diego, CA). Quality control and pre-processing of the
raw data was performed in R (R Core Team, 2021) using Minfi
v.1.38.0 (Aryee et al., 2014). No samples were removed due to poor
quality (detection p-values >0.05). Background correction was
performed using NOOB method (Triche et al., 2013) and β
values (ratio of methylated signal divided by the sum of the
methylated and unmethylated signal) were normalized using
functional normalization (Fortin et al., 2014). Probes with
unreliable measurements (detection p-values >0.01) (n = 11,740)
and cross-reactive probes (Chen et al., 2013) (n = 43,256) were then
removed, resulting in a final data set consisting of 811,233 probes
and 89 samples. Probes were annotated with Illumina Human
Methylation EPIC annotation 1.0 B5 (hg38). Differential
methylation (DM) analysis was performed on the M values
(log2 of the β values) using the limma package v.3.48.3 (Ritchie
et al., 2015). The linear time-response analysis was conducted using
the following model: ~ 0 +Day pConcentration, where Day was
classified as numeric and Concentration was classified as factors.
The non-linear time-response analysis was conducted using the
following model: ~0 + Concentration*X, where X was the B-spline
basis matrix for a natural cubic spline using Day as predictor variable
and degrees of freedom = 2. The dose-response analysis was
conducted using the following model: ~ 0 +Day pConcentration,
where Day was classified as factors and Concentration was classified
as numeric. The non-linear dose-response analysis was conducted
using the following model: ~0 + Day*X, where X was the B-spline
basis matrix for a natural cubic spline using Concentration as
predictor variable and degrees of freedom = 3.
Benjamini–Hochberg was used to correct for multiple testing
using and CpGs were considered significantly differentially
methylated with an FDR <0.01 and <0.05 for control
(Supplementary Figures S2, S3) and citalopram comparisons,
respectively. Gene ontology analysis was performed using top
10,000 DMCs as input to gometh in the missMethyl package
v.1.26.0 (Phipson et al., 2016) looking at BP terms.

2.8 Collection of cells and single-cell RNA-
sequencing

HS360 cells (Day 0) and cells at Day 6, 10 and 13 were washed
twice in wells with PBS and detached using Accutase at 37°C for
7–10 min. Cells were then pipetted 10–15 times to separate into
single cells and transferred to centrifuge tubes containing the
appropriate base media (Day 0: E8, Day 6–13: Ad. DMEM) with
0.04% BSA (Sigma-Aldrich). Cell suspensions were counted and
centrifuged at 300 × g for 5 min and the supernatant was discarded.
Cell pellets were then resuspended in base media containing 0.04%

BSA and cell aggregates were filtered out using MACS
SmartStrainers (Miltenyi). The cells were counted again and
processed within 1 h on the 10x Chromium controller (10x
Genomics) according to 10x Genomics protocol CG000315 (Rev
A). Approximately 4,200 cells were loaded per channel on the
Chromium Next GEM Chip G (10x Genomics) to give an
estimated recovery of 2,500 cells. The Chromium Next GEM
Single Cell 3ʹ Kit v3.1 (10x Genomics) and Dual Index Kit TT
Set A (10x Genomics) were used to generate single-cell (sc)RNA-seq
libraries according to the manufacturer’s instructions. Libraries
from 16 samples were pooled together at equimolar
concentrations and sequenced on a NovaSeq 6000 S1 flow cell
(Illumina) with 28 cycles for read 1, 10 cycles for the I7 index,
10 cycles for the I5 index and 90 cycles for read 2.

2.9 scRNAseq analysis

The Cell Ranger 4.0.0 Gene Expression pipeline (10x Genomics)
was used to demultiplex the raw base-call files and convert them into
FASTQ files. The FASTQ files were aligned to the GRCh38 human
reference genome (2020-A), and the Cell Ranger count quantified
single-cell gene expression using default parameters. Cell Ranger´s
estimated number of recovered cells/sample were from 1,113–2,528,
with mean reads/cell spanning from 27,000–119 000. Downstream
analysis was performed using the R software (R Core Team, 2021).
Duplicates, dead cells and cells with greater than five median
absolute deviations (MADs) for mitochondrial reads were filtered
out using the scater R package (McCarthy et al., 2017) resulting in a
total of 20,217 cells (Supplementary Table S3) for downstream
analysis. SCTransform with regression of cell cycle genes and
mitochondrial content (Tirosh et al., 2016; Hafemeister and
Satija, 2019) was used to normalise data. A resolution of
0.55 was used to cluster cells, obtained by determining the
optimum number of clusters (cell grouped together sharing
similar expression profiles) in the dataset using the Clustree R
package (Zappia and Oshlack, 2018). Principal component
analysis was performed using the RunPCA function, followed by
FindClusters and RunUMAP functions of Seurat package (Stuart
et al., 2019) to perform SNN-based UMAP clustering. The SingleR R
package (Aran et al., 2019) was used to annotate the cells against a
merged reference dataset derived from 1: from a Human Brain
dataset (LaManno et al., 2016) and 2: a forebrain organoid dataset
(Bhaduri et al., 2020), from the scRNAseq R package. Cell types
with <10 cells annotated are excluded from the plots (Figures 5D, E).
Slingshot R package was used to create the pseudotime
differentiation trajectory (Street et al., 2018). Temporally
expressed genes were identified by fitting generalized additive
model for each gene using the gam R package (Hastie, 2022) and
visualized using pheatmap (Kolde, 2019) and scater (McCarthy
et al., 2017) R packages. Differential pseudotime analysis were
calculated by removing Day 0 from dataset and looking at
differences in pseudotime values between citalopram-exposed
cells and control cells using the following methods: compare_
means t-test function from the ggpubr R package (Kassambara,
2020), weighted means permutation test and Kolmogorov-Smirnov
Tests from the stats R package (R Core Team, 2021). FindMarkers
from the Seurat R package was used to perform DE analysis between
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groups. For DE between exposure groups and controls at each Day
after filtering out genes encoding ribosomal proteins (Figures 5H,
6A), thresholds were set to the following: min. pct = 0.2, min.
diff.pct = -Inf, logfc. threshold = 0.35. Genes with an adjusted
p-value <0.05 were considered significant. GO analysis was
performed using the DEenrichRPlot function of the mixscape R
package with the “GO_Biological_Process_2018″database with the
following thresholds: logfc. threshold = 0.35, max genes = 500
(Supplementary Figures S5D–G).

2.10 Open-access web applications

Datasets can be browsed and visualized in open-access web
applications at https://neuroomicsexplorer.medisin.uio.no.

Bulk RNA-seq and DNAm data: https://neuroomicsexplorer.
medisin.uio.no/bulkCitNeuronalDiff. The bulkCitNeuronalDiff web
application contains five tabs. “bulkCitNeuronalDiff app
information” provides a short description of the methods used
and a graphical abstract. “Explore GE results” allows the user to
select a results file from the bulk differential gene expression analysis

to explore, either comparisons between days in control cells,
citalopram dose-response (DR) or citalopram time-response (TR)
analysis. The results are viewed in a searchable data table in addition
to a statistics histogram and volcano plots with gene information at
each point. The user can filter data on significance level, download
plots as PDF files and tables as CSV files. “Explore DNAm results”
has the same functionality as “Explore GE results”, applied to the
bulk differential DNAm analysis results. Here, only data with FDR <
0.05 is shown to improve speed of the application. “GE boxplots”
and “DNAm boxplots” provides functionality to plot time- and
dose-response plots for gene expression and DNAm data equivalent
to those in Figures 2–4. Here, the user can search for any gene or
CpG, select linear or non-linear line type, subset data on group, day,
(citalopram) concentration or treatment, and download plots as
PDF files.

Single-cell data: https://neuroomicsexplorer.medisin.uio.no/
scRNACitNeuronalDiff. The scRNACitNeuronalDiff web
application contains seven tabs, which provides functionality to
visualize the scRNA data in different ways. “CellInfo vs GeneExp”
allows the user to plot two principal component (PC), t-distributed
Stochastic Neighbor Embedding (tSNE), or Uniform Manifold

FIGURE 1
Neurodevelopmental effects of citalopram in a model of early human neuronal development. (A) Schematic representation of neuronal
differentiation of hESCs. The cells were continuously exposed to media only (control cells) or 50, 100, 200 or 400 nM citalopram from Day 1 and
throughout the differentiation process. Samples were collected for multi-omics analyses at Day 0, 6, 10 and 13. (B) Viability of hESCs after citalopram
exposure for 24 h. (C) The presence of the stem cell marker OCT4 and neuronal markers SOX1, TUBB3 and NCAM1 was assessed by flow cytometry
at Day 0 and Day 13 in control cells and cells exposed to 400 nM citalopram. ΔMFI, delta median fluorescence intensity.
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Approximation and Projection (UMAP) plots side-by-side, colored
by various cell information metadata, such as original identity, day,
cell cycle phase or different clustering parameters, as well as the gene
expression of any selected gene. In the “CellInfo vs CellInfo” and
“GeneExp vs GeneExp” tabs, the user can plot either two cell
information plots or two gene expression plots side-by-side,
respectively. In the “Gene coexpression” tab, co-expression of
two selected genes can be plotted together in the same PCA,
tSNE or UMAP. In the “Violinplot/Boxplot” tab, the user can
plot cell information on the X-axis and cell information or gene
expression of any selected gene on the Y-axis of a violin plot or
boxplot. In the “Proportion plot” tab, the proportion or number of
cells can be plotted for available cell information, and finally in the
“Bubbleplot/Heatmap” tab gene expression in up to 50 genes can be
plotted together in a bubbleplot or heatmap. In each tab, the user can
subset data based on cell and all plots can be downloaded as PDF or
PNG files.

2.11 Statistical analysis

Statistical analyses were performed in R version 4.2 (R Core
Team, 2021) using edgeR (Robinson et al., 2010), Limma (Ritchie
et al., 2015), Seurat (Stuart et al., 2019; Hao et al., 2024), ggpubr
(Kassambara, 2020) and stats (R Core Team, 2021) packages. Details
are described in the relevant methods above.

3 Results

3.1 Experimental set-up and validation of
neuronal differentiation of hESCs

We hypothesized that early exposure to citalopram affects
DNAm and regulation of the genes involved in neuronal
differentiation. To comprehensively study the effect of citalopram
on the epigenetic and transcriptional profiles in a model of early
human neurodevelopment, we used a neuronal differentiation
protocol optimised for neurotoxicology studies recently published
by our group (Samara et al., 2022a; 2022b) (Figure 1A). The hESCs
were exposed to physiological concentrations of citalopram (50, 100,
200 and 400 nM, reflecting human therapeutic doses (Hendrick
et al., 2003; Rampono et al., 2009; Paulzen et al., 2017; Hiemke et al.,
2018)) from Day 1 and throughout differentiation to Day 13 to
model the effect of daily maternal intake of citalopram on
neurodevelopment in the first trimester. The selected
concentrations of citalopram did not affect hESC viability after
24 h of exposure (Figure 1B). There were no visually detectable
morphologic differences between cells exposed to citalopram and
unexposed control cells at any stage (Supplementary Figure S1).
Flow cytometric analysis confirmed that the transcription factor
OCT4, involved in establishment and maintenance of pluripotency,
was present at Day 0 and absent at Day 13 in both unexposed control
cells and cells exposed to 400 nM (Cit400) citalopram (Figure 1C).
The levels of neural progenitor marker SOX1 increased at Day
13 compared to Day 0. Similarly, the levels of tubulin beta class III
(TUBB3), a structural cytoskeletal protein involved in neurogenesis,
and cell adhesion protein NCAM1, a regulator of neurogenesis,

neurite outgrowth and cell migration, increased at Day 13. Exposure
to Cit400 did not affect the presence of these markers at Day 13.

To validate the neuronal differentiation process in the protocol,
we performed differential gene expression and DNAm analyses in
control samples between Day 0, Day 6, Day 10 and Day 13. These
data have been made available in a web tool bulkCitNeuronaldiff,
enabling browsing and visualization of differential analysis, gene
expression and DNAm levels. As expected, major changes in gene
expression and DNAm occurred during neuronal differentiation of
the control cells (Supplementary Figures S2, S3 and
bulkCitNeuronaldiff), and samples clustered according to Day
(Supplementary Supplementary Figures S2A, B). To assess
whether the differentiation was affected by the higher initial cell
seeding and if differentiation corresponded with our group´s
recently published data (Samara et al., 2022b), we identified
overlapping differentially expressed genes (DEGs) and
differentially methylated CpGs (DMCs) between Day 0 and 13
(Supplementary Figures S2C, D). Of the DEGs and DMCs
identified in the present study, 83% and 75% overlapped with
Samara and Spildrejorde et al. (Samara et al., 2022b),
respectively. There were also many unique DEGs and DMCs in
the present study, which could indicate some batch effects, either
during differentiation, and/or at later steps. Volcano plots for gene
expression and DNAm are shown in Supplementary Figures S2E, F
and top DEGs heatmaps between Days are shown in
Supplementary Figure S2G.

Many of the top shared biological processes (BPs) for both gene
expression changes (Supplementary Figure S3A) and DNAm
changes (Supplementary Figure S3B) during differentiation
included relevant terms for neuronal differentiation, such as
developmental induction, neuron differentiation and nervous
system development. The DEGs overlapped with differentially
methylated genes (DMGs) at the different stages
(Supplementary Figures S3C–E), thus showing good
correspondence between datasets. The number of DEGs and
DMCs overlapping between stages are shown in Supplementary
Figures S3F, G. Expression of pluripotency marker genes such as
POU5F1, NANOG and LIN28A decreased after Day 0, whereas
neuronal differentiation marker genes such as OTX2, MAP2,
NEUROD1, STMN2, TUBB3 and FOXG1 increased during
differentiation (Supplementary Figure S2H).

3.2 Citalopram affects gene expression and
DNAm levels over time during neuronal
differentiation

Using bulk RNA-seq, we first examined the expression of
serotonin receptors in both control and citalopram-exposed cells.
Some of the genes encoding serotonin receptors were present at Day
0, albeit very lowly expressed throughout differentiation (HRT1A,
HRT1B, HRT1F, HRT3A and HRT7; not shown). Expression of
HTR1D and HTR2A peaked at Day 6 and decreased during
differentiation, whereas expression of HTR2C increased during
differentiation (Figure 2A), confirming the transcriptional
presence of serotonin receptors.

To study whether exposure to citalopram caused gene
expression or DNAm changes over time during neuronal
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differentiation of hESCs, we performed a linear time-response
analysis and compared each concentration of citalopram from
Day 6 to Day 13 to unexposed control cells using bulk omics

data (Figure 2 and bulkCitNeuronaldiff). Only one position
annotated to RABEP2 was differentially methylated between
400 nM citalopram and control over time (Figure 2B and

FIGURE 2
Time-response of citalopram-exposure during neuronal differentiation of hESCs. (A)Gene expression (GE) levels (log counts permillion, logCPM) of
selected serotonin receptor genes for Day 6 to Day 13. (B) Table showing the number of genes and CpGs that responded to the different concentrations
of citalopram over time (Day 6 to Day 13). Venn diagram showing overlapping DEGs and DMGs. (C) GE levels (logCPM) of selected linear time-response
DEGs. (D–F) Shared biological processes (BPs) among genes that were differentially expressed in cells exposed to (D) 100 nM, (E) 200 nMor (F) 400 nM
citalopram over time. (G) GE levels (logCPM) of selected non-linear time-response DEGs. Genes with adjusted p-value <0.05 were considered significant.
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bulkCitNeuronaldiff). In contrast, we observed a dose-dependent
linear effect of citalopram exposure on the number of DEGs
(Figure 2B and bulkCitNeuronaldiff). Differentiating cells
exposed to 50 nM citalopram (Cit50) did not show any
differential expression compared to control over time
(Figure 2B). However, exposure to 100 (Cit100) and 200 nM
citalopram (Cit200) resulted in three DEGs, whereas
Cit400 resulted in 63 DEGs.

Among the DEGs identified was the chromatin remodeler
CHD9, which was upregulated in Cit100 cells compared to
controls. PAUPAR, a gene encoding a long non-coding RNA
that regulates PAX6 (Vance et al., 2014), and SLC7A11,
associated with ASD (Rojas-Charry et al., 2021), was
significantly downregulated in Cit400 cells over time
(Figure 2C). In contrast, NHSL2 (associated with ASD
(Gerges et al., 2022)), EPHA7 (important for neuronal
maturation and synaptic function (Clifford et al., 2014)),
WNT antagonist FRZB, CCDC126 (associated with depression
(Gui et al., 2018)), CSNK1G1 (involved in glutaminergic
neurotransmission (Chergui et al., 2005)), transcriptional
regulator ZNF518A, GDF11 (a growth factor involved in
neurogenesis and differentiation of neuronal subtypes (Shi
and Liu, 2011)) and PURA (essential to neurodevelopment
and linked to neuroprotection (Daniel and Johnson, 2018;
Molitor et al., 2021)) were upregulated in Cit400 cells over
time (Figure 2C). PHLPP1 was differentially expressed over
time in both Cit100, Cit200 and Cit400 compared to controls.

Interestingly, PHLPP1 is involved in many important functions
in the nervous system, including memory formation, cellular
survival and proliferation (Mallick et al., 2022). Further, we
performed GSEA analysis to elucidate if the DEGs identified
between citalopram-exposed and unexposed control cells shared
any biological functions (Figures 2D–F). Results from this
analysis revealed enrichment of different metabolic and
catabolic processes, including fatty acid and amino acid
biosynthetic processes among the DEGs.

Citalopram may also induce non-monotonic responses due
to complex pharmacodynamic processes (Ludden, 1991). Using
a non-linear regression model to identify time-dependent effects
of citalopram, 2,229 genes were differentially expressed in
citalopram-exposed cells at all concentrations compared to
controls (Figure 2B). The DEGs included genes involved in
neuronal development and brain function, such as FRMD6
(involved in neuronal differentiation (Chen et al., 2021)),
SLC2A3 (a neural glucose transporter (Ziegler et al., 2020)),
GREM1 (antagonist of bone morphogenic protein (Ichinose
et al., 2021)), MEF2C (important for neuronal differentiation
and axogenesis (Zhang and Zhao, 2022)), TGFB2 (essential for
neurodevelopment (Meyers and Kessler, 2017)) and DCX
(involved in neuronal migration (Ayanlaja et al., 2017))
(Figure 2G). Further, NRP2, SEMA3C and SEMA3E, involved
in axon guidance during neurodevelopment (Oh and Gu, 2013),
were downregulated in Cit200. Some DEGs linked to depression
and neuroinflammation (BDNF (Porter and O’Connor, 2022),

FIGURE 3
Overlapping differentially expressed and methylated time-response genes. Gene expression levels (logCPM) and DNAm levels (beta values) of
selected overlapping DEGs and corresponding DMCs.
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CCL2 (Curzytek and Leśkiewicz, 2021), STC1 (Chao et al., 2021),
MEF2C (Hyde et al., 2016)) were also downregulated in
Cit200 over time (Figure 2G). The levels of the non-linear
DEGs fluctuate with day and concentration, thus the
biological interpretation is difficult. However, many of the
DEGs are dysregulated in Cit200 compared to controls,
suggesting that this concentration has a substantial effect on
cells undergoing neuronal differentiation.

DNAm analysis showed that citalopram induced non-linear time-
dependent changes at 170 CpGs, annotated to 107 genes. No
significant gene ontology terms were identified. Of the 107 DMGs,

19 overlapped with DEGs (Figures 2B, 3). Some of the overlapping
genes are involved in processes crucial for neurodevelopment
(FBXW7 (Yang et al., 2021), CDH2 (László and Lele, 2022)),
neuroinflammation (NEK7 (Chen et al., 2019)), neuronal
excitability (ZDHHC14 (Sanders et al., 2020)), synaptic plasticity
(SHISA9 (Kunde et al., 2017)), neurite outgrowth (TIAM1 (Ehler
and Salinas, 1997)) and neurotransmission (DLG1 (Marziali et al.,
2019), voltage-gated potassium channel KCND3, glutamate receptors
GRIA1 and GRIA4) (Figure 3). Further, genes linked to mood
disorders and stress response were identified (BCAR3 (Han et al.,
2020), FAM214A (Witte et al., 2022),MAML3 (Kuehner et al., 2023)).

FIGURE 4
Citalopram-exposure affects gene expression in a dose-dependent manner during neuronal differentiation. (A) Number of DEGs and DMCs
identified in the dose-response analysis. Venn diagram showing overlapping DEGs and DMGs. (B) Top shared BPs between genes that responded to
citalopram in a dose-dependentmanner at Day 13. (C)GE levels (logCPM) of selected linear dose-responseDEGs. (D)GE levels (logCPM) of selected non-
linear dose-response DEGs. Genes with adjusted p-value <0.05 were considered significant.
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FIGURE 5
scRNAseq reveal small differences in cell type composition between cells exposed to citalopram and control cells. (A–D) All cells projected in UMAP
plots colored by (A)Day, (B) exposure group, (C) slingshot pseudotime and (D) annotation to LaManno brain data cell types. (E) Proportion of cells in each
exposure group annotated to cell types according to the LaManno brain and Bhaduri organoid datasets. eSCa-c; hESCs, eProg1-2; hESC-derived
neuronal progenitor cells, IPC; intermediate progenitor cells. (F) UMAP plot of all cells colored by Seurat clusters and (G) corresponding proportion
of cell of each exposure group annotated to clusters. (H) Single cell gene expression of top ten overlapping DEGs between cells exposed to different
concentrations of citalopram compared to control cells at Day 6, Day 10 and Day 13.
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3.3 Citalopram exposure induces dose-
dependent changes in gene expression
during neuronal differentiation

To assess the dosage-effect of citalopram, we performed a
bulk RNA-seq dose-response analysis. To identify both potential
monotonic and non-monotonic responses, we tested both the
linear and non-linear effect of increasing citalopram
concentrations compared to control cells (Figure 4 and
bulkCitNeuronalDiff). Employing the linear regression model
for each differentiation day we identified 685 DEGs associated
with citalopram exposure in a dose-dependent manner
compared to control cells at Day 6. At Day 10 and 13, we
identified 186 and 333 DEGs, respectively compared to Day 6,
which was baseline in this comparison (Figure 4A). GSEA did
not identify any significant shared BPs for dose-response genes
at Day 6 or Day 10. At Day 13, however, BPs related to metabolic
and catabolic processes were enriched (Figure 4B). Interestingly,
some of the linear dose-response DEGs have been implicated in
transmission and plasticity (GRIN2A (Paoletti et al., 2013),
GAD2 (Pan, 2012)), depression and antidepressant effect
(DDIT4 (Wang et al., 2018), GAD2 (Unschuld et al., 2009))
anxiety and stress responses (ADCYAP1R1 (Oyola and Handa,
2017; Wang et al., 2021)), WNT signalling (FRZB (Mitsiadis
et al., 2017)), neurogenesis (ARHGEF39 (Anijs et al., 2022)) and
hippocampal volume (ANKRD37 (Xu et al., 2022)) (Figure 4C).
Further, linear differential DNAm analysis identified one DMC
at Day 6 (RABEP2), none at Day 10 and 27 at Day 13 (annotated
to, e.g., MECOM, GRIN1, SORCS2; Figure 4A and
bulkCitNeuronalDiff).

The non-linear dose-response analysis identified 2,153 DEGs
(Figures 4A,D and bulkCitNeuronalDiff). Most of these were
also identified in the non-linear time-response analysis (n =
1703). We identified DEGs implicated in cell state transitioning
in neural progenitor (HES5 (Manning et al., 2019)), neuronal
differentiation (CDH7 (Feng et al., 2017)), neurogenesis
(SMAD3 (Hiew et al., 2021)), synaptic plasticity (GFRA1
(Bonafina et al., 2019)), synaptic transmission (SYT1 (Riggs
et al., 2022)), neuronal ion homeostasis (SLC8A1 (Blaustein
and Lederer, 1999)) and memory and learning (ATX1 (Lu
et al., 2017)). Further, citalopram induced non-linear time-
dependent changes at 19 DMCs, annotated to 13 genes
(Figure 4A and bulkCitNeuronalDiff). Of the DMGs, one
overlapped with DEGs (GRIA1, Figure 3). Overall, genes
involved in brain function were dose-dependently
dysregulated in cells exposed to citalopram.

3.4 Effect of citalopram exposure at different
stages during neuronal differentiation

In addition to the longitudinal and dose effects of citalopram
exposure on gene expression and DNAm changes during
differentiation, citalopram might exert more specific effects at
different stages and within distinct cell-types. To identify dose-
dependent cell-type specific gene expression signatures and
potential alterations in cell type composition during
differentiation, we also performed single-cell RNA sequencing

(scRNAseq) at the four different timepoints (Day 0, 6, 10 and
13) (Figure 5 and Supplementary Figure S4). These data have
been made available for browsing and visualization in a web tool
“scRNA citalopram-exposure during neuronal differentiation of
hESCs” (scRNACitNeuronalDiff).

After filtering of the data, a total of 20,217 cells were included in
downstream analysis (Supplementary Figure S4A). As expected,
cells clustered according to differentiation day (Figures 5A and
Supplementary Figure S4C), whereas exposed and unexposed cells
clustered together at each day (Figure 5B). The cells were ordered
according to their pseudotime development using Slingshot (Street
et al., 2018), confirming that pseudotime differentiation values
increased from Day 0 to Day 13 (Figures 5C and Supplementary
Figure S4D) reflecting progression through the
differentiation process.

We used SingleR (Aran et al., 2019) and compared the cells to
the scRNA La Manno brain dataset (LaManno et al., 2016) and the
Bhaduri forebrain organoid dataset (Bhaduri et al., 2020). This
revealed that most cells at Day 6 were classified as neuronal
progenitors (LaManno et al., 2016), with some variation in the
progenitor subtype depending on citalopram concentration (Figures
5D, E). At Day 10 and 13, most cells were classified as radial glia cells
(Bhaduri et al., 2020), whereas a smaller proportion were classified as
neuronal progenitors. In addition, at Day 13, a small proportion of
cells were more differentiated, classified as intermediate progenitor
cells, excitatory neurons and inhibitory neurons (Bhaduri et al.,
2020). In control cells, expression of selected marker genes involved
in neurodifferentiation at Day 13 were comparable with Day 13 in
the Samara and Spildrejorde et al. study (Supplementary Figure S4E)
(Samara et al., 2022b).

The cells resolved into 13 Seurat clusters at resolution 0.55
(Figures 5F, G and Supplementary Figures S4F–G), where
pseudotime differentiation progressed from C1 to C11-13
(Supplementary Figure S4H). The top five DEGs for each cluster
are visualized in Supplementary Figure S4I. Overall, these clusters
and expression of genes confirm neuronal differentiation of the
citalopram-exposed cells and control cells. There was some variation
in cell proportions within the different clusters depending on
exposure to citalopram or not. However, no specific dose- or
time-dependent trend was found (Figure 5G).

Next, we investigated whether the scRNA dataset revealed any
dose-dependent DEGs. These analyses identified overlapping DEGs
between citalopram and control cells at all citalopram
concentrations (Figure 5H). At Day 6, the top ten overlapping
DEGs were upregulated in citalopram-exposed cells. Of these,
genes involved in neuroinflammation (COPS9 (Tian et al., 2023)),
neuroprotection (MTRNR2L8 (Karachaliou and Livaniou, 2023))
and mitochondrial function (ATP5MD, NDUFA1, UQCRQ) were
identified. Interestingly, mitochondrial function is important for
neurodevelopment, and dysfunction is known to play a crucial role
in the pathogenesis of depression (Song et al., 2023). In contrast, at
Day 10 and Day 13, the top ten overlapping DEGs were
downregulated in citalopram-exposed cells. At Day 10, genes
involved in neurodevelopment (CITED2 (Wagner and
MacDonald, 2021), RORA (Ribeiro and Sherrard, 2023), NR2F2
(Tocco et al., 2021)), neuronal migration (THBS1 (Blake et al.,
2008)) and synaptic function (VEGFA (Licht et al., 2009)) were
identified. Further, the glutamate transporter SLC7A11 that was also
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FIGURE 6
Temporally expressed genes respond differently in citalopram-exposed cells compared to control cells during differentiation. (A) Pairwise
comparisons between citalopram and control for RNA-seq (DEGs), scRNAseq (scDEGs) and DNAm (DMCs) at Day 6–13. (B) Boxplot of Slingshot
pseudotime values per exposure group for Day 6–13. Significant comparisons are marked with asterisks (Student’s t-test, ****: p ≤ 0.0001). (C) GE levels
(logcounts) of DDIT4, MTHFD2, HES5, FRZB, LRATD2, NNAT, EFNB2, TAGLN, NR2F1 and SESN2 selected from the top 100 temporally expressed
genes, which responded differently in citalopram-exposed and control cells across Slingshot pseudotime at Day 6–13. Each dot represents one cell, and
the lines represent the average GE for each citalopram concentration across pseudotime.
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identified in the bulk time-response analysis (Figure 2C), was
downregulated at Day 10. At Day 13, genes involved in
mitochondrial function (MT-ATP8), genes associated with
neuroprotection (MTRNR2L8, MTRNR2L1 (Karachaliou and
Livaniou, 2023)), and genes encoding histone variants
(HIST2H2BF, HIST1H4H, HIST1H2BK, HIST1H2AG)) were
identified. Of note, HIST1H2AG, has previously been associated
with depression (Tirozzi et al., 2023).

We also performed pairwise differential analyses of bulk RNA-
seq, scRNAseq and DNAm datasets to identify gene expression and
DNAm differences between each concentration of citalopram
compared to control at Day 6, 10 and 13 (Figure 6A and
bulkCitNeuronalDiff). Four DMCs were identified in the DNAm
analysis, suggesting that each dose of citalopram appears to have
minor effect on DNAm at each neuronal differentiation stage
(bulkCitNeuronalDiff). Cit200 had increased DNAm at CpGs
annotated to EYS and LAT compared to control. Cit400 had
decreased and increased DNAm at CpGs annotated to DGKA
and SLC30A8 compared to control, respectively. However, the
expression of these genes was not changed at Day 13.

We identified varying numbers of DEGs at each Day between
control and citalopram in both bulk and scRNAseq data (Figure 6A
and bulkCitNeuronalDiff), some of which were specific for
citalopram and controls, whereas others overlap between several
citalopram concentrations (Supplementary Figures S5A–C).
Furthermore, similar GO terms related to mitochondrial
function, and different metabolic and catabolic processes
(Supplementary Figure S5D) were common among the top
enriched BPs between different comparisons, in the scRNA
analyses. At Day 10, downregulated terms involved in regulation
of transcription and stress response were identified (Supplementary
Figure S5D). At Day 13, more BPs involved in chromatin
organization, catabolic and metabolic processes were enriched, in
addition to upregulation of central nervous system development,
axon development and generation of neurons in Cit200 cells
compared to controls.

3.5 Citalopram enhances differentiation

To investigate if citalopram induced changes in the
pseudotemporal ordering of the cells, differential topology analysis
of the slingshot trajectory was performed. After removing Day 0 from
the dataset, a subtle but significant difference in pseudotime
differentiation was observed between citalopram-exposed cells and
control cells (Figure 6B). Specifically, citalopram-exposed cells had
higher mean pseudotime levels compared to control cells, irrespective
of differentiation day. This result was confirmed using a more robust
permutation test (Supplementary Figure S6A) and Kolmogorov-
Smirnov test (p-values 5.5 × 10−4, <2.2 × 10−16, 2.2 × 10−16, <2.2 ×
10−16, for 50, 100, 200 and 400 nM citalopram compared to control
cells, respectively). These results suggest that citalopram exposure
subtly enhances neuronal differentiation of hESCs.

Some temporally expressed genes (Supplementary Figure S6B)
responded differently to citalopram exposure compared to control
cells (Figure 6C and Supplementary Figure S6C). For CHAC1,
LRATD2, ENFB2, TAGLN, NE2F1, SESN2, TPM1, CARS, VEGFA,
XBP1, DDIT4 and HCRT expression was decreased in citalopram-

exposed cells compared to control cells in more differentiated cells.
In contrast, HES5, FRZB and NKX2-1 expression was increased in
citalopram-exposed cells compared to more differentiated control
cells. Further, NNAT, which is involved in intracellular signalling
critical for differentiation, synaptogenesis and plasticity (Lin et al.,
2010; Oyang et al., 2011) was upregulated in citalopram-exposed
cells. Interestingly, LRATD2 and NNAT have previously been linked
to electroconvulsive therapy response in depressed patients
(Sirignano et al., 2021). The scRNA pseudotime analysis
identified genes also found in the bulk RNA-seq dose-response
analysis (Figures 4C, D), such as DDIT4, HES5 and
FRZB (Figure 6C).

4 Discussion

We aimed to investigate the impact of maternal citalopram
use in early embryonic neurodevelopment using a neuronal
differentiation model, which has been optimized for
neuropharmacology studies (Samara et al., 2022a; 2022b). The
hESCs were exposed to therapeutic concentrations of citalopram
from differentiation Day 1–13. The results presented in this
study provide valuable insights into the effects of citalopram
exposure on gene expression and DNAm during the initial stages
of neuronal differentiation. To our knowledge, this is the first
multi-omics analysis of citalopram-exposed
differentiating hESCs.

The analyses of gene expression and DNAm changes during
neuronal differentiation revealed significant changes in the unexposed
control cells, consistent with the expected patterns of neuronal
differentiation. Many DEGs and DMCs were associated with BPs
related to neuronal differentiation and nervous system development
and overlapped with the study by Samara and Spildrejorde et al.
(Samara et al., 2022b). However, there were also unique DEGs and
DMCs to this study, highlighting the importance of using internal
controls for each neurotoxicology experiment. Taken together, these
results confirmed neuronal differentiation, and the Day 6 and Day
10 cells adds to the knowledge of temporally waves of gene expression
during the neural rosette stage and self-pattering phase of neuronal
differentiation (Samara et al., 2022b). Further, serotonin receptors,
implicated in depression aetiology and SSRI response (Nautiyal and
Hen, 2017), were expressed in both controls and citalopram-exposed
cells, suggesting that the cells in the neuronal differentiation model
have potential to respond to serotonin signalling. However, serotonin
levels were not measured, and cells did not express the serotonin
transporter SLC6A4. Thus, studying citalopram exposure in this
model may reflect indirect effects.

We identified citalopram-induced time- and dose-response
effects on the expression of specific genes involved in
neurodevelopment, neuronal migration, axon guidance, neuronal
maturation, synaptic transmission, cell state transitioning and
stress-response, which provides important insights into the
molecular mechanisms underlying the potential effects of
citalopram exposure on early brain development. Dysregulation
of such crucial genes may potentially have an impact on
cognitive and behavioural processes.

Interestingly, we also identified citalopram-induced time-
and dose-response effects on the expression of genes
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associated with depression aetiology and potential therapeutic
mechanisms. For example, CCL2 (MCP-1), a chemokine involved
in a range of neurobiological processes, has been associated with
depression brain-immune system communication and suggested
as a potential antidepressant target (Curzytek and Leśkiewicz,
2021). Similarly, BDNF, a growth factor involved in
neuroinflammation, has been indicated in depression
pathogenesis and antidepressant efficacy (Porter and
O’Connor, 2022). Also, STC1 has been shown to decrease
neuroinflammation and attenuate depression-like symptoms in
rats (Chao et al., 2021). These findings suggests that citalopram
may influence key pathways and processes implicated in
depression, such as neuroplasticity, neuroinflammation,
cellular stress response and neurotransmitter regulation
(Saveanu and Nemeroff, 2012).

The time- and dose-response analysis of bulk RNA revealed
differentially expressed genes in citalopram-exposed cells compared
to control cells, sharing BPs involved in amino acid metabolic and
catabolic processes. This result is in line with previous studies where
changes in plasma amino acids have been identified as response to
SSRI treatment (Kaddurah-Daouk et al., 2013;Woo et al., 2015), also
evident for (es)citalopram (MahmoudianDehkordi et al., 2021). In
addition to being building blocks in biosynthetic and metabolic
processes, amino acids are also involved with synaptic
neurotransmission. Understanding how antidepressants affect
these may aid the understanding of depression aetiology and
treatment response.

Hippocampal impairment has been associated with major
depression disorder (MacQueen and Frodl, 2010). Citalopram
exposure induced changes in ANKRD37 and GDF11, important
for hippocampal volume (Xu et al., 2022; Moigneu et al., 2023),
Interestingly, in mice, infusion of GDF11 enhanced hippocampal
neurogenesis and attenuated depression-like symptoms (Moigneu
et al., 2023). Further, a causal negative correlation between
ANKRD37 expression and hippocampal volume has been
previously identified (Xu et al., 2022). The present study
identified increased expression of GDF11 and decreased
expression of ANKRD37, suggesting that citalopram may
potentially mediate its therapeutic action though hippocampal
recovery. This result is consistent with several previous studies,
where antidepressants have been reported to enhance hippocampal
neurogenesis (Malberg et al., 2000; Anacker et al., 2011; Perera et al.,
2011; Mateus-Pinheiro et al., 2013).

We also identified genes associated with NDDs such as ASD
(e.g., SLC7A11, NHSL2, PAX6, CDH2, ATX1) and ADHD (e.g.,
CDH2), suggesting a potential link between citalopram exposure and
the molecular pathways involved in the pathogenesis of NDDs. For
example, altered expression of SLC7A11 may disrupt amino acid
transport and redox balance, which have been implicated in ASD
pathogenesis (Rojas-Charry et al., 2021). Further, dysregulation of
CDH2 may disrupt synaptic function, indicated in ASD (László and
Lele, 2022). Overall, the time- and dose-response results indicate
that citalopram affects molecular mechanisms important during
fetal neurodevelopment. In contrast, the corresponding DNAm
analysis identified relatively few significant changes. We identified
19 genes with changes in both gene expression and DNAm,
indicating that the citalopram-induced gene expression changes
were modulated by other mechanisms other than DNAm, by

CpGs not covered by the EPIC array, or by CpGs which we did
not have enough power to detect.

To gain a more detailed understanding of the effects of
citalopram exposure at different stages of neuronal differentiation
and within specific cell-types, scRNA-seq was performed. The
analysis identified distinct cell clusters corresponding to the
different stages of differentiation. The scRNA-seq analysis
revealed dose-dependent cell-type specific gene expression
signatures. For example, citalopram exposure increased
expression of FRZB, involved in WNT signalling (Mitsiadis et al.,
2017). The citalopram-induced increase in FRZB expression was
identified in both bulk RNA-seq time- and dose-response analysis
and in scRNA-seq pseudotime analysis. Interestingly, FRZB, was
downregulated in paracetamol-exposed cells using the same
neuronal differentiation model, albeit at different time points
(Spildrejorde et al., 2023), indicating that the WNT-pathway
respond differently to citalopram compared to paracetamol.
Another gene that was differentially expressed in both
paracetamol-exposed cells and citalopram-exposed cells was
neuronal transcription factor PAX6. In paracetamol-exposed cells
PAX6was upregulated, indicating a delay in neuronal differentiation
(Spildrejorde et al., 2023). In contrast, PAX6 expression was
downregulated in citalopram-exposed cells in a dose-dependent
manner, suggesting that citalopram may enhance neuronal
differentiation. This is also in line with the pseudotemporal
analysis, showing that citalopram-exposed cells were more
differentiated compared to control cells. Interestingly, the SSRI
sertraline has also shown to increase DCX expression indicating
enhanced neuronal differentiation (Anacker et al., 2011), consistent
with the citalopram-induced increase in DCX at Day 10 and 13.

There are several limiting factors to this study. The complexity of
neurodevelopment in the human brain cannot fully be recapitulated
using a simplified in vitro hESC neuronal differentiation model. We
could not account for fetal-fetal or maternal-fetal signalling interactions.
Additionally, the study only examined the effects of citalopram during a
narrow time window of neuronal differentiation and at selected
concentrations. Using one hESC line and no phenotype model,
exploring genetic susceptibility related to disease risk was beyond the
scope of this study. Furthermore, the model may not be suitable to
investigate citalopram therapeutic mechanism of action, thus the
interpretation in that direction remain speculative. Further research is
needed to delineate the effects of citalopram exposure at different stages
of neurodevelopment and to investigate potential long-term
consequences.

To comply with the Findability, Accessibility, Interoperability and
Reusability (FAIR) principles, we share both bulk RNA-seq and DNAm
(bulkCitNeuronalDiff) and scRNAseq data (scRNACitNeuronalDiff) in
open-access user-friendly web applications. These provide interactive
functionality for browsing results, visualising genes and CpGs, and
downloading figures and tables, allowing the reader to explore the
data easily, fostering transparency, reproducibility, and collaboration
in scientific research.

There are several translational aspects of the results obtained from
this protocol and findings in, for example, cord blood from children
prenatally exposed to maternal citalopram use. First, it can provide
mechanistic insights into how citalopram exposure may influence
DNAm and gene expression patterns during neuronal development,
helping researchers understand the potential molecular pathways
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involved. Second, it can generate hypotheses for further investigation in
cord blood studies, suggesting specific genes that may be altered in
infants exposed to maternal citalopram use. Third, comparative analysis
with findings in cord blood can identify overlapping genes and support a
potential link between citalopram exposure, omics modifications and
neurodevelopmental outcomes. Such findings could strengthen causal
inference and clinical translation of findings in cord blood on early brain
development. Last, it can serve as a potential basis for validating and
replicating cord blood findings.

In conclusion, this study provides important insights into the effects
of early citalopram exposure on gene expression and DNAm during
neuronal differentiation. The findings highlight the time- and dose-
dependent alterations in gene expression associated with
neurodevelopment, axon guidance, neuronal maturation, synaptic
transmission and depression. The study’s multi-omics approach
offers valuable mechanistic insights and potential translational
implications. Overall, this study contributes to our understanding of
citalopram’s impact on early brain development and provides a basis for
future investigations.
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