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The SS18-SSX fusion protein is an oncogenic driver in synovial sarcoma. At the
molecular level, SS18-SSX functions as both an activator and a repressor to
coordinate transcription of different genes responsible for tumorigenesis. Here,
we identify the proto-oncogene FYN as a new SS18-SSX target gene and examine
its relation to synovial sarcoma therapy. FYN is a tyrosine kinase that promotes
cancer growth, metastasis and therapeutic resistance, but SS18-SSX appears to
negatively regulate FYN expression in synovial sarcoma cells. Using both genetic
and histone deacetylase inhibitor (HDACi)-based pharmacologic approaches, we
show that suppression of SS18-SSX leads to FYN reactivation. In support of this
notion, we find that blockade of FYN activity synergistically enhances HDACi
action to reduce synovial sarcoma cell proliferation and migration. Our results
support a role for FYN in attenuation of anti-cancer activity upon inhibition of
SS18-SSX function and demonstrate the feasibility of targeting FYN to improve
the effectiveness of HDACi treatment against synovial sarcoma.
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Introduction

Synovial sarcoma is a deadly type of cancer that mostly affects children and young
adults. This disease is rare in that it affects an average of one to three people in one million
individuals (Rajwanshi et al., 2009; Sultan et al., 2009). Synovial sarcoma specifically targets
areas of the body where the soft tissues of joints and skeletal muscle are present. The most
common places that the tumors can be found are in the ankles or knees; however, metastases
occur in approximately 50% of synovial sarcoma patients and have been documented to
grow at distinct sites, such as the brain, liver, lung and lymph nodes (Krieg et al., 2011;
Vlenterie et al., 2016). Although pain manifests around the affected areas, synovial sarcoma
can be often misdiagnosed as arthritis or bursitis since the pain envelopes around the joints
with no obvious changes of surrounding tissue unless checked with x-rays (Li et al., 2024).
The standard treatment for synovial sarcoma, similar to other cancers, is surgery in
conjunction with radiation and/or chemotherapy (Blay et al., 2023). However, patients
with synovial sarcoma do not gain significant benefits, as the tumors commonly reoccur in
primary lesions or metastasize to different organs.

Most, if not all, of patients that contract synovial sarcoma carry a unique gene mutation
called SS18-SSX, which serves as a diagnostic biomarker in the clinic. This mutation is
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created by the fusion of two separate genes, namely, SS18 and SSX,
through chromosomal translocation (Crew et al., 1995). The
resulting SS18-SSX fusion protein retains most of the
SS18 sequence, except for a C-terminal exchange with 78 amino
acids from SSX (Ladanyi, 2001). Interestingly, wild-type
SS18 protein is a transcriptional coactivator, while SSX acts as a
mediator of repression (Brett et al., 1997; Thaete et al., 1999; dos
Santos et al., 2001). After being formed, SS18-SSX behaves as a
transcriptional regulator capable of both promoting and inhibiting
gene expression (Nielsen et al., 2015). For example, through
cooperation with the SWItch/Sucrose Non-Fermentable (SWI/
SNF) chromatin remodeling complex, SS18-SSX can perturb the
Polycomb repressive complex target regions leading to aberrant gene
activation (Kadoch and Crabtree, 2013; Banito et al., 2018; McBride
et al., 2018). Conversely, SS18-SSX can also recruit the Groucho/
Polycomb repressive complex to specific gene sites required for
transcriptional repression (Su et al., 2012; Cironi et al., 2016). In
parallel with mechanistic studies, transgenic mouse experiments
have validated the SS18-SSX fusion as a putative oncogenic driver in
synovial sarcoma (Haldar et al., 2007; Haldar et al., 2009; Jones et al.,
2016; Benabdallah et al., 2023). Despite the therapeutic value of
SS18-SSX, its complex roles in transcriptional regulation makes
synovial sarcoma very difficult to cure.

Recent evidence suggests that targeting of histone deacetylase
(HDAC) family members, and of HDAC2 in particular, facilitates
SS18-SSX degradation and inhibits its oncogenic activity in synovial
sarcoma cells (Patel et al., 2019). While several HDAC inhibitors are
currently available for synovial sarcoma trials, they have yet to be
proven the most effective way of treating this deadly disease.
Previous clinical studies indicated that HDAC inhibition alone is
not enough to fully block synovial sarcoma growth and metastasis
(Cassier et al., 2013; Chu et al., 2015). Our work has identified the
proto-oncogene FYN as a direct target of SS18-SSX and shown that
suppression of SS18-SSX by a potent HDAC inhibitor (FK228)
increases FYN expression levels, which may in turn reduces the
treatment response of synovial sarcoma cells. Moreover, we have
explored the therapeutic relevance of the FYN inhibitor PP2, which
synergistically interacts with FK228 and improves its efficacy in
inhibiting synovial sarcoma cell proliferation and migration.

Methods

Cell culture, chemicals and detailed procedures are described in
the Supplementary Material. FLAG immunoprecipitation was
performed using the M2 antibody (Sigma), as described before
(Patel et al., 2019). Chromatin immunoprecipitation (ChIP) was
performed using the Active Motif ChIP-IT Express kit, and ChIP
DNA was analyzed by SYBR Green quantitative polymerase chain
reaction (qPCR). For gene silencing, synovial sarcoma cells were
transfected with small interfering RNAs (siRNAs) using
Lipofectamine RNAiMAX according to the manufacturer’s
protocol (Invitrogen). Cellular viability and migration activity
were analyzed by the tetrazolium-based MTT and Boyden
chamber assays, respectively. Three-dimensional tumor spheroids
were generated from synovial sarcoma cells using a hanging-drop
method (Foty, 2011) and cultured in ultra-low attachment
microplates during drug treatment. Spheroid size was quantified

with ImageJ. For cellular and molecular assays, statistically
significant differences were determined by two-tailed
Student’s t-test.

Results

Identification of SS18-SSX target genes in
CRISPR-engineered synovial sarcoma cells

Lack of suitable antibodies detecting endogenous SS18-SSX
fusion protein remains a major challenge in studying synovial
sarcoma biology. We have recently used the CRISPR/
Cas9 technology to insert a FLAG-tag sequence at the 3’ end of
the SSX2 gene in human SYO-1 cells (a well-established synovial
sarcoma cell line) (Supplementary Figure S1A) (Patel et al., 2019).
While the molecular mass of naïve SSX2 gene product is about
22 kDa, the SS18-SSX2 fusion produces a higher-molecular-weight
protein of 75 kDa. In a western blot experiment, the anti-FLAG
antibody only detected a 75 kDa band representing the SS18-SSX2
fusion protein in extracts from CRISPR-modified SSX2-FLAG SYO-
1 cells (Supplementary Figure S1B, lanes 1-2). The identity of the
75 kDa protein band was further confirmed by anti-FLAG
immunoprecipitation assay. Western blot analysis of the FLAG-
SSX2 immunoprecipitates showed strong SS18 signal at 75 kDa
(Supplementary Figure S1C), indicating that the peptide sequences
of SS18 and SSX2 coexist in the FLAG-immunopurified protein. As
an additional specificity control, we also tested parental
(unmodified) SYO-1 cells and failed to detect any protein that
efficiently cross-reacts with the anti-FLAG antibody on western
blot (Supplementary Figure S1B, lanes 3-4). These results support
the idea that SSX2-FLAG SYO-1 cells express endogenous SS18-
SSX2 fusion protein carrying a C-terminal FLAG tag.

Next, we examined the genomic distribution of SS18-SSX2 in
SSX2-FLAG SYO-1 cells by chromatin immunoprecipitation
sequencing (ChIP-seq). This analysis identified 3,172 FLAG
peaks, with 12% at promoters, 49% at intragenic regions
(including exons and introns) and 36% at intergenic regions
(Supplementary Figure S2). A further examination of the peak
distance to transcription start site (TSS) revealed that FLAG-
tagged SS18-SSX2 primarily occupies genomic regions close to
the TSS (Figure 1A). Previous studies have determined a direct
role for the SS18-SSX fusion protein in regulating expression of
several cancer-related genes, such as EGR1 (Lubieniecka et al.,
2008), FOS (Su et al., 2012), IGF2 (de Bruijn et al., 2006; Sun
et al., 2006), FZD10 (Tamaki et al., 2015), SOX2 (Kadoch and
Crabtree, 2013), UNCX (Banito et al., 2018; Brien et al., 2018) and
CDH4 (Boulay et al., 2021). Our ChIP-seq data not only confirmed
the occupancy of SS18-SSX2 at known target gene regions
(Supplementary Figure S3), but also uncovered new candidate
SS18-SSX2 target genes, such as MYC, CDX2 and PDGFRA
(Figure 1B), known to be involved in the control of cell
proliferation and transformation. Through a gene ontology (GO)
analysis of FLAG ChIP-seq data, it became clear that SS18-SSX2
likely targets distinct sets of genes that are associated with specific
biological processes (Figure 1C). This observation is reminiscent of
the previously reported involvement of the SS18-SSX fusion protein
in several fundamental cellular functions including transcriptional
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regulation (de Bruijn et al., 2007; Nacev et al., 2020), neurogenic
differentiation (Ishibe et al., 2008; Banito et al., 2018), extracellular
matrix remodeling (Saito, 2013), as well as WNT/beta-catenin
signaling responsible for cell fate determination (Pretto et al.,
2006; Trautmann et al., 2014; Cironi et al., 2016). Together,
generation of SSX2-FLAG SYO-1 cells provides us with a unique
opportunity to dissect endogenous SS18-SSX2 function and gain
new insights into synovial sarcoma biology.

SS18-SSX downregulates the proto-
oncogene FYN in synovial sarcoma

The SS18-SSX fusion protein plays a critical role in both
transcriptional activation and repression by interacting with
different classes of epigenetic regulators (Nielsen et al., 2015;
Hale et al., 2019). To test the integrity of the fusion protein
complexes in SSX2-FLAG SYO-1 cells, SS18-SSX2 was first
immunoprecipitated using the anti-FLAG antibody and then
subjected to SDS-polyacrylamide gel electrophoresis. Western
blot analysis of the immunopurified products confirmed the
presence of BRG1, TLE1 and HDAC1 (Supplementary Figure
S4), three major SS18-SSX-binding proteins seen previously.
BRG1 is a core component of the mammalian switch/sucrose-
nonfermentable (mSWI/SNF) complex required for SS18-SSX-
mediated transcriptional activation (Kadoch and Crabtree, 2013;
McBride et al., 2018), while TLE1 and HDAC1 form a Groucho
corepressor complex to reduce transcription of several SS18-SSX
target genes (Su et al., 2012; Cironi et al., 2016). In addition to
immunoprecipitation analysis, a complementary genomic

approach was employed to examine the functional impact of
SS18-SSX2 on cancer gene expression (Supplementary Figure
S5). We performed differential expression analysis of RNA
sequencing (RNA-seq) data from SYO-1 cells transduced with a
nonspecific (control) short-hairpin RNA (shRNA) or a SSX2
shRNA targeting the SS18-SSX2 fusion (Supplementary Figure
S4) (McBride et al., 2018). A comparison of our ChIP-seq data
with the above RNA-seq data revealed 118 overlapping genes
(Figure 2A), which were recognized by SS18-SSX2 and whose
expression was regulated by the fusion protein. When inspecting
the OncoKB database (Chakravarty et al., 2017), we found eight
overlapping genes falling into the class of oncogenes and, as
expected, most of them (seven genes) being downregulated after
SS18-SSX2 knockdown (Figure 2A). FYN emerged as the only
“oncogene” hit showing increased expression in the absence of
SS18-SSX2 (Figure 2A and Supplementary Figure S6B). This
observation prompted us to focus on FYN for further analysis,
especially given that FYN encodes a protein kinase functionally
linked to cancer cell survival, migration and drug resistance (Peng
and Fu, 2023).

To provide a direct molecular link between the SS18-SSX2
fusion and FYN gene expression, we conducted anti-FLAG ChIP
experiments in SSX2-FLAG SYO-1 cells. The precipitated DNA was
analyzed by quantitative polymerase chain reaction (qPCR) with
distinct primer sets adjacent to the FYN promoter region. A
significant enrichment was observed at the area (P2) near the
TSS of FYN, which is consistent with the pattern of SS18-SSX2
occupancy mapped by ChIP-seq assay (Figure 2B, red bars). As a
specificity control, we examined the same FYN gene locus by ChIP-
qPCR using the non-immune IgG antibody, but no signal was

FIGURE 1
Genomic analysis of FLAG-SS18-SSX2 in CRISPR-modified synovial sarcoma cells. (A) Enrichment of FLAG-SS18-SSX2 binding sites around the
transcription start site (TSS) in CRISPR-modified (SSX2-FLAG) SYO-1 cells. (B) Examples of IGV views of FLAG ChIP-seq in parental and SSX2-FLAG cells.
(C) Gene ontology (GO) analysis of biological processes for FLAG ChIP-seq data.
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apparently enriched in the IgG-purified DNA product (Figure 2B,
white bars). Having confirmed SS18-SSX2 association with the FYN
gene, we next attempted to determine the role of SS18-SSX2 in
regulating FYN transcription. Based on the RNA-seq data from
shRNA-treated SYO-1 cells, it seems evident that SS18-SSX2
knockdown by SSX2 shRNA resulted in the induction of FYN
gene expression (Supplementary Figure S6B). As an independent
verification, we treated SYO-1 cells with a small interfering RNA
(siRNA) duplex specifically targeting the fusion region of SS18-SSX2
(Lubieniecka et al., 2008). After 2 days of incubation, FYN mRNA
level was significantly increased in SS18-SSX2-depleted SYO-1 cells
relative to the mock cells expressing a nonspecific control siRNA
(Figure 2C). These results provide evidence for the involvement of
SS18-SSX2 in downregulation of FYN gene expression. To examine
the clinical relevance of this finding, we analyzed FYN expression in
sarcoma patients (Hoadley et al., 2018) and found that FYN mRNA
levels are significantly lower in synovial sarcoma than in any type of
sarcomas that do not carry the SS18-SSX fusion (Figure 2D). It is
worth noting that two SSX genes, namely, SSX1 and SSX2, are found
to commonly be fused to SS18 in synovial sarcoma patients (Clark

et al., 1994; Kawai et al., 1998; Ladanyi et al., 2002). In this regard, we
compared the SS18-SSX2 cases with the SS18-SSX2 cases but
observed no difference in FYN gene expression between the two
fusion types (Supplementary Figure S7). Importantly, when
compared to the genetic alterations of SS18, SSX1 and SSX2
alone (including amplification, deletion, point mutations and two
gene fusions, SS18-ZNF521 and KDM6A-SSX1), both SS18-SSX1
and SS18-SSX2 cases expressed significantly reduced levels of FYN
mRNA (Supplementary Figure S7). Thus, it seems likely that FYN
downregulation in synovial sarcoma is mediated by SS18-SSX
regardless of its fusion type. In light of this, we performed
siRNA-based knockdown assay in another human synovial
sarcoma cell line (Yamato-SS) to target endogenous SS18-SSX1
fusion gene. After depletion of SS18-SSX1 from Yamato-SS cells,
FYN mRNA level was significantly elevated (Supplementary Figure
S8). This is consistent with the results obtained from SYO-1 cells,
which showed that induction of FYN gene expression is correlated
with the loss of SS18-SSX2 (Figure 2C). These observations together
with the ChIP data suggest that SS18-SSX can bind to the FYN gene
locus and repress its transcription in synovial sarcoma cells.

FIGURE 2
SS18-SSX2 represses FYN gene expression in synovial sarcoma cells. (A) Comparison of the SS18-SSX2 binding genes (detected by FLAG ChIP-seq)
and the genes differentially expressed upon SS18-SSX2 knockdown (RNA-seq) in SYO-1 cells. (B) FLAG ChIP-qPCR analysis of SS18-SSX2 occupancy at
the FYN gene locus in SYO-1 cells. (C) qPCR analysis of FYNmRNA levels in control and SS18-SSX2-knockdown SYO-1 cells. (D) FYNmRNA expression in
soft tissue sarcoma samples from the TCGA database. SS, synovial sarcoma (n = 10); LMS, leiomyosarcoma (n = 99); DAF, desmoid/aggressive
fibromatosis (n = 2); MPNST, malignant peripheral nerve sheath tumor (n = 9); UPS, undifferentiated pleomorphic sarcoma (n = 50); MFS,
myxofibrosarcoma (n = 25); DDLPS, dedifferentiated liposarcoma (n = 58). ChIP-qPCR (B) and qPCR (C) data represent mean ± SD of three independent
experiments. *p < 0.05; **p < 0.01; ****p < 0.0001 (two-tailed Student’s t-test).
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FYN expression is derepressed in response
to HDACi treatment

To gain insight into the mechanism by which SS18-SSX
represses FYN transcription, we tested the DNA-binding activity
of TLE1 and HDC1, which are known to bind to the SS18-SSX
fusion protein (Su et al., 2012; Cironi et al., 2016; Laporte et al., 2016)
and to form a chromatin-modifying complex to inhibit histone
acetylation for gene silencing (Chen et al., 1999; Choi et al., 1999;
Brantjes et al., 2001). ChIP-qPCR revealed that both TLE1 and
HDAC1 occupy the FYN promoter in SYO-1 cells (Supplementary
Figure S9A), as does the SS18-SSX fusion protein. Examination of
the histone modification status within the FYN promoter further
showed that blocking HDAC activity by the small molecule FK228
(also known as depsipeptide or romidepsin) triggers a marked
decrease in repressive histone H3 lysine 27 trimethylation
(H3K27me3), whereas TLE1/HDAC1-independent H3 lysine four
trimethylation (H3K4me3) levels remain unchanged
(Supplementary Figure S9B). Consistent with changes in histone
acetylation, which is mostly associated with transcriptional
activation, exposure of SYO-1 cells to FK228 resulted in
significant induction of FYN gene expression (Supplementary
Figure S9C). In addition to maintenance of transcriptional
repression, we previously found that HDAC activity is also
essential for stabilization of SS18-SSX protein in synovial
sarcoma cells (Patel et al., 2019). In agreement, we observed
significantly decreased occupancy of SS18-SSX at the FYN
promoter upon FK228 treatment for 18 h (Figure 3A). This is
correlated with a dramatic increase in FYN mRNA level
(Figure 3B). The expression levels of FYN in vehicle- and FK228-
treated SYO-1 cells have also been validated by western blot assay in
which 18-h exposure of FLAG-SSX2 cells to FK228 resulted in a
major decrease in SS18-SSX2 level and increase in FYN protein
abundance (Figure 3C). Similarly, addition of FK228 induced FYN
transcription and protein expression in Yamato-SS cells
(Supplementary Figure S10). These results underscore the
importance of SS18-SSX function in mediating FYN repression
and suggest inhibition of HDAC activity as a molecular

mechanism of the switch to activation of FYN in synovial
sarcoma cells.

Inhibition of FYN induces synergy with
HDACi treatment against synovial sarcoma

Although the biological function of FYN in synovial sarcoma
remains unknown, previous studies have established a critical role
for the FYN kinase in promoting cell proliferation and migration
during cancer development. In addition, it has been reported that
upregulation of FYN expression in mesothelioma and breast cancer
cells stimulates significant resistance to anti-cancer agents by
activation of anti-apoptotic and cell-cycle-regulatory proteins.
These findings opened the question of whether FYN antagonizes
the sensitivity of synovial sarcoma cells to HDACi treatment. To test
this possibility, we first treated SYO-1 cells with the small molecule
PP2, a SRC family kinase (SFK) inhibitor which preferentially blocks
the action of FYN (Hanke et al., 1996). In a cell viability assay,
addition of PP2 without the HDACi FK228 did not exhibit robust
anti-synovial sarcoma effect (Supplementary Figure S11A), in
keeping with the limited amount of FYN protein present in
SYO-1 cells (Figure 3C). Next, PP2 was tested for its ability to
modulate synovial sarcoma cell viability in the presence of FK228.
While FK228 treatment alone clearly inhibited SYO-1 cell viability,
the addition of PP2 to FK228 produced a markedly enhanced
treatment effect (Supplementary Figure S11B), correlated with a
significant reduction in half-maximal inhibitory concentration
(IC50) values (Supplementary Figure S11C). To validate this
observation more thoroughly, SYO-1 cells were treated with a
series of FK228-PP2 combinations. Cell viability was measured
2 days after treatment to generate an 8 × 8 dose-response matrix.
Using SynergyFinder (Ianevski et al., 2022), we detected a strong
synergistic response (ZIP score >5) between FK228 and PP2
(Figure 4A). Importantly, this synergistic effect was not limited
to SS18-SSX2-expressing SYO-1 cells, but was also observed in SS18-
SSX1-expressing Yamato-SS cells as reflected by the results of
viability, IC50 and SynergyFinder analyses (Supplementary Figure

FIGURE 3
Suppression of SS18-SSX2 by FK228 induces FYN expression. (A) FLAG ChIP-qPCR analysis of SS18-SSX2 occupancy at the FYN gene locus before
and after FK228 treatment. (B) qPCR analysis of FYNmRNA levels in DMSO- and FK228-treated SYO-1 cells. (C)Western blot analysis of SS18-SSX2 (anti-
FLAG) and FYN protein levels in DMSO- and FK228-treated cells. GAPDH serves as the loading control. Data represent mean ± SD of three independent
experiments. *p < 0.05; ****p < 0.0001 (two-tailed Student’s t-test).
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S12). These findings imply that FK228 induction of FYN expression
likely plays a protective role in synovial sarcoma biology, and that
blocking FYN activity by PP2 can improve the efficacy of FK228 in
synovial sarcoma treatment.

Since FYN is known to promote metastasis in many types of
cancer, we also asked whether FYN plays a similar role in synovial
sarcoma. To this end, Boyden chamber assay was carried out to
measure the transmembrane migratory activity of synovial sarcoma
cells. We observed a clear decrease in the migration of both SYO-1
and Yamato-SS cells co-treated with FK228 and PP2, when
compared to the DMSO control (Figure 4B and Supplementary

Figure S13A). By contrast, treatment with FK228 or PP2 alone did
not significantly alter SYO-1 and Yamato-SS cell migration behavior
(Figure 4B and Supplementary Figure S13A). Therefore, at least in
part, by blocking FYN activity, PP2 synergizes with FK228 to reduce
synovial sarcoma cell migration.

To further explore the therapeutic potential of the FK228-PP2
combination, we used a hanging-drop method to generate three-
dimensional (3D) tumor spheroids from SYO-1 and Yamato-SS
cells. After spheroid establishment, FK228 and PP2 were added as
either single agents or in combination. In keeping with the cell
viability results, treatment with FK228 inhibited spheroid growth,

FIGURE 4
The FYN inhibitor PP2 synergistically enhances the efficacy of FK228 in synovial sarcoma cells. (A) 3D plot depicting a synergistic response between
FK228 and PP2 in SYO-1 cells. (B) Changes in the migration of SYO-1 cells following exposure to either FK228 (0.01 μM) or PP2 (3 μM) alone or their
combination. Migrated cells were stained with crystal violet (20×magnification). (C) Effects of FK228 and PP2 treatment alone or in combination on SYO-
1 spheroid growth. Representative images of SYO-1 spheroids at day 7 in 3D culture (scale bars, 100 μm). (D) Amodel for synergy betweenHDAC and
FYN inhibitors in synovial sarcoma treatment. Data represent mean ± SD of 3-4 independent experiments. *p < 0.05; **p < 0.01; ****p < 0.0001; ns, not
significant (two-tailed Student’s t-test).
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whereas PP2 alone did not exert an obvious effect (Figure 4C and
Supplementary Figure S13B). When PP2 was combined with FK228,
we observed a more severe impairment in the growth of SYO-1 and
Yamato-SS spheroids (Figure 4C and Supplementary Figure S13B).
To extend our findings beyond the cell lines, we analyzed patient-
derived synovial sarcoma cells (namely, SS18-SSX1-positive NCC-
SS1 (Kito et al., 2018) and SS18-SSX2-positive NCC-SS2 (Oyama
et al., 2018)) for FK228-PP2 combination treatment. Consistently,
we found that PP2 alone does not have potent anti-synovial sarcoma
activity (Supplementary Figure S14A, D). However, addition of
PP2 to NCC-SS1 and NCC-SS2 cells could markedly improve the
outcome of FK228 treatment, as reflected by increased drug
sensitivity (Supplementary Figure S14B, E) and decreased
IC50 doses (Supplementary Figure S14C, F). This effect was also
observed in 3D culture, with more significant defects in NCC-SS1
and NCC-SS2 spheroid growth upon the combination of FK228 and
PP2 than the single agents alone (Supplementary Figure S14G, H).
Collectively, these observations reinforce the involvement of FYN in
synovial sarcoma cell response to HDACi treatment, and suggest
that inhibition of FYN activity may be a therapeutic strategy to
enhance the effectiveness of HDACi treatment for synovial sarcoma.

Discussion

A key step in the mechanism underlying synovial sarcoma is the
fusion of SS18 and SSX genes. The resulting SS18-SSX fusion
oncoprotein participates in both positive and negative regulation of
gene expression, which subsequently leads to the activation of
oncogenic pathways and the inhibition of tumour suppressor
pathways (Nielsen et al., 2015). In this study, we identify the proto-
oncogene FYN as a new direct target of SS18-SSX in human synovial
sarcoma cells. While FYN is known to promote cellular proliferation
and migration in multiple types of cancer (Peng and Fu, 2023), our
findings reveal that SS18-SSX exerts a negative effect on FYN
expression, at least in part, by repressing FYN transcription. This
implies that FYN accumulation, following inhibition of SS18-SSX,
could contribute to synovial sarcoma cell survival in a fusion
oncogene-independent manner (Figure 4D, left).

Histone deacetylase 1 and 2 (HDAC1/2) have been implicated in
regulation of SS18-SSX transcriptional activity and protein stability
(Lubieniecka et al., 2008; Patel et al., 2019). We find that exposure of
synovial sarcoma cells to FK228, a potent HDAC1/2 inhibitor
(Furumai et al., 2002), leads to the induction of FYN mRNA and
protein expression which could render synovial sarcoma cells resistant
to growth inhibition after loss of SS18-SSX function. In keeping with
this view, we show that combination of FK228 with the FYN inhibitor
PP2 results in a synergistic treatment effect in synovial sarcoma cells
(Figure 4D, right). Overall, our results potentially explain the clinical
observation that HDACi treatment alone elicits limited anti-cancer
activity in synovial sarcoma patients, and provide a biological
rationale for blocking FYN function to improve HDACi action in
synovial sarcoma treatment.

Finally, in terms of biological regulation and function of FYN in
synovial sarcoma, some limitations should be considered. For
example, despite a strong relationship between suppression of
SS18-SSX and FYN derepression, we do not know whether there
are other factors involved in this regulatory process. One of such

factors could be EGR1, a transcription factor found in the FYN
promoter to enhance FYN expression (Gao et al., 2009; Irwin et al.,
2015). EGR1 is a direct target of SS18-SSX (de Bruijn et al., 2006;
Lubieniecka et al., 2008) and its transcription level is negatively
correlated with SS18-SSX activity in synovial sarcoma cells (Su et al.,
2010; Laporte et al., 2016). It is possible that, in the absence of SS18-
SSX or after HDACi treatment, increased amounts of EGR1 can
facilitate activation of FYN transcription. Another limitation is that
we present drug-response results from only established cell lines and
primary cell culture, which may not fairly reflect the complex nature
of original tumors. In this regard, further studies are still required to
demonstrate the feasibility of FK228-PP2 combination strategy for
treating synovial sarcoma in clinically relevant settings, such as
human organoids and xenograft mouse models.
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