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Oxeiptosis is a novel cell death pathway that was introduced in 2018. As a form of
regulated cell death, it operates independently of caspases and is induced by
ROS. Distinguished from other cell death pathways such as apoptosis,
necroptosis, pyroptosis, and ferroptosis, oxeiptosis features unique damage
causes pivotal genes, and signaling pathways (KEAP1/PGAM5/AIFM1). Emerging
studies indicate that oxeiptosis plays a significant role in the progression of
various diseases and its regulation could serve as a promising therapeutic
target. However, the precise molecular mechanisms underlying oxeiptosis
remain to be fully elucidated. In this mini-review, we systematically
summarize the latest developments in oxeiptosis-related diseases while
detailing the molecular mechanisms and regulatory networks of oxeiptosis.
These insights offer a foundation for a deeper understanding of oxeiptosis.

KEYWORDS

oxeiptosis, ROS, KEAP1, PGAM5, AIFM1

1 Introduction

Reactive oxygen species (ROS) are by-products of biological aerobic metabolism,
encompassing a variety of entities such as superoxide, hydroxyl radical, singlet oxygen,
peroxide, ozone, and other radicals and non-radical species (Halliwell, 2024). Research
underscores the pivotal role of ROS in cellular signaling (Thannickal and Fanburg, 2000).
Several triggers including viral infections, allergies, inflammatory cytokines, allograft
rejection, ultraviolet exposure, and heat can elevate intracellular ROS levels,
contributing to the advancement of numerous pathological conditions such as
carcinogenesis, neurodegeneration, atherosclerosis, diabetes, and aging (Pan et al.,
2022). In 2018, Holze et al., 2018 found that high concentrations of O3 or H2O2 can
induce oxeiptosis. Mouse airway cells exposed to ozone and HeLa cells infected by influenza
A virus instigate exogenous oxidative stress. Oxeiptosis is a caspase-independent and ROS-
induced cell death pathway. Holze et al., 2018 also found mouse embryonic fibroblasts
showed lower viability and apoptotic membrane blebbing after treatment with H2O2.
Meanwhile, Caspase inhibitor has not changed the induction of cell death. Similarly,
inhibitors of ferroptosis, apoptosis, and necroptosis did not alter the H2O2-induced toxicity
(Holze et al., 2018). Beyond ROS, triggers like viral infection and 5-Fluorouracil attached to
magnetic nanoparticles can also induce oxeiptosis (Dabaghi et al., 2020). Oxeiptosis is
characterized by the activation of the Kelch-like ECH-associated protein 1 (KEAP1)/
phosphoglycerate mutase 5 (PGAM5)/apoptosis-inducing factor mitochondria-associated
1 (AIFM1) signaling pathway. Current research indicates that oxeiptosis is connected to
various biological functions. For example, depletion of PGAM5 and AIFM1 leads to
neurological dysfunctions in mice (Liang et al., 2021). Moreover, mutations in
KEAP1 are associated with lung and prostate cancers (Zhang et al., 2010). Thus, a
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deeper understanding of the mechanisms underlying oxeiptosis and
its implications in disease could prove highly significant for future
research endeavors.

2 Signaling pathway of oxeiptosis

KEAP1 is a well-studied sensor capable of measuring ROS levels
(Holze et al., 2018). Research points out that KEAP1 consists of five
distinct domains: 1) the N-terminal region, 2) the broad complex,
tramtrack and bric-a-brac domain, 3) the intervening region, 4) the
double glycine repeats or Kelch domain, 5) the C-terminal region
(Abed et al., 2015). As an endogenous inhibitor of nuclear factor
erythroid 2-related factor 2 (NRF2), KEAP1 facilitates the

continuous degradation of NRF2 via 27 cysteine residues located
in its C-terminus (Tian et al., 2022). The KEAP1/NRF2 pathway is
renowned for its protective role against oxidative stress. Under
steady state conditions, the transcription factor NRF2 is retained
within the cytosol by KEAP1. Under moderate ROS concentrations,
NRF2 is dissociation form KEAP1. More and more NRF2 enters the
nucleus. Meanwhile, NRF2 is capable of activating antioxidant
response element (ARE) and further activating some downstream
genes such as Heme oxygenase-1(HO-1), NADPH quinone
oxidoreductase 1(NQO1), glutathione peroxidase (GPX) and
peroxidase (PRX) (Park et al., 2023). Under high ROS
concentrations, KEAP1 can mediate oxeiptosis through an NRF2-
independent pathway (Park et al., 2023). This process is
characterized by the activation of the KEAP1/PGAM5/

FIGURE 1
Molecular pathway and role of oxeiptosis (A): Molecular pathway of oxeiptosis is characterized by the activation of the KEAP1/PGAM5/AIFM1. (B):
Oxeiptosis plays an important role in various organs, such as the bone, spine, heart, colon, ovary, liver, skin, breast and so on.
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AIFM1 pathway (Figure 1A). PGAM5 is a new regulator of
mitochondrial homeostasis. PGAM5 activates mitochondrial
biogenesis and mitophagy to promote a cellular compensatory
response when mitochondria are mildly damaged, whereas severe
damage to mitochondria leads to PGAM5 inducing excessive
mitochondria fission, which eventually evoke cell death (Liang
et al., 2021). As an interaction partner of KEAP1, PGAM5 is also
a key downstream effector in oxeiptosis. When ROS concentrations
are high, PGAM5 dissociates from KEAP1 and migrates to the
mitochondria (Scaturro and Pichlmair, 2018). AIFM1 is a gene
located on the X chromosome, coding for Apoptosis-Inducing
Factor (AIF), a mitochondrial flavoprotein involved in caspase-
independent cell death (Diodato et al., 2016). Inside the
mitochondria, PGAM5 dephosphorylates the Ser116 residues of
AIFM1, finally leading to oxeiptosis (Scaturro and Pichlmair,
2018). Notably, the interaction between PGAM5 and
AIFM1 diminishes when cells undergo treatment with moderate
ROS concentrations, but can be restored with the application of a
ROS scavenger (Scaturro and Pichlmair, 2019).

3 Difference between oxeiptosis and
other cell death pathways

Recent studies have shown that oxeiptosis operates in parallel
with other cell death pathways and leads to a non-inflammatory,
caspase-independent, apoptosis-like cell death phenotype.
Therefore, it is crucial to differentiate oxeiptosis from other cell
death pathways. Oxeiptosis is a ROS-induced cell death pathway.
However, other cell death pathways such as apoptosis, necroptosis
and ferroptosis are also triggered by ROS (Mbaveng et al., 2021).
Research indicates that ferroptosis requires Fe2+ to participate in
ROS production, while oxeiptosis does not (Li et al., 2020).
Additionally, ROS generation in apoptosis and necroptosis
involves the RIPK1/RIPK3 pathway and the Bcl2/Bax/Caspase-
3 pathway, respectively (Bertheloot et al., 2021). Oxeiptosis,

however, relies on the KEAP1/PGAM5/AIFM1 pathway. These
findings suggest that ROS accomplish different death ways by
selecting different pathways, although the reasons for pathway
selection remains unclear. Morphologically, oxeiptosis exhibits no
distinctive characteristics and resembles apoptosis (Holze et al.,
2018). Apoptosis is characterized by cellular volume reduction,
formation of apoptotic bodies, and cellular fragmentation
(Ketelut-Carneiro and Fitzgerald, 2022). Ferroptosis is
characterized by mitochondrial shrinkage and rupture of the
mitochondrial outer membrane (Ketelut-Carneiro and Fitzgerald,
2022). Necroptosis is characterized by the destruction of cell
membranes and the swelling of cells and organelles (Ketelut-
Carneiro and Fitzgerald, 2022). These morphological
characteristics facilitate the differentiation of oxeiptosis. In
addition, the factors that induce oxeiptosis and other cell death
pathways, the presence or absence of inflammation, and the
associated inhibitors are also different.

4 Oxeiptosis and diseases

Recent studies suggest that oxeiptosis may be involved in the
development of various diseases (Figure 1B). Initially, oxeiptosis
appears to be linked to the occurrence and development of
inflammation. In models of ozone exposure and viral infection,
pgam5−/−mice exhibited severe inflammation and tissue damage
(Tang et al., 2019). These findings suggest that oxeiptosis may
inhibit inflammation. Moreover, oxeiptosis is implicated in the
progression of osteoarthritis. Activation of the KEAP1/
NRF2 signaling pathway attenuated osteoarthritis by reducing the
expression of inflammatory factors (Fan et al., 2024).

Backache is a leading cause of movement disorders and
disability. Research indicates that lumbar intervertebral disc
degeneration is identified as a potential cause of backache (Chiu
et al., 2024). Within the intervertebral discs, mitochondrial damage
in nucleus pulposus cells leads to an increase in intracellular ROS,

TABLE 1 Regulators of oxeiptosis in various diseases.

Regulator Experimental model Function Ref.

circFOXO3 Human degenerated NP samples
Male C57Bl/6 mice

Intervertebral disc degeneration ↑ Chen et al. (2024)

4-octylitaconate The skin samples of psoriasis
HacaT cells

Psoriasis ↓ You et al. (2023)

Phenethyl isothiocyanate HepG2 and Hepa 1–6 cells Hepatocellular carcinoma ↓ Strusi et al. (2023)

Dasatinib HepG2 and Hepa 1–6 cells Hepatocellular carcinoma ↓ Strusi et al. (2023)

OTUD1 HeLa and HEK293T cells Otud1−/−mice Kidney cancer ↓ Oikawa et al. (2022)

Mitoquinone Female granulosa cells and mouse oocytes Stem cell proliferation and differentiation ↑ Tsui and Li (2023)

Alantolactone Human ovarian cancer cell line (SKOV3) Ovarian cancer ↓ Nasirzadeh et al. (2023)

Alloimperatorin MCF-10A cells, MDA-MB-231 andMCF-7 human breast
cancer cell lines

Breast cancer ↓ Zhang et al. (2022)

Sanguinarine Human CRC cell lines (CaCo-2, HCT-116, and HT-115) Colorectal cancer ↓ Pallichankandy et al. (2023)

Nanoplastics Male C57BL/6 mice Haematotoxicity ↑ Guo et al. (2023)

TDCIPP Mouse testicular supporting cell line (TM4 cells) Toxicity ↑ Wang et al. (2023)
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exacerbating lumbar intervertebral disc degeneration (Chiu et al.,
2024). Chen X et al. discovered that oxeiptosis is triggered in nucleus
pulposus cells (Chen et al., 2024). Inhibiting the oxeiptosis could
slow the progression of lumbar intervertebral disc degeneration.
Notably, CircFOXO3, a specific circRNA, regulates oxeiptosis in
nucleus pulposus cells through the miR-185-3p/miR-939-5p/
ASIC1 signaling pathway (Chen et al., 2024).

Vitiligo is an autoimmune skin disease caused by the destruction
of epidermal melanocytes (Ezzedine et al., 2015). Unfortunately,
current treatments for vitiligo are not very effective. Previous studies
have highlighted oxidative stress as a significant factor in the
destruction of melanocytes during vitiligo pathogenesis (Chang
and Ko, 2023). Elevated levels of ROS can lead to molecular and
organelle dysfunction, ultimately resulting in melanocyte death
(Xuan et al., 2022). Chen J et al. observed oxeiptosis in vitiligo
patients (Chen et al., 2021). ROS-treated melanocytes exhibited
oxeiptosis (Chen et al., 2021). Kang et al., 2022 reported that
KEAP1 and PGAM5 were upregulated in H2O2-treated
melanocytes, and AIFM1 was dephosphorylated at Ser116 (Kang
et al., 2022). These findings indicate that the KEAP1/PGAM5/
AIFM1 signaling pathway is activated in melanocytes.

Psoriasis is a papulosquamous skin disease characterized by
the hyperproliferation of keratinocytes (Boehncke and Schön,
2015). The pathogenesis of this condition involves the
production and accumulation of ROS, which can lead to
abnormal differentiation and proliferation of keratinocytes,
subsequently activating aberrant immune responses and
inflammation (Barygina et al., 2019). Consequently, inhibiting
the production of ROS is an effective strategy for alleviating
psoriasis. You et al., 2023 found that KEAP1 and p-AIFM are
highly expressed in psoriasis lesions. Simultaneously, the
knockdown of KEAP1 can induce oxeiptosis. Additionally, 4-
octylitaconate, an agonist of oxeiptosis, helps alleviate psoriasis
by inhibiting KEAP1 (You et al., 2023).

Oxeiptosis also holds potential as a mechanism for treating
hepatocellular carcinoma. Lin et al., 2023 screened a total of
69 core oxeiptosis genes, including members of the T-complex
polypeptide1 family, Dead-box family, and heterogeneous
nuclear ribonucleoprotein family. These genes have been
identified as prognostic risk factors for hepatocellular
carcinoma (Li et al., 2008). Phenethyl isothiocyanate (PEITC)
and dasatinib have been shown to inhibit the growth of
hepatocellular carcinoma by activating oxeiptosis (Strusi
et al., 2023).

Furthermore, several studies have suggested that oxeiptosis may
play a role in diabetic endothelial dysfunction and diabetic
cardiomyopathy (Chen et al., 2020; Shen et al., 2023). Since
excessive ROS production is a vital factor during diabetic
endothelial dysfunction and diabetic cardiomyopathy, oxeiptosis
maybe a contributor to diabetic endothelial dysfunction and
diabetic cardiomyopathy.

5 Regulator of oxeiptosis

OTUD1 plays a crucial role in regulating inflammatory and
oxidative stress responses (Oikawa et al., 2023). Previous studies
have found that OTUD1 stabilizes the p53 tumor suppressor as a

biomarker of thyroid cancer. OTUD1 also upregulates the
expression of p21 and Mdm2, thus accelerating apoptosis (Piao
et al., 2017). Oikawa D et al. demonstrated through mass
spectrometric analysis that OTUD1 can bind to KEAP1 via an
ETGE motif (Oikawa et al., 2022). In Otud1−/−mice, both
inflammation and oxeiptosis were found to be enhanced (Oikawa
et al., 2022). We speculate that OTUD1 may be a key regulator of
oxeiptosis.

Mitoquinone is a mitochondria-targeted antioxidant (Ismail
et al., 2020). Several studies have verified that mitoquinone can
cross the blood brain barrier and cellular membranes to accumulate
in the mitochondria and lead to an increase in the expression of
antioxidant enzymes (Ismail et al., 2020). In female granulosa cells
and mouse oocytes, mitoquinone inhibits ROS-induced oxeiptosis
by shifting energy metabolism. Mechanistically, mitoquinone
effectively reduces the expression of AIFM1 and PGAM5 (Tsui
and Li, 2023).

Breast cancer and ovarian cancer are common malignant
tumors in women. Research has shown that many natural
substances can inhibit the occurrence and development of these
tumors (Ouyang et al., 2014). Alantolactone, an important
sesquiterpene lactone, possesses antibacterial and anti-
inflammatory properties (Liu et al., 2021). According to previous
studies, alantolactone also has anti-cancer activity (Cai et al., 2021).
Mechanistically, alantolactone promotes the accumulation of ROS
by reducing glutathione and inhibiting thioredoxin reductase (Cai
et al., 2021). Nasirzadeh M et al. observed that down-regulating
NRF2 leads to decreased glutathione levels and increased ROS
production (Nasirzadeh et al., 2023). In ovarian cancer cells,
alantolactone modulates oxeiptosis by reducing NRF2 and
boosting KEAP1 (Nasirzadeh et al., 2023). Alloimperatorin, a
coumarin with anticancer properties (Bai et al., 2021), has been
shown to significantly upregulate KEAP1 and decrease the
phosphorylation of AIFM1 (Zhang et al., 2022). After
downregulation of the KEAP1/PGAM5/AIFM1 expression, the
inhibitory effect of alloimperatorin on cell viability was
significantly reduced (Zhang et al., 2022). In breast cancer cells,
alloimperatorin significantly inhibited cell invasion and growth by
inducing oxeiptosis (Zhang et al., 2022).

Sanguinarine, a benzophenanthridine alkaloid derived from
Sanguinaria canadensis (Croaker et al., 2017), has demonstrated
antibacterial, anti-inflammatory, and antifungal properties
(Huang et al., 2024). In studies both in vitro and in vivo,
Pallichankandy S et al. found that sanguinarine suppresses the
growth of human colorectal cancer cells by inducing oxeiptosis
(Pallichankandy et al., 2023). On the one hand, the knockdown of
KEAP1/PGAM5/IFM1 abolishes sanguinarine-induced
oxeiptosis. Furthermore, sanguinarine triggered the
dephosphorylation of AIFM1 at Ser116 in HT-29 cells and
effectively inhibited tumor growth in the HT-29 xenograft
mouse model through oxeiptosis. These results indicate that
sanguinarine induces oxeiptosis by activating the KEAP1/
PGAM5/AIFM1 signaling pathway.

Interestingly, nanoplastics (a polymer material) and TDCIPP
(a building material) have also been shown to mediate oxeiptosis
in both in vitro and in vivo studies (Guo et al., 2023; Wang et al.,
2023). (Regulators of oxeiptosis in various diseases are shown
in Table 1).
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6 Discussion

As research deepens, oxeiptosis has been identified in a
variety of diseases. Additionally, oxeiptosis can play a
significant role in conjunction with other cell death pathways.
This combined approach may help address drug resistance in
certain conditions. Therefore, understanding the molecular
mechanisms of oxeiptosis is crucial. However, the study of
oxeiptosis is still nascent, and many questions remain
unanswered. Some studies have shown that AIFM1 can move
into the nucleus and induce chromatin condensation (Hong et al.,
2004). Yet, in oxeiptosis, AIFM1 remains within the
mitochondria. Are there regulatory pathways for oxeiptosis
beyond the KEAP1/PGAM5/AIFM1 pathway? How can
foundational research on oxeiptosis be translated into clinical
treatments? These are pressing issues that need resolution. In the
future, we believe that the development of new oxeiptosis
regulators has good prospects for treating and preventing
related diseases. It is very meaningful to screen suitable
oxeiptosis regulators from viruses, chemical drugs, natural
substances, mRNA and polymer materials. Meanwhile, it is
also valuable to explore whether other non-drug treatments
such as acupuncture and diet are associated with oxeiptosis. In
summary, the field of oxeiptosis is still in its early stages.
Exploring ways to inhibit oxeiptosis and preserve more cells
may become a critical research focus in the future.
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