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LncRNAs are RNA molecules of more than 200 nucleotides in length and
participate in cellular metabolism and cellular responses through their diverse
interactomedespite having no protein-coding capabilities. Such significant
interactions also implicate the presence of lncRNAs in complex
pathobiological pathways of various diseases, affecting cellular survival by
modulating autophagy, inflammation and apoptosis. Proliferating cells harbour
a complex microenvironment that mainly stimulate growth-specific activities
such as DNA replication, repair, and protein synthesis. They also recognise
damages at the macromolecular level, preventing them from reaching the
next-generation. LncRNAs have shown significant association with the events
occurring towards proliferation, regulating key events in dividing cells, and
dysregulation of lncRNA transcriptome affects normal cellular life-cycle,
promoting the development of cancer. Furthermore, lncRNAs also
demonstrated an association with cancer growth and progression by
regulating key pathways governing cell growth, epithelial-mesenchymal
transition and metastasis. This makes lncRNAs an attractive target for the
treatment of cancer and can also be used as a marker for the diagnosis and
prognosis of diseases due to their differential expression in diseased samples. This
review delves into the correlation of the lncRNA transcriptome with the
fundamental cellular signalling and how this crosstalk shapes the complexity
of the oncogenic microhabitat.
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1 Introduction

RNA can be considered as the transient stage of gene expression. Genetic information in the
DNA of an individual gets transcribed as RNA, and RNA is then translated into protein by the
translation machinery. However, not all RNA molecules are destined to be protein encoders.
Non-coding RNA molecules that have no protein products, such as tRNAs, rRNAs, miRNAs,
siRNAs, hnRNAs, etc., are also expressed in cells. Earlier, these molecules were considered to
play a limited role in the growth and development of organisms. But these all changed when
studies found the involvement of such RNAs in various avenues of cellular importance, such as
chromatin remodelling, gene expression, gene silencing, RNA interference, regulation of protein
function, etc. Long non-coding RNAs or lncRNAs are a collective of untranslated RNAs having a
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length of more than 200 nucleotides. Despite not being encoded into
proteins, their expression is highly regulated in mammalian cells via
histone (epigenetic) methylation, transcription factors, promoters and
even by other non-coding RNAs like miRNAs (Wu et al., 2014).
lncRNAs can be classified based on several criteria such as length
(Long non-coding RNAs, Large non-coding RNAs, Very large non-
coding RNAs, etc.), location of the RNA respective to protein-coding
genes (Intergenic, Antisense, Bidirectional, Intronic), location of the
RNA respective to regulatory elements (Pseudogenes, Telomeres,
Centromeres, Promoter-associated ncRNAs, etc.), lncRNA biogenesis
pathway (Stable unannotated transcripts, Cryptic unstable transcripts,
Meiotic unannotated transcripts, etc.), subcellular localisation of the
RNA (Cytoplasmic lncRNAs, Nuclear lncRNAs, Mitochondrial
lncRNAs), function (Scaffolds, Guides, Decoys, Precursors) and
association to biological processes (Hypoxia-induced, Stress-induced,
Senescence-associated, Cancer-associated, etc.) (Jarroux et al., 2017).
Although the expression of lncRNAs are lower and more tissue-specific
than mRNAs, they share certain similarities such as transcription by
RNA Pol II, post-transcriptional modifications such as 5′ capping and
3′ polyadenylation (Bridges et al., 2021). LncRNAs have shown their
ability to interact with several important cellularmacromolecules. These
interactions can often be attributed to the secondary structure of the
RNA molecules and also directly correlate to its stability (Brown et al.,
2012). The lncRNA interactome consists of proteins such as
transcription factors acting as their guide, peptides, mRNAs,
miRNAs, DNA, and important sites and molecules associated with
the chromatin structure (Figure 1). Through these interactions,

lncRNAs can control DNA replication, gene expression at an
epigenetic, transcriptional and translational level and Protein
stability, assembly and function (Khorkova et al., 2015).

2 Structure and function of lncRNA

The primary structure of lncRNAs is similar to that of protein-
coding mRNAs, with both molecules going through similar
processing and modifications (Bridges et al., 2021; Brown et al.,
2012). However, the similarities end there, as lncRNAs lack the
transcriptional flexibility of mRNAs, showing specific expression
profiles and variable abundance in different cell lines, constraining
researchers from studying their mode of action. LncRNAs also
display poor evolutionary conservation, being riddled with
unique base pair mismatches surrounding breaks of conserved
sequences among species (Zampetaki et al., 2018). The tendency
of lncRNAs to fold into secondary and higher-order structures that
are thermodynamically stable is one of their key characteristics.
RNA can create hydrogen bonds on the Watson-Crick face, the
Hoogsteen face, and the ribose face. As a result of these collective
interactions, RNA develops secondary structures such as double
helices, hairpin loops, bulges, and pseudoknots, which are linked by
higher-order tertiary interactions that are predominantly mediated
by non-Watson-Crick base-pairing. As a result, coaxial stacks of
helices that are arranged in parallel or orthogonal to one another
dominate the structure of RNA. The sarcin-ricin loop, the K-turn, and

FIGURE 1
Functions of lncRNAs
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the C-loop are recurring structural motifs present in the lncRNA
molecules. Furthermore, these modular secondary structures
typically fold initially and independently before subsequent tertiary
interactions take place, leading to the hierarchical assembly of RNA
structure (Mercer and Mattick, 2013). The secondary configuration of
lncRNAs actually helps to establish its functional aspects. LncRNAs
have a role in many different biological processes. These include - a)
interacting with chromatin complexes and thereby contributing to the
regulation of epigenetic genes, b) acting as modulators of proteins or
multi-protein complexes, c) interacting with DNA/RNA-associated
proteins to control transcriptional expression, d) regulating DNA
stability through the formation of R-loop and triple helix, and e)
assisting in the development of a higher-order chromatin structure
(Graf and Kretz, 2020). Several methods of structure elucidation of
lncRNAs are available nowadays, such as enzymatic probing methods
like PARS (parallel analysis of RNA structure), fragmentation
sequencing and chemical probing methods like DMS (Dimethyl
Sulfate) Probing, SHAPE (selective 2′-hydroxyl acylation by primer
extension), SHAPE-MaP (SHAPE andmutational profiling), icSHAPE-
seq (in vivo click SHAPE sequencing) etc. that are being used to bridge
the structure-function gap of lncRNA interactome (Zampetaki et al.,
2018; Graf and Kretz, 2020).

3 Association of lncRNA in human
pathobiology

The role of lncRNAs in the disruption of normal cellular
operation of different organs and their involvement in the disease

processes have been the subject of extensive exploration, and
various mechanisms connecting the expression and interaction of
lncRNAs to cellular dysfunction have been identified. The
involvement of lncRNAs in disease pathobiology can be
attributed to its interactions with the cellular signalling
pathways governing inflammation, migration, apoptosis,
autophagy and epigenetic modification.

3.1 Diabetes

In the hyperglycemic condition of diabetes, expression of
lncRNA H19 is downregulated, and the overexpression of the
non-coding RNA molecule has been shown to abrogate
endothelial-mesenchymal transition related to diabetic
retinopathy (Thomas et al., 2019) (Table 1). The opposite is
true in the case of lncRNA HOTAIR, as the expression levels of
the lncRNA in diabetic individuals were found to be significantly
higher when compared to non-diabetic control. HOTAIR seemed
to aggravate the angiogenic landscape of DR, increasing the
expression of vascular endothelial growth factor (VEGF)-A,
angiopoietin-like 4 (ANGPTL4), placental growth factor (PGF),
hypoxia-inducible factor (HIF), interleukin-1 beta (IL-1β) and
promote mitochondrial dysfunction and oxidative damage, all
of which were alleviated by the knockdown of the RNA
molecule (Biswas et al., 2021) (Table 1). Exosome-transmitted
lncRNA LOC100132249 promoted endothelial dysfunction in
diabetic retinopathy by sponging miR-199a-5p, which increased
the activation of Wnt/β-catenin pathway, ultimately culminating

FIGURE 2
Role of lncRNAs in EMT and Metastasis.
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in the regulation of endothelial-mesenchymal transition promoter
SNAI1 (Hu Z. et al., 2023). Kumar and Datta in 2022 demonstrated
that the upregulation of H19 in skeletal muscles in mice promoted
insulin resistance in type 2 diabetes via increased IRS1 and
downregulated HDAC6 expression. Furthermore, H19 inhibition
normalized HDAC6 levels and protected the muscles from
diabetes-mediated insulin dysfunction (Kumar and Datta, 2022).
Increased levels of circulating lncRNAs NONHSAT054669.2 and
ENST00000525337 were found in pregnant women suffering from
gestational diabetesmellitus (GDM) and such lncRNAs can be used as
an early biomarker for GDM (Jiang et al., 2023). Manna et al., in
2022 also showed that increased levels of lncRNA TUG1 combined
with hsa-miR-607 and hsa_circ_0071106 in peripheral blood can be
used as a prognostic marker type 2 diabetes mellitus, showing
75.2% combined sensitivity of diagnosis at and 100% specificity
(Su et al., 2022). In high fat diet-induced GDM mice,
TUG1 depletion promoted the expression of miR-328-3p,
resulting in the activation of SREBP-2-mediated extracellular
signal-regulated kinase (ERK) signaling pathway, causing insulin
resistance and apoptosis of pancreatic islet cells. Upregulation of
TUG1 promoted competitive binding with the target miR-328-
3p, normalizing the expression of SREBP-2 and protected the
mice from insulin resistance and apoptosis (Tang et al., 2023).
Increased expression of LncRNA TUNAR (TCL1 upstream
neural differentiation-associated RNA) in β-cells of patients
with T2DM have shown positive correlation with the Wnt
pathway as demonstrated by Zhou et al., in 2021. TUNAR
suppressed Wnt antagonist Dickkopf-related protein 3
(DKK3) via interaction with histone modifier enhancer of
zeste homolog 2 (EZH2), causing upregulation of Wnt
pathway and regulate β-cell proliferation (Zhou et al.,
2021) (Table 1).

3.2 Cardiovascular diseases

The risk factors associated with cardiovascular diseases, such as
high glucose/diabetic condition, lipid accumulation, cytokines and
oxidative stress (Ross et al., 2019), can be linked to the regulatory
expression of lncRNAs. Metastasis-associated lung adenocarcinoma
transcript 1, also known as MALAT1, mainly associated with cancer,
has shown significant expression in endothelial cells and
cardiomyocytes in response to CVD risk factors (Zeng et al., 2018;
Zhao et al., 2016;Wang and Zhou, 2018) and was intimately connected
with the pathophysiological processes of CVD including autophagy,
apoptosis and pyroptosis (Zhao et al., 2017; Song et al., 2018; Tang
et al., 2015). MALAT1 interacted with various miRNAs such as miR-
145, miR-22-3p, miR-155, miR-503, miR-214, and miR-92a associated
with plaque formation, inflammation, hypertension, angiogenesis,
activates Wnt/β-catenin signalling causing increased endothelial-
mesenchymal transition, promote lipid accumulation by stabilising
SREBP-1c protein, leading to regulation of atherosclerosis and also
play a huge role in myocardial infarction, inflammation and cardiac
remodelling (Yan et al., 2020) (Table 1). Myocardial infarction-
associated transcript (MIAT) is another lncRNA involved in
myocardial diseases. It has overexpression in patients with high
glucose conditions and regulates the functions of endothelial cells
via the miR-150-5p/VEGF feedback loop (Yan et al., 2015) (Table 1).
MAIT also played a huge role in cardiac fibrosis after infarction, as its
expression increased in mouse infarction models and its knockdown
improved cardiac condition by inhibiting collagen production and
proliferation of cardiac fibroblasts (Qu et al., 2017). NEAT1, or
Nuclear-enriched abundant transcript 1, is a lncRNA linked to
coronary artery disease (CAD)-associated ischemia/reperfusion (I/R)
injury. NEAT1 enhanced I/R injury by activating both apoptosis and
autophagy in the cardiac cells of diabetic mice (Ma et al., 2018)

FIGURE 3
Role of lncRNAs in Angiogenesis.

Frontiers in Cell and Developmental Biology frontiersin.org04

Roy et al. 10.3389/fcell.2024.1423279

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1423279


TABLE 1 Roles of lncRNAs in the disruption of normal cellular operations and their involvement in various disease processes.

Disease
category

lncRNA Mechanisms and functions References

Diabetes H19 Downregulated in hyperglycaemia; overexpression
abrogates endothelial-mesenchymal transition related to
diabetic retinopathy

Thomas et al. (2019)

Upregulated in Skeletal muscles; promote insulin
resistance via increased IRS1 expression and decreased
HDAC6 levels

Kumar and Datta (2022)

HOTAIR Upregulated in diabetes; aggravates angiogenesis in
diabetic retinopathy, increases VEGF-A, ANGPTL4, PGF,
HIF, IL-1β, and promotes mitochondrial dysfunction and
oxidative damage

Biswas et al. (2021)

LOC100132249 Promotes endothelial dysfunction in diabetic retinopathy
via sponging of miR-199a-5p and activation of Wnt
pathway

Hu et al. (2023a)

NONHSAT054669.2 and
ENST00000525337

Can act as a biomarker for gestational diabetes mellitus Jiang et al. (2023)

TUG1 Interacts with miR-328-3p and regulate SREBP-2 mediated
ERK signalling pathway; can also act as a biomarker for
T2DM.

Su et al. (2022), Tang et al. (2023)

TUNAR Regulates β-cell proliferation in T2DM via suppression of
Wnt antagonist Dickkopf-related protein 3 (DKK3)

Zhou et al. (2021)

Cardiovascular
Diseases

MALAT1 Associated with endothelial cells and cardiomyocytes in
CVD; interacts with miRNAs (miR-145, miR-22-3p, miR-
155, miR-503, miR-214, miR-92a); affects plaque
formation, inflammation, hypertension, angiogenesis;
stabilizes SREBP-1c protein; regulates atherosclerosis,
myocardial infarction, inflammation, cardiac remodeling

Zeng et al. (2018), Zhao et al. (2016), Wang and Zhou
(2018), Zhao et al. (2017), Song et al. (2018), Tang et al.
(2015), Yan et al. (2020)

MIAT Overexpressed in high glucose conditions; regulates
endothelial cells function via miR-150-5p/VEGF feedback
loop; involved in cardiac fibrosis post-infarction

Yan et al. (2015), Qu et al. (2017)

NEAT1 Enhances I/R injury by activating apoptosis and autophagy
in diabetic mice’s cardiac cells

Ma et al. (2018)

CARL Inhibits mitochondrial fission by sponging miR-539;
enhances PHB2 mRNA interaction, downregulates
apoptosis

Wang et al. (2014)

APF Acts as a decoy for miR-188-3p; promotes binding with
ATG7, regulating autophagic cell death in CAD-associated
I/R injury

Wang et al. (2015)

SENCR Downregulated in high glucose; overexpression reverses
inhibition of smooth muscle cell proliferation and
migration

Zou et al. (2015), Wang and Sun (2020)

TINCR Associated with NLRP3-mediated pyroptosis in diabetic
cardiomyopathy and regulated by METTL14 expression

Meng et al. (2022)

ZFAS1 Acts as a ceRNA for miR-150-5p, regulating Cyclin D2
(CCND2) expression

Ni et al. (2021)

GAS5 Upregulated CYP11B2 expression in cardiomyocytes;
promote myocardial damage and apoptosis

Zhuo et al. (2021)

Kidney Diseases MALAT1 Increased expression in type 2 diabetes-related kidney
disease; aggravates renal fibrosis via miR-145/FAK axis;
knockdown ameliorates hypoxia-induced kidney damage
via miR-204/APOL1/NF-κβ signaling

Zhou et al. (2020), Liu et al. (2020), Lu et al. (2021)

TUG1 Associated with diabetic kidney disease; protects against
high glucose-induced damage by regulating TIMP3,
sponging miR-377; alleviates LPS-induced podocyte
damage via miR-197/MAPK pathway; ameliorates I/R
injury by inhibiting apoptosis via miR-494-3p/E-cadherin
activation

Li and Susztak (2016), Long et al. (2016), Wang et al.
(2019a), Duan et al. (2017), Zhao et al. (2019a), Chen
et al. (2021a)

(Continued on following page)
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(Table 1). CARL (Cardiac apoptosis-related lncRNA) inhibited
mitochondrial fission by sponging miR-539 and enhancing its
interaction with prohibitin 2 (PHB2) mRNA, downregulating
apoptosis (Wang et al., 2014) (Table 1) and APF (Autophagy-
promoting factor-related lncRNA) act as a decoy for miR-188-3p,
furthering its binding with ATG7, regulating autophagic cell death
in CAD-associated I/R injury (Wang et al., 2015) (Table 1). SENCR or
Smoothmuscle and endothelial cell-enrichedmigration/differentiation-
associated long noncoding RNA, associated with T2DM, have shown
downregulation in db/dbmice exposed to high glucose. Overexpression
of SENCR seemed to play an important role in diabetic cardiomyopathy
as it reverses the inhibition of mouse vascular smooth muscle cell
proliferation and migration by high glucose levels (Zou et al., 2015;
Wang and Sun, 2020) (Table 1). Meng et al. (2022) studied the effects of
the expression of lncRNA TINCR (Terminal differentiation-induced
non-coding RNA) and methyltransferase METTL14 in DCM-induced
rat tissues. Downregulation of METTL14 enhanced TINCR expression
in the cardiomyocytes and enhanced pyroptosis in diseased animals.
METTL14 upregulation promoted m6A methylation of TINCR gene,
inhibiting its expression and also reduced pyroptosis by suppressing
NLRP3 expression (Meng et al., 2022). LncRNA ZFAS1
(ZNFX1 antisense RNA1) showed significant association with
diabetic cardiomyopathy in db/db mice. ZFAS1 acts as a ceRNA for
miR-150-5p, which promote Cyclin D2 (CCND2) expression and

knockdown of ZFAS1 lead to reduced collagen deposition,
decreased apoptosis and ferroptosis and alleviated DCM
progression (Ni et al., 2021). Expression of lncRNA GAS5
(Growth arrest specific 5) showed increment along with the
upregulation of CYP11B2 in high glucose-induced AC16
cardiomyocytes and a streptozotocin (STZ)-induced rat diabetes
model as shown by Zhou et al., in 2021. Moreover, attenuation
of GAS5 inhibited high glucose-induced myocardial damage
and apoptosis by targeting miR-138 and downregulating
CYP11B2 expression (Zhuo et al., 2021) (Table 1).

3.3 Kidney diseases

In the case of renal pathology, the Majority of kidney diseases
stem from overlapping conditions that affect other parts of the body,
such as diabetes and hypertension and can also be tissue-specific,
such as acute injury, inflammation, glomerular, mesangial and
tubulointerstitial diseases (Guo et al., 2019; Ignarski et al., 2019).
MALAT1 showed increased expression in type 2 diabetes-related
kidney disease, acting as a diagnostic marker and therapeutic target
(Zhou et al., 2020). The non-coding RNA molecule has been shown
to aggravate renal fibrosis by sponging miR-145 and interrupting the
miR-145/FAK axis that regulates TGF-β activity (Liu et al., 2020).

TABLE 1 (Continued) Roles of lncRNAs in the disruption of normal cellular operations and their involvement in various disease processes.

Disease
category

lncRNA Mechanisms and functions References

MEG3 Overexpression linked to hypoxia-induced kidney injury
via miR-181b/TNF-α; silencing alleviates kidney injury

Pang et al. (2019)

XIST Targets and downregulates miR-217; downregulation
alleviates podocyte apoptosis and kidney injury via miR-
217/TLR4 axis; inhibits apoptosis and inflammation in
renal fibrosis via miR-19b/SOX6 pathway

Jin et al. (2019), Xia et al. (2021), Huang et al. (2014),
Ma et al. (2021)

DLX6-AS1 Linked with albuminuria; promoted cellular damage and
inflammatory responses in podocytes through miR-346-
mediated regulation of GSK-3β pathway

Guo et al. (2023)

ENST00000436340 Promoted diabetic kidney disease progression and
podocyte damage by interacting with PTBP1

Hu et al. (2023b)

Inflammatory
Diseases

ANRIL Overexpressed in ulcerative colitis; aggravates
inflammation via miR-323b-5p/TLR4/MyD88/NF-κβ
pathway

Qiao et al. (2019)

TUG1 Protective effect on intestinal tissue in ulcerative colitis by
targeting miR-142-3p/SOCS1

Han et al. (2020)

GAS5 Connected with glucocorticoid responses in pediatric IBD. Lucafò et al. (2018)

CCAT1 Promotes IBD-induced malignancy via MLCK activity and
miR-185-3p

Ma et al. (2019)

Various lncRNAs Involved in atherosclerosis (e.g., SNHG12, MeXis, LeXis,
MANTIS, NEXN-AS1, ANRIL, MEG3, CHROME,
CERNA1: atheroprotective; GAS5, LASER, CCL-2, SMILR,
TUG1, MAIT, NEAT1: atherogenic)

Arslan et al. (2017), Josefs and Boon (2020), Li et al.
(2016)

Various lncRNAs Dysregulation linked to rheumatoid arthritis (e.g.,
HOTAIR, H19, LOC100652951, LOC100506036,
LincRNA-p21, NR024118, C5T1, MALAT1, MEG3,
NEAT1, ZFAS1, GAS5); associated with pro-inflammatory
cytokines and MMPs

Miao et al. (2021), Li et al. (2018)
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Furthermore, the knockdown of MALAT1 ameliorated the
progression of hypoxia-induced acute kidney damage via
upregulation of miR-204 and inhibition of APOL1/NF-κβ
signalling (Lu et al., 2021) (Table 1). Taurine upregulated gene 1,
or TUG1, is another lncRNA that shows an association with diabetic
kidney diseases and can be correlated to disease-specific damage in
the kidney due to sepsis and ischemia/reperfusion (I/R) stress.
TUG1 expression decreased in diabetic podocytes, which caused
detrimental metabolic changes in mitochondrial structure and
function by regulating PGC-1α expression levels and led to
energy depletion and increased ROS generation, ultimately
culminating in diabetic kidney disease (Li and Susztak, 2016;
Long et al., 2016). TUG1 expression protects kidney cells from
high glucose-induced damage by promoting overexpression of
TIMP3 through interaction with miR-21 (Wang F. et al., 2019),
preventing accumulation of ECM proteins like fibronectin, TGF-β,
PAI-1 and type-4 collagen by sponging miR-377 (Duan et al., 2017)
in diabetic nephropathy, ameliorated LPS-induced podocyte
damage by downregulating miR-197 and MAPK expression
(Zhao D. et al., 2019) and alleviated I/R-mediated acute kidney
injury by inhibiting apoptosis through interaction with miR-494-3p
and activation of E-cadherin in HK2 cells (Chen L. et al., 2021)
(Table 1). MEG3 or maternally expressed gene 3 overexpression in
acute renal allografts demonstrated hypoxia-induced kidney injury
by sponging miR-181b and upregulating TNF-α activity, all of which
was alleviated by silencing MEG3 using siRNA (Pang et al., 2019)
(Table 1). LncRNA X-inactive specific transcript or XIST have
intimate ties to kidney diseases. XIST targets and downregulates
mir-217, a negative regulator of TLR4 and downregulation of XIST
alleviated podocyte apoptosis and kidney injury in membranous
nephropathy by mir-217/TLR4 axis (Jin et al., 2019). Knockdown of
XIST also inhibited apoptosis and inflammation caused by renal
fibrosis in mice model by mir-19b mediated downregulation of
SOX6 (Xia et al., 2021), and several studies demonstrated XIST as a
potential biomarker for diseases related to glomerular nephropathy
(Huang et al., 2014; Ma et al., 2021) (Table 1). Guo et al. (2023)
investigated the role of a novel lncRNA DLX6-AS1 in diabetic
nephropathy. They found that DLX6-AS1 expression in DN
patients was linked with the extent of albuminuria and
overexpression of the RNA molecule promoted cellular damage
and inflammatory responses in podocytes through miR-346-
mediated regulation of the Glycogen Synthase Kinase (GSK)-3β
pathway whereas knockout of the lncRNA ameliorated glomerular
podocyte injury and albuminuria (Guo et al., 2023). Another
lncRNA, ENST00000436340 promoted diabetic kidney disease
progression and podocyte damage by interacting with poly-
pyrimidine tract binding protein 1 (PTBP1), promoting RAB3B
mRNA degradation, and thereby causing cytoskeleton
rearrangement and inhibition of GLUT4 translocation to cell
membrane (Hu J. et al., 2023) (Table 1).

3.4 Inflammatory diseases

Owing to its property to interact with various cellular
macromolecules and regulate the pathways related to immune
response and inflammation, lncRNAs can be traced to have
significant roles in inflammatory disease processes (Liao et al.,

2018). In the context of inflammatory bowel diseases, lncRNA
ANRIL, a 3.8K nucleotide-long antisense lncRNA present in the
INK4 loci, demonstrated overexpression in ulcerative colitis and
aggravated inflammation by negatively regulating miR-323b-5p,
which itself is a negative regulator of TLR4/MyD88/NF-κβ
pathway (Qiao et al., 2019) (Table 1). TUG1 showed a protective
effect on intestinal tissue, both in-vivo and in-vitro, in ulcerative
colitis by inhibiting inflammation-induced ROS and pro-
inflammatory cytokines through targeting miR-142-3p and
enhancing SOCS1 production (Han et al., 2020) (Table 1).
lncRNA Growth Arrest Specific 5 or GAS5 display connection
with glucocorticoid responses in pediatric IBD (Lucafò et al.,
2018) (Table 1) and CCAT1 or Colon Cancer-associated
Transcript 1 promotes IBD-induced malignancy by enhancing
myosin light chain kinase (MLCK) activity and downregulating
miR-185-3p (Ma et al., 2019) (Table 1). Atherosclerosis, associated
with the buildup of fatty plaque on the arterial walls and localised
monocyte activation and inflammation, has intricate linkage with
the differential expression of lncRNAs in patients (Arslan et al.,
2017). Several long non-coding RNA molecules such SNHG12,
MeXis, LeXis, MANTIS, NEXN-AS1, ANRIL, MEG3, CHROME,
CERNA1 show atheroprotective effects, whereas atherogenic
lncRNA molecules like GAS5, LASER, CCL-2, SMILR, TUG1,
MAIT, NEAT1 promote plaque buildup and inflammation via
transcriptional and epigenetic regulation and protein
modification in smooth muscle cells, endothelial cells and
macrophages (Josefs and Boon, 2020; Li et al., 2016) (Table 1).
Autoimmune and inflammatory consequences of rheumatoid
arthritis such as cartilage erosion and destruction, synovial
hyperplasia, inflammatory joint fluid and synovium, marginal
bone erosion can be linked to the dysregulation of lncRNAs like
HOTAIR, H19, LOC100652951, LOC100506036, LincRNA-p21,
NR024118, C5T1, MALAT1, MEG3, NEAT1, ZFAS1, GAS5.
Such malregulations are associated with the overexpression of
pro-inflammatory cytokines like IL-1β, IL-6, IL-8, IL-10 and
matrix metalloproteinases like MMP2, MMP13, resulting in
increased inflammation, collagen destruction, apoptosis and
aggravation of arthritic condition (Miao et al., 2021; Li et al.,
2018) (Table 1).

4 LncRNAs in cancer

Due to the diverse interactome of lncRNAs in the cellular and
subcellular levels, it is shown to be involved in various important
regulatory and developmental functions. But on the other hand, this
also implicates lncRNAs as the driver of several disease processes.
Many lncRNAs have undergone differential expression in various
cancer types, establishing their signature in disease-associated
development, dysregulation and damage. LncRNAs may control
cell migration, invasion, apoptosis, proliferation, and stemness in
cancer development. The abnormal development of lncRNAs and
their participation in various cellular functions make them potential
cancer therapeutic targets.

Cancer is a multistage disease comprising complex interactions
with various cellular, subcellular and extracellular factors, ultimately
culminating in the unregulated growth, immortalisation of cells, loss
of adhesive capabilities, increase in cellular plasticity, destruction of
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tissue structure, inflammation, immune escape, spreading of
dysregulated cells and tumour development (Hanahan, 2022).
The hallmarks of cancer development can be traced back to four
main events –

1) Insensitivity to growth-inhibiting factors and Self-sufficiency
in growth-promoting factors

2) Epithelial-Mesenchymal Transition
3) Angiogenesis
4) Metastasis

4.1 LncRNAs regulating insensitivity to
growth-inhibiting factors and self-
sufficiency in growth-promoting factors

Regulation of growth factors is an important matric separating
normal cellular growth from the cancerous phenotype. Normal
cellular homeostasis is maintained by a highly controlled and
steady balance of growth-promoting factors like epidermal
growth factors (EGF), insulin-like growth factors (IGF), fibroblast
growth factors (FGF) and vascular endothelial growth factors
(VEGF) with tumor suppressors like TP53, PTEN, p21, p53, RB,
etc. in the presence of external stimuli. Cancer cells differ from
normal cells due to insensitivity to external stimulation, resulting in
loss of cellular homeostasis, promoting self-sustaining growth
signals and altered expression of growth inhibitors.

LncRNAs have shown remarkable crosstalk with the cellular
growth-regulating proteome (Table 2). Decreased expression of
lncRNA H19 promoted endometriosis in women via
downregulation of IGF signalling via H19/Let-7/IGF1R axis.
H19 acted as a ceRNA for miRNA Let-7, which, in turn, targeted
IGF1R. Overexpression of H19 decreased Let-7 expression and
upregulated the mRNA levels of IGF1R, promoting endometrial
cell growth (Ghazal et al., 2015). Vennin et al., in 2015 also
demonstrated that increased H19 levels promoted the
tumorigenesis of breast cancer via upregulation of its by-product,
miRNA-675, which led to the decreased expression of ubiquitin
ligase E3 family proteins - c-Cbl and Cbl-b (Vennin et al., 2015).
Furthermore, H19-derived miRNA-675 has been reported to inhibit
the expression of tumour suppressor RB in colorectal cancer,
promoting tumour growth (Tsang et al., 2010) and displaying
cancer cell-proliferating activity in bladder cancer by inhibiting
p53 activation and decreasing Bax/Bcl-2 ratio (Liu et al., 2016).
The involvement of lncRNA CAR intergenic 10 (CAR10) in the
growth of lung cancer was studied by Wei et al. (2016). The study
showed that the binding of CAR10 with Y-box-binding protein 1
(YB-1) stabilizes the transcription factor, resulting in the increased
expression of EGFR, enhancing cancer growth. Downregulation of
the RNA molecule in A549 cells in vivo suppressed cell growth and
inhibited the expression of YB-1 and EGFR (Wei et al., 2016). Lower
levels of lincRNA-p21 found in liver cirrhosis and fibrosis directly
correlate to the decreased expression of tumor suppressor p21.
Upregulation of lincRNA-p21 enhanced p21 expression and
inhibited cell-cycle progression and proliferation of primary
hepatic stellate cells (HSCs) (Zheng et al., 2015). Sun et al.
(2016) associated the increased expression of lncRNA FGFR3-
AS1 with tumor growth, metastasis, and poor survival in

osteosarcoma. The RNA molecule targeted the 3′ UTR of its
antisense transcript, FGFR3, promoting its expression and
downregulation of FGFR3-AS1 inhibited tumor proliferation in-
vitro. LncRNA PTENP1 showed tumour-suppressive effects in
gastric cancer by sponging miR-106b and miR-93, upregulating
the expression of tumour inhibitor PTEN (Zhang et al., 2017).

4.2 LncRNAs in epithelial-mesenchymal
transition

Epithelial-mesenchymal transition is an important physiological
process that mainly entails the change occurring in the adherent
nature of epithelial cells and their transition into the mesenchyme.
Although EMT is involved in several normal body functions such as
embryogenesis, organ development, wound healing, etc., its
deregulation can be implicated in diseases such as fibrosis and
cancer. EMT is a marker of cancer growth and progression and
can be associated with immunoresistant and chemoresistant
attributes of some cancer types. The transition basically
progresses with the loss of the epithelial polarity (Baso-apical
polarity) of the abnormal cells, which results in the loss of their
adhesion junctions, cascading to the degradation of the extracellular
matrix. The transitioning cells also display downregulated epithelial
surface markers such as E-cadherin, occludin, claudin-1 and
upregulation of mesenchymal markers like α-SMA (Smooth
Muscle Actin), fibronectin, vimentin (Fedele et al., 2022; Liu L.
et al., 2022).

Several cellular signalling pathways are involved in the
regulation of the EMT process, including but not limited to
transforming growth factor (TGF)-β/Smad, Wnt/β-catenin, PI3K/
AKT, ERK/MAPK, p38 MAPK and JAK/STAT pathways, further
leading to the regulation of EMT-specific transcription factors like
SNAIL, TWIST and ZEB (Fedele et al., 2022; Fedorova et al., 2022).
The involvement of non-coding RNA molecules like lncRNAs in
EMT can be traced back to their crosstalk with the different cellular
pathways involved in the dysregulation of the epithelial/
mesenchymal marker expression, through interaction with other
noncoding RNAs and also through the epigenetic changes brought
about by the RNA molecules (Table 3; Figure 2). LncRNA HOTAIR
(HOX Transcript Antisense RNA) have shown significant
association with the progression of cancer through the process of
EMT. Jarroux et al., 2021 investigated the role of HOTAIR in the
epigenetic stimulation of EMT and found the interaction between
the non-coding RNA and LSD1 (Lysine demethylase) significantly
promoted epithelial cell migration via repressive methylation
(H3K27) in the chromatin which was alleviated by the
overexpression of LSD1 (Jarroux et al., 2021). Furthermore,
HOTAIR promoted oxaliplatin resistance and EMT in colorectal
cancer via negative regulation of miR-1277-5p and knockdown of
HOTAIR significantly upregulated miR-1277-5p expression,
increasing chemosensivity through inhibition of ZEB1 expression
(Weng et al., 2022). Silencing of HOTAIR also decreased EMT in
Pancreatic cancer cells by downregulating mesenchymal markers,
increasing E-cadherin expression and inhibiting the Wnt/β-catenin
pathway (Tang et al., 2021). In 2022, Wu et al. demonstrated that
suppression of lncRNA MALAT1 (Metastasis-Associated Lung
Adenocarcinoma Transcript 1) inhibited the cancer stem cell
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(CSC)-like properties of laryngocarcinoma cells via miR-708-5p/
YAP1/BRD4 axis (Wu et al., 2022). The epigenetic link of
MALAT1 to EMT was uncovered by Zhao et al., showing N6-
methyladenosine (m6A)-methyltransferase METTL3 upregulated
EMT in breast cancer by overexpression of MALAT1.
MALAT1 act as a sponge for miR-26b, which further interacts

with HMGA2 (High Mobility Group A2) to promote EMT.
Silencing METTL3 suppressed EMT by inhibiting
MALAT1 expression, establishing the MALAT1/METTL3 axis of
EMT in breast cancer (Zhao et al., 2021). Wang et al.,
2022 demonstrated the potential of lncRNA CRNDE (Colorectal
neoplasia differentially expressed) as a viable target for inhibiting the

TABLE 2 LncRNAs regulating Insensitivity to growth-inhibiting factors and Self-sufficiency in growth-promoting factors.

Sl no. Name of
lncRNA

Type of disease/
Cancer

Function References

1 H19 Endometriosis Sponges miRNA Let-7, promoting upregulation of IGF1R Ghazal et al.
(2015)

Breast cancer lncRNA-derived miRNA-675 targets ubiquitin ligase E3 family proteins - c-Cbl and
Cbl-b, promoting tumor growth

Vennin et al.
(2015)

Colorectal cancer miRNA-675 suppresses the expression of RB Tsang et al. (2010)

Bladder cancer miRNA-675 Inhibits p53 expression and decrease Bax/Bcl-2 ratio Liu et al. (2016)

2 CAR10 Lung cancer Stabilizes YB-1, prompting increased transcription of EGFR Wei et al. (2016)

3 LincRNA-p21 Liver cirrhosis and Fibrosis Regulates expression of tumor suppressor p21 Zheng et al. (2015)

4 FGFR3-AS1 Osteosarcoma Promotes increased expression of its antisense transcript, FGFR3 Sun et al. (2016)

5 PTENP1 Gastric cancer Enhances the expression of tumor inhibitor PTEN by sponging miRNA-106b and
miRNA-93

Zhang et al. (2017)

TABLE 3 LncRNAs in epithelial-mesenchymal transition.

Sl no. Name of
lncRNA

Type of cancer Function References

1 HOTAIR Colorectal cancer Promotes oxaliplatin resistance via miR-1277-5p/ZEB1 axis Weng et al. (2022)

Pancreatic cancer Upregulates Wnt/β-catenin pathway and promotes expression of mesenchymal
markers

Tang et al. (2021)

2 MALAT1 Laryngocarcinoma
Breast cancer

Targets miR-708-5p, modulating the expression of BRD4 (Bromodomain-containing
protein 4) and YAP1 (Yes-associated protein 1)

Wu et al. (2022)

METTL3 upregulated MALAT1 expression. MALAT1 sponge miR-26b, causing
interaction with HMGA2

Zhao et al. (2021)

3 CRNDE Ovarian cancer Competitively binds to miR-423-5p and promote expression of Fascin actin-bundling
protein 1 (FSCN1)

Wang et al.
(2022a)

4 XIST Osteosarcoma Acts as a bridge between HuR and AGO2, supporting EMT Liu et al. (2021a)

5 MEG3 Breast cancer Inhibits EMT via modulating SLFN5 expression Gu et al. (2022)

Nasopharyngeal carcinoma Downregulates SQSTM1 expression, ameliorating EMT Zhou et al.
(2022a)

6 NEAT1 Osteosarcoma Binds to miR-483, enhancing expression of EMT markers Chen et al.
(2021b)

Retinoblastoma Repress miR-24-3p expression and promote overexpression of N-cadherin, vimentin Luan et al. (2021)

7 H19 Ovarian cancer Acts as ceRNA for miR-140-5p, activating PI3K/AKT pathway Xu et al. (2021a)

Gastric cancer Upregulates Wnt/β-catenin pathway by promoting nuclear translocation of β-catenin Liu et al. (2022b)

8 LITATS1 Breast and Small cell lung
Cancer

Suppresses TGF-β/SMAD signaling, causing retention of SMURF2 and inhibiting EMT Fan et al. (2023a)

9 LETS1 Breast and Lung Cancer Promotes EMT by interacting NEAT5, which protects the TβRI receptor from
degradation creating a positive feedback loop for TGF-β signaling

Fan et al. (2023b)

10 MIR200CHG Gastric Cancer Sponges miR-200c and miR-429, inhibiting EMT Zhu et al. (2023)
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spread of ovarian cancer. CRNDE has shown differential expression
along with its counterpart miR-423-5p in ovarian cancer cell lines
and played a role in the expression of a major oncoprotein, FSCN1.
Moreover, silencing of the CRNDE/FSCN1 axis stopped the
extracellular matrix degradation and EMT in cancer cells via
inhibition of MMP-2 and MMP-9 (Wang Q. et al., 2022).
LncRNA XIST (X-inactive specific transcript) showed association
with osteosarcoma EMT by acting as a bridge between Human
antigen R (HuR) and argonaute RISC catalytic component AGO2.
Silencing of HuR suppressed AGO2 expression, and decreased
AGO2 inhibited the EMT and migration of OS cells (Liu Y.
et al., 2021). In 2022, Gu et al. combined an in silico approach
with in-vitro studies to determine the connection of lncRNA MEG3
(Maternally expressed gene 3) with the migration and EMT of breast
cancer. The study showed reduced MEG3 expression in a Pan-
cancer context and also demonstrated the reduced expression profile
of the non-coding RNAmolecule in high-invasive breast cancer cells
compared to low-invasive cells. Furthermore, the expression of
MEG3 was tightly correlated with the expression of Schlafen-5
(SLFN5), and overexpression of MEG3 ameliorated EMT in
highly invasive breast cancer cells by modulating
SLFN5 expression via MEG3/miR-146b-5p/SLFN5 axis (Gu et al.,
2022). Downregulation of MEG3 also promoted sequestosome 1
(SQSTM1) expression in nasopharyngeal carcinoma cells and is
responsible for the increased migration, invasion and EMT in NPC
cells (Zhou C. et al., 2022). The promotional effects of NEAT1
(Nuclear paraspeckle assembly transcript 1) in the invasiveness and
migration of osteosarcoma cells were shown by Chen et al. (2021a).
NEAT1 enhanced EMT in OS cells by sponging miR-483, which
targets STAT3 in the 3′ UTR region. The binding of miR-483 with
NEAT1 increased STAT1, STAT3 and other EMT markers in
U2O3 cells and greatly helped in EMT and metastasis of cancer
cells (Chen et al., 2021b). Additionally, silencing of NEAT1 also
inhibited EMT in retinoblastoma cells by upregulating miR-24-3p
expression, which further targets LRG1 (leucine-rich-α-2-
glycoproteins) and downregulating EMT markers such as
N-cadherin, vimentin (Luan et al., 2021). LncRNA H19 has been
shown to regulate ovarian cancer migration via interaction with
non-coding RNA miR-140-5p. The lncRNA exhibited sponging of
miR-140-5p, activating the overexpression of the PI3K/AKT
pathway and promoting EMT and migration (Xu H. et al., 2021).
H19 also participated in the promotion of EMT and aggressiveness
of gastric cancer by inducing the translocation of β-catenin into the
nucleus, thereby activating the Wnt/β-catenin pathway (Liu J. et al.,
2022). LncRNA LITATS1 among others is a critical player of EMT in
breast and non-small cell lung cancer cells which is also a keeper of
epithelial integrity as well as suppressor of TGF-β/SMAD signaling.
This suppression further results in cytoplasmic retention of
SMURF2 and subsequently inhibiting EMT and cell migration.
This role of lncRNA LITATS1 potentiates its effectiveness for a
favorable survival outcome for breast and small cell lung cancer
patients (Fan et al., 2023a). Contrastingly, lncRNA LETS1 is an
activator of TGF-β induced EMT contributing to the oncogenicity of
breast and lung cancer by increasing cancer cell migration and
extravasation. LETS1 was found to interact with a transcription
factor NEAT5, which in turn protected the TβRI receptor from
degradation creating a positive feedback loop for TGF-β signaling
and initiating EMT downstream (Fan et al., 2023b). LncRNA

MIR200CHG is another candidate that sponges a microRNA
miR-200c, protecting it from degradation and inhibiting EMT
downstream while other findings in this regard suggest that
MIR200CHG modulates miR-429 further regulating EMT in
gastric cancer. Reports regarding lncRNA MIR200CHG has been
contradictory considering its role in regulating EMT in other cancer
types but in case of Microsatellite stable/epithelial-mesenchymal
transition subtype of gastric cancer it has been established with solid
evidence that MIR200CHG is a master regulator of EMT and
promoter hypermethylation-mediated MIR200CHG silencing is
attributed to poor prognosis in gastric cancer patients (Zhu
et al., 2023).

4.3 LncRNAs in angiogenesis

Angiogenesis is the process of new blood vessel formation from
pre-existing vasculature. It is an important physiological process
that is regulated by the differential expression of Pro and Anti-
angiogenic factors in the cellular microenvironment of growing
organisms. Normally, migration and growth of mesoderm-
derived endothelial cells bring about the angiogenic changes that
mainly occur during embryonic development, wound healing,
platelet formation, and menstrual cycle. However, physiological
angiogenesis differs broadly from cancer angiogenesis as in
physiological conditions, angiogenesis is tightly regulated by the
balance of Pro and Anti-angiogenic factors as well as interactions
with other cell types present in the vasculature such as pericytes,
macrophages, endothelial cells and immune cells. Hypoxia-induced
due to excessive tumour metabolism and growth produce optimal
conditions for the production of pro-angiogenic factors like
Vascular Endothelial Growth Factors (VEGFs), Platelet Derived
Growth Factors (PDGFs), Angiopoietins, Matrix
Metalloproteinases (MMP-2, 9), Interleukins (IL-1, 6, 10),
Integrins and overexpression of such proteins activate the
angiogenic switch in Tumor Endothelial Cells (TECs). In
addition to the increased oxygen demand aggravating the
angiogenic condition in tumours, Non-endothelial tumour cells
can also participate in angiogenesis through the process of
“vasculogenic mimicry,” where non-endothelial cells behave as
endothelial cells due to the constant pro-angiogenic signals
present in the microenvironment and form abnormal blood
vessels. Angiogenesis in cancer directly correlates to tumour
growth and is shown to promote metastasis (Ayoub et al., 2022;
Ozel et al., 2022).

The association of lncRNAs with angiogenesis can be traced
back to the crosstalk of the non-coding RNAmolecules with cellular
pathways associated with oncogenesis, including PI3K/AKT/mTOR,
STAT3, NF-κβ, ERK/MEK, all of which are significantly bound to
the expression of proangiogenic VEGFs and also associated with the
vasculogenic mimicry and immunosuppressive characteristics of
cancer cells (Zhao J. et al., 2019) (Table 4; Figure 3). LncRNA
MALAT1 showed significant association with the angiogenesis of
osteosarcoma by targeting miR-150-5p, resulting in upregulation of
VEGF-A, consequently increasing the production of critical pro-
angiogenic factors (Vimalraj et al., 2021). MALAT1 also promoted
angiogenesis in Multiple myeloma by modulating the miR-15a/
16 expression and promoting tumorigenesis via the miR-15a/16/
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VEGFA axis (Yan et al., 2023). In malignant glioma cancer, a
correlation between the expression of lncRNA PVT1 and
angiogenesis has been observed. PVT1 targeted the expression of
miR-1207-3P, which, in turn, regulated the production of
Hepatocyte Nuclear Factor 1-β (HNF1-B), promoting
angiogenesis and spreading of cancer (Bi et al., 2021). Zhou
et al., 2022 studied the connection between the non-coding RNA
transcriptome and the pathway promoting cellular migration and
angiogenesis in glioma cells. The study observed that lncRNA
H19 upregulated the expression of Wnt5a, a promoter of cellular
migration and mediated angiogenesis by the overexpression of the
Wnt/β-catenin axis. H19 also suppressed the expression of anti-
angiogenic microRNA miR-342, which targeted the cellular
migration pathways and further aggravated tumorigenesis (Zhou
Q. et al., 2022). Furthermore, H19 has been observed to

downregulate the expression of several anti-angiogenic
microRNAs in smokers, including miR-29, miR-30a, miR-107,
miR-140, miR-148b, miR-199a and miR-200. Such noncoding
RNA molecules regulate the production of critical angiogenic
factors like VEGFs, PDGFs and HIFs, leading to increased
cellular migration and angiogenesis in several cancer types like
bladder cancer, breast cancer, colorectal cancer, glioma, gastric
adenocarcinoma, hepatocellular carcinoma, meningioma, non-
small-cell lung carcinoma and oral squamous cell carcinoma
(Shirvaliloo, 2023). Jia et al. demonstrated the involvement of
lncRNA DANCR in the overexpression of pro-angiogenic signals
in melanoma. The inherent property of lncRNAs as sponges for
microRNAs came to play a huge role as DANCR targets miR-5194,
an anti-angiogenic RNA molecule that regulates angiogenesis in
normal conditions. Downregulation of miR-5194 promoted

TABLE 4 LncRNAs in angiogenesis.

Sl no. Name of
lncRNA

Type of cancer Function References

1 MALAT1 Osteosarcoma Targets miR-150-5p, resulting in the
upregulation of VEGF-A

Vimalraj et al. (2021)

Multiple myeloma Regulates the expression of miR-15a/16 as
ceRNA, promoting overexpression of
VEGF-A

Yan et al. (2023)

2 PVT1 Glioma Sponges miR-1207-3p, increasing HNF1-B
expression, thereby enhancing MAPK
signalling

Bi et al. (2021)

3 H19 Glioma Suppresses miR-342 and promote Wnt5a
expression

Zhou et al. (2022b)

4 DANCR Melanoma Promotes angiogenesis via inhibition of miR-
5194 and encouraging expression of VEGF-B

Jia et al. (2023)

5 NEAT1 Gastric cancer, ovarian cancer and
hepatocellular carcinoma

Interacts with different microRNAs such as
miR-17-5p, miR-127-5p, modulating
pathways like AKT/mTOR, TGF-β/Smad,
resulting in promotion of angiogenesis

Xu et al. (2021b), Yuan et al. (2021), Guo
et al. (2022a)

6 BLACAT3 Bladder cancer Regulates expression of NCF2/p67 phox,
promoting tumor formation

Xie et al. (2023)

7 LOC101928222 Colorectal cancer Modulate METTL16-mediated m6A-
dependent pathways which lead to pro-
angiogenic effects

Chang et al. (2024)

8 PART1 Oesophageal cancer Acts as a sponge of miR-302a-3p, setting
CDC25A free, resulting in cell cycle
progression and tumor angiogenesis

Ding et al. (2023)

9 HITT Colorectal cancer Repress HIF-1α expression through its YB-1-
binding motif and titrates away YB-1 from the
5′UTR of HIF-1α mRNA

Wang et al. (2020)

10 lncRNA-APC1 Colorectal cancer interacts with Rab5b mRNA and decreases its
stability which leads to inhibition of exosome
production

Wang et al. (2021)

11 CPS1-IT1 Melanoma Inhibits the expression of Cyr6 that eventually
downregulated its downstream pro-
angiogenic factors VEGF and MMP9

Zhou et al. (2019)

12 LncRNA-CCDST Cervical cancer Degrades pro-oncogenic factor
DHX9 through ubiquitin proteasome pathway

Ding et al. (2019)

13 LINC00908 Triple Negative Breast Cancer Encodes a polypeptide ASRPS, which reduces
STAT3 phosphorylation and eventually
inhibits VEGF expression

Wang et al. (2019b)
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angiogenesis and tumour proliferation via overexpression of VEGF-
B, which was suppressed by the knockdown of the lncRNA,
validating the role of the non-coding RNA in cancer
development (Jia et al., 2023). Increased transcription levels of
lncRNA NEAT1 can be associated with the proliferation,
aggressiveness and angiogenesis of several cancer types such as
gastric cancer, ovarian cancer and hepatoma carcinoma due to
the crosstalk with the autophagic AKT/mTOR pathway, its ability
to act as a competing endogenous RNA (ceRNA) to anti-angiogenic
miRNA molecules like miR-17-5p, mir-127-5p and the subsequent
enhancement of pro-angiogenic signalling such as TGF-β/Smad,
VEGFs, FGFs and MMPs (Xu Y. et al., 2021; Yuan et al., 2021; Guo
J. et al., 2022). LncRNA BLACAT3 was found to have regulatory
effects on the expression of NCF2/p67 phox which is clinically
correlated with poor prognosis in bladder cancer patients. The
angiogenic role of lncRNA BLACAT3 was further confirmed
when BLACAT3 knockdown bladder cancer cells were unable to
colonize and cause tumor formation, when xenografted in Balb/C
nude mice (Xie et al., 2023). In a very recent study it was found that a
novel lncRNA LOC101928222 was significantly upregulated in
colorectal cancer (CRC) patients as well as in CRC cell lines.
Further, it was found that LOC101928222 increased cholesterol
synthesis significantly by modulating METTL16-mediated m6A-
dependent pathways which lead to pro-angiogenic effects (Chang
et al., 2024). Recently, exosomal lncRNAs gained attention in
regards to their significant role in the oncogenic environment.
Such as the lncRNA PART1 of EC9706 exosomes, which was
found to be involved in oesophageal cancer angiogenesis by
acting as a sponge of miR-302a-3p, setting CDC25A free which
further resulted in cell cycle progression and tumor angiogenesis as
evident by human umbilical vein endothelial cell proliferation
in vitro (Ding et al., 2023). LncRNAs HITT and lncRNA-APC1
showed anti-angiogenic property in colorectal cancer (Wang et al.,
2020; Wang et al., 2021). HITT was found to suppress angiogenesis
by repressing HIF-1α expression through its YB-1-binding motif
titrates which titrates away YB-1 from the 5′UTR of HIF-1αmRNA
(Wang et al., 2020). Whereas lncRNA-APC1 interacts with Rab5b
mRNA and decreases its stability which leads to inhibition of
exosome production (Wang et al., 2021). CPS1-IT1 also showed
antiangiogenic property in melanoma by inhibiting the expression
of Cyr61 and eventually its downstream pro-angiogenic factors
VEGF and MMP9 (Zhou et al., 2019). LncRNA-CCDST
exhibited antiangiogenic property in cervical cancer by
degradation of pro-oncogenic factor DHX9 through ubiquitin
proteasome pathway (Ding et al., 2019). LINC00908 an
antiangiogenic LncRNA found in TNBC, which encodes a
polypeptide ASRPS, which reduces STAT3 phosphorylation and
eventually inhibits VEGF expression (Wang Y. et al., 2019).

4.4 LncRNAs in metastasis

Metastasis is the process of progression of cancer where cancer
cell cells from the primary tumour site spread throughout the body
and colonise other parts to form secondary tumours. It is the
deadliest event to occur during cancer development and is the
collective consequence of the complex cross-reactions between
the tumour cells and the tumour microenvironment. Metastasis

is a multistage event initiated from the start of tumorigenesis. After
tumour formation, cancer cells degrade the extracellular matrix
using proteases such as MMPs, exposing the cancer cells to the
mesenchyme and promoting EMT of the cancer cells. Increased
oxygen requirement of the tumour due to its enhanced growth and
metabolism creates a suitable hypoxic condition, and interactions
with the endothelial cells in such conditions create the environment
for angiogenesis. The transitioned cancer cells then invade the newly
formed vessels via intravasation, allowing the cancer to access the
bloodstream, from where it spreads across the body, protecting itself
from the host immune responses by modulation of self-antigens,
secreting chemokines to modulate immune cell responses and
recruit immuno-suppressive cells to counteract the immune
system. When the site of the secondary infection is reached, the
cancer cells invade the tissue surrounding the vessels by
extravasation and begin the cycle of new tumour formation,
leading to the relapse of the disease. EMT, Angiogenesis,
impaired autophagic and apoptotic pathways, immune escape
and suppression–all the events leading to cancer growth and
progression all culminate in metastasis (Majidpoor and
Mortezaee, 2021; Neophytou et al., 2021; Benboubker et al., 2022).

LncRNAs participate in the metastasis of cancer in both active
and passive manner. Passively, lncRNA molecules have been shown
to affect key processes associated with the metastatic machinery,
such as the upregulation of EMT and angiogenic pathways by
modulating epigenetic and transcriptional changes, encouraging
migration and invasion and regulating autophagic and
inflammatory pathways, increasing cancer cell survivability. On
the other hand, the non-coding RNAs also play an active role in
promoting a metastatic microenvironment by modulating immune
responses in immune cells via the production of cytokines and
chemokines, enhancing immune escape and viability of tumour cells
and stimulating metastatic colonisation of migratory cells into the
secondary tumour sites in the body (Liu SJ. et al., 2021) (Table 5;
Figure 2). LncRNAHOTAIR has been shown to regulate autophagic
and cellular growth responses in breast cancer by competitively
binding with the non-coding miR-130a-3p. MiR-130a-3p
modulated the metastatic spreading of the carcinoma via
Suv39H1/AKT/mTOR axis and sponging of the non-coding RNA
by HOTAIR upregulated Suv39H1 responses, promoting cancer cell
growth and metastasis (He W. et al., 2022). Li et al. further
demonstrated the effects of HOTAIR on cancer metastasis by
regulation of hepatocellular adhesion molecule (hepaCAM).
Expression of hepaCAM was inversely related to the HOTAIR in
prostate cancer due to repression of hepaCAM promotor by
HOTAIR-mediated recruitment of PRC2 and downregulation of
hepaCAM promoted metastasis by the abnormal activation of
MAPK signalling pathway. HOTAIR depletion regenerated
hepaCAM levels in the cells and restricted cancer growth and
metastasis, indicating HOTAIR/hepaCAM/MAPK axis to be a
potential therapeutic roadway for prostate cancer (Li et al.,
2021a). Knockdown of MALAT1 suppressed proliferation and
metastasis of head and neck squamous cell carcinoma by
upregulating Von Hippel–Lindau tumour suppressor (VHL).
Downregulation of MALAT1 decreased the expression of cell
migratory factors like n-cadherin, vimentin and SNAIL, stabilised
the β-catenin and NF-κβ pathways by regulating the expression of β-
catenin and p65 and promoted apoptosis in tumour cells by
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upregulating cleaved caspase three and PARP, such effects being
reversed by the downregulation of VHL (Duan et al., 2023). The
expression of NF-κB-interacting lncRNA (NKILA) depreciated in
several cancer types, such as oral squamous cell carcinoma and
oesophageal squamous cell carcinoma. Overexpressing NKILA
attenuated cancer metastasis and tumorigenesis by blocking the
translocation of NF-κB component p65 from the cytoplasm into the

nucleus and inhibiting the phosphorylation of IκBα, thereby
downregulating NF-κB signalling. Furthermore, NKILA also
regulates TGFβ signalling and has been shown to decrease
MMP14 levels in cancer, resisting cancer migration and
metastasis (Hu et al., 2020; Lu et al., 2018). In a recent study, a
novel lncRNA LOC105369504 was identified, which was found to be
a potential functional lncRNA having tumor suppressive as well as

TABLE 5 Role of lncRNAs in Metastasis.

Sl no. Name of lncRNA Type of cancer Function References

1 HOTAIR Breast cancer Modulates miR-130a-3p expression and regulates
metastatic spreading via Suv39H1/AKT/mTOR
axis

He et al. (2022a)

Prostate cancer Inhibits hepaCAM expression and promotes
metastasis by activation of MAPK pathway

Li et al. (2021a)

2 MALAT1 Head and neck squamous cell carcinoma Suppresses Von Hippel–Lindau tumor suppressor
(VHL) and inhibits apoptosis

Duan et al. (2023)

3 NKILA Oral and oesophageal squamous cell
carcinoma

Inhibits phosphorylation of IκBα, thereby
mitigating metastasis via downregulating NF-κB
signalling

Hu et al. (2020), Lu et al. (2018)

4 NORAD Breast cancer Sponges miR-155-5p and increase the expression
of tumour suppressor SOCS1

Liu et al. (2021c)

Lung cancer Acts as a ceRNA for miR-28-3p, resulting in the
upregulation of oncogenic transcription factor
E2F2

Tao et al. (2022)

5 SNHG3 Gastric cancer Prevents the association of miR-139-5p to
transcription factor MYB, promoting metastasis

Xie et al. (2021)

6 SNHG14 Hepatocellular carcinoma Interacts with miR-206 and promotes upregulation
of SOX9, inhibiting apoptosis and encouraging
metastasis

Lin et al. (2021)

7 SNHG18 Non-small cell lung cancer Sequestrates miR-211-5p, resulting in the
upregulation of BRD4

Fan et al. (2021)

8 LINC00467 Glioma Promotes glioma cell proliferation and invasion by
interfering with DNMT1 binding to p53 and
reducing p53 expression

Zhang et al. (2020)

Lung adenocarcinoma Interacts with miR-4779 and miR-7978, causing
metastasis and proliferation

Chang and Yang (2020)

9 LINC00909 Pancreatic cancer Inhibits SMAD4 expression, activating the MAPK/
JNK signaling pathway, leading to tumorigenicity
and high metastasis

Li et al. (2024)

10 LOC105369504 Colorectal cancer Binds directly to the protein of paraspeckles
compound 1 (PSPC1) and regulates its stability
using the ubiquitin-proteasome pathway causing
suppression of progression and metastasis of
colorectal cancer

Zhan et al. (2023)

11 LIMT Colorectal cancer Blocks the Proliferation and Metastasis of
Colorectal Cancer Cells via Regulating miR-27b-
3p/HOXA10 Axis

Li and Guo (2020)

Breast cancer Inhibits cell proliferation and invasion through the
Wnt/beta-catenin signaling pathway in breast
cancer

Yuan et al. (2019)

Gastric cancer Regulates miR-27a-3p/TET1 axis leading to
inhibition of growth and metastasis of GC cells

Guo and Li (2020)

Hepatocellular cancer Inhibits EGF-induced invasion and EMT. Hu et al. (2022)

12 LncRNA-LET Hepatocellular cancer Inhibits NF90, which is known to promotes
tumorigenicity through PI3K/Akt pathway

Yang et al. (2013)
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antimetastatic activity in colorectal cancer cells by regulating the
protein of paraspeckles compound 1 (PSPC1) (Zhan et al., 2023).
Another lncRNA LIMT (lncRNA inhibiting metstasis) also known
as LINC01089 also found to inhibit the proliferation and metastasis
of different cancers like colorectal cancer, breast cancer, gastric
cancer and hepatocellular cancer (Li and Guo, 2020; Yuan et al.,
2019; Guo and Li, 2020; Hu et al., 2022). LncRNA-LET showed
antimetastatic activity through its association with NF90, which is
known to promotes tumorigenicity through PI3K/Akt pathway
(Yang et al., 2013). LncRNA NORAD showed conflicting
associations in tumour growth, cancer progression and
metastasis. In breast cancer, cellular levels of NORAD were
downregulated compared to the control. Overexpression of the
non-coding RNA further showed antimetastatic and anti-
proliferative effects on breast cancer cells by increasing DNA
damage and apoptosis via sponging miR-155-5p. The increment
of miR-155-5p levels was observed in breast cancer cell lines, and
targeting of mir-155-5p by NORAD positively regulated the tumour
suppressor protein SOCS1, showing ameliorative effects in vitro (Liu
W. et al., 2021). Inversely, Mao et al. investigated the role of NORAD
in Lung cancer progression and found that lncRNA was strongly
expressed in the lung cancer cell lines compared to normal cells.
Mechanistically, they showed NORAD to be acting as a ceRNA to
miR-28-3p. MiR-28-3p directly targets transcription factor E2F2, a
well-known oncogene associated with poor survival in several cancer
types such as breast cancer, ovarian cancer, retinoblastoma, and
NORAD-mediated downregulation of the microRNA promote
overexpression of the oncogenic transcription factor, leading to
increased tumour growth and metastasis (Mao et al., 2022). The
lncRNAs of the Small Nucleolar Host Gene (SNHG) family are
found to have significant interactions with the pathways related to
tumour proliferation, growth, invasion and metastasis. Xie et al.,
2021 observed the role of lncRNA SNHG3 in the metastasis and
growth of gastric cancer. SNHG3 targeted miR-139-5p,
competitively binding to the microRNA molecule and preventing
its association with transcription factor MYB, known to regulate cell
growth, apoptosis and DNA damage repair. Sequestration of miR-
139-5p upregulated MYB expression, promoting cancer growth,
tumorigenesis and metastasis (Xie et al., 2021). Sponging of miR-
206 by lncRNA SNHG14 promoted cancer proliferation and
metastasis in hepatocellular carcinoma by overexpression of
SOX9 as demonstrated by Lin et al. citing a strong connection of
the non-coding RNAmolecule with the tumorigenesis. They further
annotated that the knockout of SNHG14 and SOX9 suppressed
tumour migration and invasion by upregulation of miR-206 and
increased apoptosis in cancer cells, all of which was reversed by the
repression of miR-206 (Lin et al., 2021). In non-small cell lung
cancer, Megakaryocytic leukaemia 1 (MKL1)-induced lncRNA
SNHG18 encouraged metastatic growth and proliferation by
sequestrating miR-211-5p, which results in the upregulation of its
downstream target Bromo-domain containing protein 4 (BRD4),
which is a well-known regulator for cancer development (Fan et al.,
2021). LncRNA LINC00467 is another such that was previously
reported to have a role in glioma progression by interfering with
DNMT1 binding to p53, which is an essential component for the
initiation and progression of glioma. It was found that
LINC00467 promoted glioma cell proliferation and invasion by
reducing the p53 expression (Zhang et al., 2020). Not limited to

its activity in glioma, LINC00467 was also found to be actively
involved in lung adenocarcinoma (LAD) contributing to its poor
prognosis. The proliferative role of LINC00467 was further
confirmed by its knockdown in LAD cell lines which resulted in
inhibition of cell proliferation as well as cell apoptosis promotion via
interacting with miR-4779 and miR-7978 (Chang and Yang, 2020).
These findings further clue towards the already reported associative
role of lncRNAs with miRNAs in cancer metastasis providing deeper
insights into the complex oncogenic pathology (Ren et al., 2024;
Wang and Chen, 2023). Similarly, a cytoplasmic lncRNA
LINC00909 was found to inhibit SMAD4 expression at the post-
transcriptional level thereby activating the MAPK/JNK signaling
pathway leading to tumorigenicity and high metastasis in pancreatic
cancer (Li et al., 2024).

5 LncRNAs in tumor-leukocyte
consortium: inflammation and immune
escape in the cancer
microenvironment

The cellular diversity of the cancer microenvironment provides
an intriguing facet of study for understanding the complex
interactions occurring within the tumour itself. Among the
varying heterogeneity of cells present in the cancer matrix,
leucocytes play some of the most important roles associated with
the regulation of the disease condition, from encouraging apoptosis
and inflammation in tumour tissues, demonstrating ameliorative
action on the disease to promoting angiogenesis, immune
suppression and metastasis of cancer cells, contributing to cancer
growth and development. Tumour-associated macrophages (TAMs)
are one of the most abundant leucocytes found in the tumour
microenvironment, mainly recruited in their monocyte form by
the cancer cells via secretion of chemokine signals like C-C motif
chemokine ligands (CCL2, CCL18, CCL20), C-X-C motif
chemokine ligands (CXCL12), VEGF-A etc., commonly
differentiating into two conflicting subgroups–M1 and
M2 macrophages. These groups differ in morphology, phenotype,
inductivity and activity. TH1-induced M1 macrophages promote
anticancer activities through the expression of pro-inflammatory
and immune-stimulatory cytokines, exhibiting phagocytosis and can
be activated by pro-inflammatory signals like Interferon-γ (IFN-γ),
lipopolysaccharides (LPS), TNF-α to produce reactive oxygen
species (ROS) and nitric oxide (NO), stimulating apoptosis and
cell death. In contrast, M2 macrophages are generally activated by
TH2 cell responses (IL-4, IL-10 and IL-13) and show
immunosuppressive activities like inhibition of T-cell responses,
overexpression of scavenger receptors like CD68, CD163 and
CD206, which are associated with expression of high expression
of IL-10, IL-1β, VEGF, and MMPs and upregulation of NF-κβ-
mediated factors that protect against apoptosis-like IL-1β, IL-6,
TNF-α, CCL2, CXCL8, and CXCL10, ultimately supporting
tumour progression, growth, invasion and metastasis (Xiang
et al., 2021; Zhu et al., 2021). Other than TAMs, Tumour-
infiltrating lymphocytes (TILs) are also present in the tumour
microenvironment, comprising heterogeneous populations of
CD4+, CD8+ (T cells), CD20+ (B cells), NK and T regulatory
cells. TILs are emerging as a promising approach in cancer
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therapy when used in combination with conventional
chemotherapeutic approaches, suppressing cancer progression
through the generation of cytotoxic and cell-mediated immune
responses in tumorigenic conditions and promoting ameliorative
effects (Paijens et al., 2021; Liu D. et al., 2022; Kazemi et al., 2022).

The interrelation of lncRNAs with inflammation and immune
response has been the topic of extensive study over the years
(Walther and Schulte, 2021), and the effects of such RNA
molecules on the behaviour of the TAMs in the tumorigenic
microsystem provide valuable insight into the process of tumour
growth progression and metastasis. Han et al., 2021 investigated the
effects of lncRNA CRNDE on the progression of liver cancer.
CRNDE showed significant upregulation in THP-1 cell lines
when co-cultured with LC cell line H22 and overexpression of
the lncRNA induced M2 polarisation in the macrophage cells via
upregulation of IL4/13 stimulation, leading to expression of
M2 markers such as CD163, TGFβ, IL10, CCI22, CCL22 being
increased as well in the co-cultured macrophages compared to
control. Similar results were observed in normal THP-1 cells
induced with IL4/13 as co-culture of the induced macrophages
with Human umbilical vein endothelial cells (HUVEC) cells
upregulated VEGF, Notch1, Dll4 and VEGFR2 expression in
HUVEC cells, promoting migration and indicating the role of
M2 macrophages in the angiogenesis of cancer cells (Han et al.,
2021). Intergenic non-coding RNAs LINC00665 and
LINC00337 promoted the shift of macrophage polarity to
M2 and enhanced tumour progression. In gastric cancer,
overexpression of LINC00665 induces M2 polarisation in
macrophages via targeting transcription factor BTB domain and
CNC homology 1 (BACH1), boosting Wnt signalling and is
connected to increased immunogenic tolerance and progression
of the tumour, decreasing overall survival in cancer patients
(Yang et al., 2022). LINC00337, on the other hand, showed an
increased expression profile in breast cancer and was directly
responsible for the increment in expression of M2 markers like
IL13, CCL2 and Macrophage-colony stimulating factor (M-CSF),
promoting M2 polarisation. Furthermore, such changes enhanced
breast cancer cell survival, providing chemoresistance against
paclitaxel and also promoting cancer progression through
overexpression of EMT markers like N-cadherin and vimentin
(Xing et al., 2021). LncRNA Small Nucleolar Host Gene 1
(SNHG1) promoted M2 polarisation in breast cancer-associated
macrophages as evidenced by the attenuation of the macrophage
RAW 264.7 activation and downregulation of M2 markers after IL4/
13 stimulation in SNHG1 knockout conditions. Furthermore,
SNHG1 knockdown also downregulated STAT/JAK signalling
and inhibited tumorigenesis and migration of MCF-7 cells by
regulating CD36 and CD206 markers (Zong et al., 2021). The
decreased expression profile of TAM-associated lncRNA Growth
Arrest Specific 5 (GAS5) was correlated with the negative prognosis
in endometrial cancer. Overexpression of GAS5 encouraged anti-
tumorigenic conditions in EC mainly in 3 ways–promoting
M1 polarisation in TAMs by microRNA-21– phosphatase and
tensin homolog (PTEN)–AKT axis (miR-21/PTEN/AKT axis),
increasing phagocytosis and immune cell activation in cancer
environment and suppressing the nuclear accumulation and
phosphorylation of oncogenic yes-associated protein 1 (YAP1) in
TAMs (Tu et al., 2022). In ovarian cancer, Extracellular vesicles from

the TAMs support the immune escape of cancer cells via the transfer
of non-coding RNA NEAT1. NEAT1 acts as a ceRNA in oncogenic
cells, targeting miR-101-3p and enhancing the expression of ZEB1,
resulting in the proliferation of ovarian cancer cells, tumour growth
and apoptosis of CD8+ cells via miR-101-3p/ZEB1/PD-L1 pathway
(Yin and Wang, 2023). Yao et al. demonstrated that nasopharyngeal
cancer cells-associated exosomal RNA TP73-AS1 increased NPC
proliferation by sponging miR-342-3p and also supported pro-
tumor M2 polarisation of TAMs via transfer through exosomes
as witnessed by increment of M2markers like CD206 andMRC-2 in
control macrophage cells when co-cultured with TP73-AS1
overexpressing CNE-2 cells (Yao et al., 2022). LncRNA HOTAIR,
as observed by Wang et al., when transferred via exosomes from
dysregulated cells of the tumour to the macrophages in the vicinity,
can promote M2 polarisation in laryngeal squamous cell carcinoma
as evidenced by the increased expression of CD163 and
CD206 markers. Furthermore, THP-1 macrophages co-cultured
with TU212 and TU177 showed increased expression of IL10,
CCL18 and IL4 and have been shown to promote EMT in LSCC
via modulation of PTEN/PI3K/AKT axis (Wang J. et al., 2022). In
hepatocellular carcinoma, MEG3 overexpression by the LPS/IFN-γ
induced M1 macrophages demonstrated antitumor effects as
MEG3 expression in the cancer cells was significantly reduced
and increased expression of MEG3 by the M1 macrophages
suppressed metastasis and angiogenesis of HCC cells by targeting
miR-145-5p and downregulating the production of disabled 2
(DAB2) protein. MEG3 also inhibited IL4/13 stimulated
M2 polarisation as upregulation of MEG3 expression in M2-Bone
Marrow-Derived Macrophages (M2-BMDMs) downregulated
M2 markers like CD206, YM1, MRC and ARG1, ameliorating
tumour proliferation in macrophage-Huh7 co-culture (Wei et al.,
2023). LncRNA HIF-1A stabilising long non-coding RNA (HISLA)
derived from exosomes of M2 macrophages promoted bladder
cancer proliferation and migration via stabilisation of β-catenin
(Guo Y. et al., 2022) and pancreatic cancer-derived exosomal
lncRNA FGD5-AS1 enhanced M2 polarisation in TAMs by
interacting with p300, promoting acetylation of STAT3 and
activating STAT3/NF-κβ highway (He Z. et al., 2022). Silencing
of lncRNA DCST1-AS1 inactivated the NF-κβ pathway, repressed
M2 polarisation and inhibited the proliferation of Oral Squamous
Cell Carcinoma, thereby regulating tumour growth and associated
inflammation (Ai et al., 2021). NIFK-AS1 attenuated
M2 polarisation in endometrial cancer-associated macrophages
by sponging miR-146a, resulting in upregulation of
Notch1 signalling (Zhou et al., 2018) and exosomal lncRNA
RPPH1 in colorectal cancer promoted M2 polarisation, causing
metastasis of cancer cells (Liang et al., 2019).

However, unlike TAMs, the association of lncRNAs with TILs
has been a relatively recent topic of research. Deng et al., 2022,
identified 10 TIL-related lncRNAs that are differentially expressed in
patients suffering from renal cell carcinoma using various statistical
analyses. Among these non-coding RNA molecules, lncRNA
AC084876.1 demonstrated a significant association with the
progression and prognosis of RCC. Downregulation of
AC084876.1 decreased the expression of PD-L1 and TGF-β and
prevented the growth and invasiveness of cancer cells (Deng et al.,
2022). Tao et al. also developed a prognostic model of TIL-based
lncRNA expression in breast cancer using Kaplan-Meier survival
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analysis, Multivariate Cox regression analysis, and receiver-
operating characteristic (ROC) curves. The model successfully
predicted overall survival and was able to distinguish between
cold and hot tumours, establishing a crosslink between the TIL-
mediated expression of lncRNAs and the progression of cancer (Tao
et al., 2022).

6 LncRNAs as prognostic marker and
therapeutic target for cancer

The involvement of lncRNAs in the interactions taking place within
the oncogenic microsystem encourages their use as a therapeutic target
for the attenuation of disease-associated damage. Furthermore, the
prospect of lncRNA-based prognosis of cancer is a frontier that is being
extensively explored nowadays. Tumor suppressor long intragenic non-
coding RNA p53-induced transcript (LINC-PINT) has a role in a
variety of cancers and malignant processes. Nasopharyngeal cancer,
renal carcinoma, non-small cell lung cancer, glioblastoma, thyroid
cancer, retinoblastoma, ovarian cancer, breast cancer, oesophageal
squamous cell carcinoma, osteosarcoma, melanoma, and gastric
cancer are among those in which LINC-PINT is downregulated.
Furthermore, decreasing LINC-PINT expression indicates advanced
clinical tumour stages and a bad prognosis. Reduced LINC-PINT
expression promoted interaction with BRAF-activated non-coding
RNA/mitogen-activated protein kinase, preventing tumour
migration, invasion and proliferative growth, sensitised triple-
negative breast cancer cells (TNBC) to chemotherapeutics and
sponged miR-374a-5p, suppressing the invasiveness of ovarian
cancer (He T. et al., 2021). Upregulated lncRNA DLX6-AS1 indicate
poor prognosis in bladder cancer, breast cancer, glioma, ovarian cancer,
cervical cancer, osteosarcoma, and lung cancer, among others and can
be a candidate for therapeutic targeting (Zheng et al., 2021).
MALAT1 and HOTAIR showed significant fluctuation in their
expression under various cancer types, influencing inflammation,
autophagy, migration, metastasis and therapeutic sensitisation,
highlighting their potential for acting as a biomarker and therapeutic
candidate (Goyal et al., 2021; Raju et al., 2023; Xin et al., 2021).
However, use of lncRNAs as prognostic markers in cancer is quite
challenging as tissue specific expression of lncRNAs can significantly
alter the diagnostic pattern. Furthermore, some lncRNAs have shown
contradictory expression as well as mode of action in different cancer
types, adding an extra layer of complexity in prognosis.

Therapeutics modulating lncRNA expression in cancer has been
one of the more recent topics of research. Several synthetic and natural
compounds have shown the ability to regulate the synthesis of these
non-coding RNAmolecules and elicited profound effects on the cellular
signalling and events going on in the complex cancer
microenvironment. Curcumin, a polyphenolic compound mainly
isolated from Curcuma longa and used for its antioxidant and anti-
inflammatory effects, demonstrated inhibitory effects on the EMT of
breast cancer cells in vivo. Curcumin modulated the expression of the
lncRNA H19, which exhibited pro-EMT effect and downregulation of
the RNA molecule by curcumin treatment halted migration and
invasiveness of Tamoxifen-resistant MCF-7 cells, normalising
E-cadherin expression while decreasing N-cadherin production (Cai
et al., 2021). Furthermore, Khan et al. used a combination of Curcumin
along with N-n-butyl haloperidol iodide (F2) in hepatocellular

carcinoma. The combination (F2C) alleviated the proliferative
malignancy of the cancer cells by downregulating enhancer of zest
homolog 2 (EZH2) transcription and protein expression, resulting in
decreased migration, tri-methylation of histone H3 at lysine 27
(H3K27me3) and long non-coding RNA H19 expression (Khan
et al., 2021). LncRNA PVT1 displayed upregulation in cisplatin-
resistant ovarian cancer cells and promoted proliferation and
migration by increased PD-L1 expression. Atezolizumab treatment
and knockdown of PVT1 expression showed a synergistic effect on
the growth of ovarian cancer and promoted apoptosis of A2780cis cells
by downregulating the JAK/STAT3/PD-L1 axis (Chen et al., 2021c).
Quercetin, a flavonoid known for its antioxidant, anti-inflammatory
and anticancer activity, was studied for its regulatory capability on the
lncRNA transcriptome by Chai et al., 2021. They found that quercetin
worked against lncRNA SNHG7 as treatment of the natural
compound-induced apoptosis and arrested proliferation and
metastasis in non-small-cell lung carcinoma cells via upregulation of
miR-34a-5p, which repressed SNHG7 expression (Chai et al., 2021).
Metformin, a biguanide drug known for its antidiabetic activity,
attenuated lncRNA H19 expression in breast cancer cells.
Downregulation of H19 by metformin promoted ferroptosis in
MCF-7 cells by increasing ROS production and decreasing reduced
Glutathione (GSH) levels in the cancer cells. Furthermore, metformin
also inhibited autophagy in the treated cells, suppressing beclin-1 and
LC3 production, all of which were reversed by the overexpression of
H19 (Chen et al., 2022). Astragaloside IV, one of the active ingredients
of the herb Astragalus membranaceus, is a cyclobutane-type triterpene
glycoside that demonstrated various pharmacological activities,
including anticancer, immune-regulatory, antioxidant,
neuroprotective, and cardioprotective abilities. Astragaloside IV has
been shown to quell the spreading of breast cancer via the promotion of
lncRNA Thyrotropin Releasing Hormone Degrading Enzyme
Antisense RNA 1 (TRHDE-AS1). Astragaloside IV-mediated
upregulation of TRHDE-AS1 was shown to be correlated with the
decreased expression of key protein markers of tumour growth and
metastasis like Proliferating Cell Nuclear Antigen (PCNA), MMP9 and
MMP7, ameliorating breast cancer proliferation and migration (Hu
et al., 2021). Ginsenoside compound K, a major deglycosylated
metabolite of ginseng found in organs or blood after oral ingestion
of PPD ginsenosides in the human gastrointestinal (GI) tract, usually
known for its apoptosis-inducing effects of cancer cells, inhibited the
malignancy of renal cell carcinoma by targeting lncRNATHOR (Testis-
associated Highly-conserved Oncogenic long non-coding RNA).
THOR was significantly upregulated in RCC cells in vitro, and
compound K treatment repressed the expression of THOR,
promoting apoptosis and ROS production. Silencing of the lncRNA
exhibited similar effects as compound K treatment, establishing the
connection of THORwith the oncogenesis of RCC and compound K as
a possible therapeutic option for treatment (Chen S. et al., 2021). Shi
et al. investigated the mitigatory action of gallic acid on hepatocellular
carcinoma. Gallic acid regulated the expression ofMALAT1, which was
implicated with the EMT and tumorigenesis of HCC, and also
extinguished the migratory status of cancer cells by downregulating
the MALAT1/Wnt/β-catenin axis (Shi et al., 2021). Ketamine, a
dissociative anaesthetic mainly used for pain management in cancer,
promoted anti-proliferative status in cancer cells by modulating the
production of lncRNAPVT1. Ketamine dampened PVT1 expression in
SKOV3 and OVCAR3 ovarian cancer cells in-vitro and suppressed cell
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growth by binding to EZH2, a subunit of polycomb repressive complex
2, resulting in the increased expression of cyclin-dependent kinase
inhibitor p57 (Li et al., 2021b) and also promoted ferroptosis in liver
cancer cells by targeting PVT1, causing overexpression of the
downstream target of the lncRNA, miR-214-3p. MiR-214-3p, in
turn, competitively binds to GPX4, inducing iron-mediated
apoptosis via PVT1/miR-214-3p/GPX4 axis in liver cancer (He GN.
et al., 2021).

7 Discussion and future prospective

LncRNAs regulate key cellular mechanisms in various organs of
our body through their diverse interactome and have a major hand
in the initiation, regulation and progression of diseases related to
dysregulation of cellular functions. In the cancer microenvironment,
the multidimensional interactome of lncRNAs has been shown to
regulate key events of cancer development, mainly via modulating
fundamental cellular processes like apoptosis, autophagy and
migration. Additionally, the lncRNA-based interactions between
the immune cells, i.e., macrophages and lymphocytes, with the
cancer cells in the oncogenic microhabitat shape the
inflammatory landscape for the growth, immune escape of
tumour cells and progression of cancer. Alteration in the
sequence and structure of lncRNA can lead to the alteration in
regulatory properties of the molecule, and disease-associated
mutations have also demonstrated significant prevalence among
individuals in the diseased population (Castellanos-Rubio and
Ghosh, 2019). This makes lncRNAs an important target as well
as an attractive candidate for therapeutic purposes. Several synthetic
and natural compounds have been found to regulate lncRNA
expression in several cancer types in vivo, inhibiting cancer
growth and metastasis [163-1172, (Han et al., 2022)]. However,
the focus of lncRNA-targeted therapeutics is still largely fixed on the
anticancer frontier and should be expanded to encompass
inflammatory and autoimmune diseases as well. CRISPR-
mediated knockdown of lncRNA expression can be a frontier in
assessing the functional aspect of non-coding RNA molecules.
However, the genomic complexity of lncRNAs, the presence of
multiple introns and the relative genomic overlapping of
lncRNAs with the nearby protein-coding genes pose a challenge
to the CRISPR/Cas9-based genome editing approach (Rabaan et al.,
2023; Lyu et al., 2023). Since the expression and interactome of a
particular lncRNA can vary between different organ systems of the
body, there is still a lot to be known about the involvement of
lncRNAs in disease pathways, and a lot of research still needs to be
done. Furthermore, several lncRNAs are differentially expressed in
the samples of diseased individuals. So, the use of lncRNA as a
prognostic marker for early diagnosis of the disease is also a
potential area of study, and significant work needs to be done
here as well.
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