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The myosin heavy chain 9 (MYH9) gene, located on human chromosome 22,
encodes non-muscle myosin heavy chain IIA (NM IIA). This protein is essential to
various cellular events, such as generating intracellular chemomechanical force
and facilitating the movement of the actin cytoskeleton. Mutations associated
with thrombocytopenia in autosomal dominant diseases first highlighted the
significance of the MYH9 gene. In recent years, numerous studies have
demonstrated the pivotal roles of MYH9 in various cancers. However, its
effects on cancer are intricate and not fully comprehended. Furthermore, the
elevated expression of MYH9 in certain malignancies suggests its potential as a
target for tumor therapy. Nonetheless, there is a paucity of literature summarizing
MYH9’s role in tumors and the therapeutic strategies centered on it, necessitating
a systematic analysis. This paper comprehensively reviews and analyzes the
pertinent literature in this domain, elucidating the fundamental structural
characteristics, biological functions, and the nexus between MYH9 and
tumors. The mechanisms through which MYH9 contributes to tumor
development and its multifaceted roles in the tumorigenic process are also
explored. Additionally, we discuss the relationship between MYH9-related
diseases (MYH9-RD) and tumors and also summarize tumor therapeutic
approaches targeting MYH9. The potential clinical applications of studying the
MYH9 gene include improving early diagnosis, clinical staging, and prognosis of
tumors. This paper is anticipated to provide novel insights for tumor therapy.
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1 Introduction

The extensive protein superfamily of myosins plays a vital role in converting the energy
released during ATP hydrolysis into conformational changes that drive molecular motion.
Specifically, class II myosins assemble into filaments, creating force and tension through the
binding of their motor structural domains to actin filaments (Asensio-Juarez et al., 2020).
Class II myosins can be broadly classified into muscle types, including skeletal and cardiac
muscle, as well as smooth muscle, and non-muscle myosins (Cao et al., 2022). Non-muscle
class II myosins can be divided into three variants based on their heavy chains. The
MYH9 gene encodes the non-muscle myosin heavy chain A isoform, known as NM IIA
which is a member of the myosin family, binds to actin, utilizes magnesium-dependent ATP
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hydrolysis to generate mechanical force, and is often referred to as
an actin molecular motor (Pecci et al., 2018).

The MYH9 gene is increasingly associated with cancer, as
evidenced by multiple recent studies (Garlapati et al., 2024). It
assumes varying roles in different tumors, serving as either a
tumor-promoting or a tumor-suppressing gene (Islam et al.,
2023). Over 90% of deaths in patients with malignant tumors are
linked to tumor metastasis (Bakir et al., 2020). Tumor cell migration
and infiltration are critical components of the metastatic process
(Liu G. et al., 2021). Alterations in tumor cell adhesion trigger
metastasis from the primary site to distant organs, and cells
subsequently move from one metastatic site to another
(Manfioletti and Fedele, 2022). Intracellular structural proteins
play a vital role in cell migration by facilitating dynamic
cytoskeletal assembly and energy provision (Fletcher and Mullins,
2010), ultimately resulting in a poor prognosis (Bera et al., 2022).
Moreover, the MYH9 gene contributes to the development of drug
resistance in tumors (Ouyang et al., 2022), and although some
strategies exist to address this issue, additional research is
required to assess their universality and identify potentially
superior alternatives. Additionally, the mechanism underlying
drug resistance remains a focus of research.

Therapeutic interventions effective against MYH9 have been
developed, which encompass Cinobufotalin (CB) (Liu et al., 2022),
ENKUR (Hou et al., 2022a), saponin monomer 13 (DT-13) (Du H.
et al., 2016), and immunotherapy. Moreover, miRNAs (Hart et al.,

2019) and aminated fullerene (Huo et al., 2022) have also exhibited
certain effects and potential in specific malignancies.

This review presents an overview of MYH9’s role in tumors and
introduces potential therapeutic targets, aiming to offer novel
insights for exploring tumor mechanisms and treatment.

2 Structural features of MYH9 gene
and protein

The MYH9 gene is situated on human chromosome 22 q12-13,
comprising 41 exons with an approximate length of 107 kbp (Wang
et al., 2023). The first exon is non-translated, and the open reading frame
spans from exon 2 to exon 41, encoding a 1,960 amino acid protein
called non-musclemyosin heavy chain IIA (NMMHC IIA). This protein
is a broadly expressed cytoplasmic myosin involved in numerous
processes that necessitate intracellular chemomechanical force
generation and actin cytoskeletal translocation (Olson, 2022;
Safiullina et al., 2022). Its function is regulated through the
phosphorylation of its 20 kDa light and heavy chains and
interactions with other proteins. Its structure includes a consistent
segment with a molecular weight of 226.59 kD (Asensio-Juarez et al.,
2020; Allen et al., 2022; An et al., 2022). One of the key catalysts for
NMMHC IIA assembly, Rho-kinase 1 (ROCK1), is a downstream
effector of RhoA that can phosphorylate the light chain (RLC) to
control its activity and promote the unfolding of NMMHC IIA into
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an assembly-competent form. This NMMHC IIA, which is assembly-
competent, dimerizes to produce NM IIA (Tolue Ghasaban et al., 2023a;
Tolue Ghasaban et al., 2023b; Dai et al., 2023; van der Krogt et al., 2023).

The main structural element of the actin cytoskeleton is non-muscle
myosin II (NM II). Three separate genes (MYH9,MYH10, andMYH14)
encode three different types of NMHCs (IIA, IIB, and IIC), which
together make up the NM II isoforms known as NM IIA, NM IIB, and
NM IIC (Bourdais et al., 2023; Rouaud et al., 2023). NM IIA is a
hexameric molecule composed of a heavy chain dimer (230 kDa), two
regulatory light chains (20 kDa) that modulate myosin activity, and two
essential light chains (17 kDa) that reinforce the heavy chain structure.
Each heavy chain embodies the typical structure of class II myosin,
comprising two distinct structural domains: the N-terminal head
structural domain and the C-terminal tail structural domain (Parker
et al., 2014; Gao et al., 2022). The motor structural domain is situated at
theN-terminus, housing the actin-binding site and theATP-hydrolyzing
structural domain. This domain is encoded by exons 2–19. Exon
20 encodes the neck, a region where light chains bind, facilitating the
conversion of force generated by the motor domain into movement
through rotation. Exons 21 to 40 encode the coiled coil of NM IIA, a
region responsible for facilitating the dimerization of the primary
encoded product NMHC IIA, to form the NM IIA hexamer. Exon
41 encodes thefinal 34 amino acids of the non-helical tail, and this region
is highly distinct between isoforms. It plays a key role in regulating
filament formation through protein interactions and/or phosphorylation
(Barvitenko et al., 2021; Carmena, 2021; Cowan et al., 2022). Ser, Thr,
and Tyr residues are phosphorylated or dephosphorylated by RLC,
which primarily controls the activation and inactivation of NM IIA
(Brito et al., 2023). Through antiparallel interactions in their tail regions,
NMIIAmolecules group together to formNMIIA bipolarfilaments that
are around 300 nm in length (Saito et al., 2021). The structural domains
of the NM IIAmotor are free to interact with polymerized actin because
they are pointed outward from the polymer. Stress fibers or more
dynamically cross-linked actin networks are created when NM IIA
polymers bond to actin filaments (Weissenbruch et al., 2022; Brito et al.,
2023; Das et al., 2023). NM IIA can be released because ATP binding
detaches it from actin. ATP is hydrolyzed by myosin motor heads and
reattached to actin which filament contraction is aided by the release of
phosphoric acid (Pi), that causes a conformational shift (Garrido-Casado
et al., 2021; Halder et al., 2021).

There is mounting evidence that NM II family members, notably
NM IIA, are key players in the development of cancer through
bivalent binding and actin filament attachment (Weissenbruch et al.,
2021; Peng et al., 2022; Weissenbruch et al., 2022).

3 Biological functions of MYH9

The MYH9 gene encodes the NM IIA, a broadly expressed
cytoplasmic myosin that serves a significant biological role in the
human body (Yamamoto et al., 2021; Bai et al., 2022; Ren et al., 2022).

3.1 Cell movement and cell mechanics

Cell motility and mechanics reflect how cells respond to external
stimuli by migrating, contracting, and deforming. In these processes,
MYH9 serves the following functions:

CELL CONTRACTION AND DEFORMATION:
MYH9 participates in cell contraction and deformation by
interacting with actin in the cytoskeleton (Lin et al., 2017). It
modulates the organized assembly and disassembly of actin to
regulate cell contraction and deformation (Heuze et al., 2019;
Rouaud et al., 2023; Tsukita et al., 2023). MYH9 activity
influences the generation and control of intracellular mechanical
tension, thereby impacting cell morphology and movement (Barnea
et al., 2016; Law et al., 2023).

FIBRONECTIN FORMATION: MYH9 is additionally engaged
in the formation and depolymerization of fibronectin. Fibronectin is
a critical cytoskeletal component that influences the regulation of
cellular motility and mechanical characteristics. MYH9 interacts
with fibronectin and enhances its polymerization or
depolymerization, thus governing the dynamic reconfiguration of
the cytoskeleton and alterations in cell morphology (Breckenridge
et al., 2009; Garrido-Casado et al., 2021).

CELL ADHESION AND MOVEMENT: MYH9 participates in
cell adhesion and movement processes. Cells adhere to the
extracellular matrix or other cell surfaces, subsequently utilizing
the mechanical forces of actin and MYH9 to facilitate processes like
protrusion, cellular movement, and object phagocytosis (Ivanov
et al., 2009; Wang Q. et al., 2022).

MYH9 plays a crucial role in cell motility and mechanics by
participating in cell contraction, deformation, fibronectin
formation, adhesion, and movement processes (Liu et al.,
2017; Zhou et al., 2020a). Consequently, it impacts cell
morphology, mechanical properties, and influences cell
function and behavior.

3.2 Relationship between
MYH9 and platelets

A close connection exists betweenMYH9 and platelets. Platelets,
small cell fragments in the blood, primarily participate in hemostasis
and thrombosis. MYH9 exerts a significant influence on platelets,
contributing to the following aspects:

PLATELET CONTRACTION: MYH9 participates in the
regulation of platelet contraction, a critical physiological process
enabling platelets to aggregate and form thrombi in response to
vascular injury. This process is essential for hemostasis.
MYH9 interacts with actin in platelet cells, promoting platelet
contraction and enhancing thrombotic force by controlling the
organized assembly and disassembly of actin (Pal et al., 2020;
Rogerson et al., 2021).

PLATELET MORPHOLOGY: MYH9 is essential for platelet
structure and shape. By participating in the regulation of the actin
backbone, MYH9 influences platelet morphology and stability.
Mutations and abnormal expression of MYH9 can result in
changes in platelet structures and abnormalities, ultimately
affecting its functions and causing dysfunction (Baumann et al.,
2022; Cao et al., 2022).

MYH9 plays a role in platelet contraction, modulation of platelet
shape, and is associated with thrombocytopenia, among other
crucial platelet functions which could have significant
implications for platelet function, as well as the development and
progression of thrombotic diseases.
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4 Relationship between MYH9 and
neoplastic diseases

MYH9 was initially identified due to abnormalities associated
with MYH9 mutations, including conditions like May-Hegglin
anomaly (MHA) (Sung et al., 2014), Epstein syndrome (EPS)
(Pal et al., 2020), Fechtner syndrome (FTNS) (Li X. et al., 2023),
Sebastian syndrome (SBS) (Shin et al., 2011) and other autosomal
dominant disorders leading to thrombocytopenia (Althaus and
Greinacher, 2009; Furlano et al., 2019). These conditions
collectively fall under the term MYH9-related disorders or
MYH9-RD. In recent years, an increasing number of studies have
shown that MYH9 plays a significant role in cancer
(Figure 1; Table 1).

MYH9 can participate in processes like cytoskeletal
reorganization and migration as an oncogene. It is associated
with clinical staging, histological type, and tumor drug resistance
(Yang et al., 2023). It is progressively emerging as a potential
molecular marker that offers new insights for tumor prognosis
assessment and personalized treatment. Simultaneously, it can

also function as a tumor suppressor (Wang et al., 2019). These
two contrasting roles are not contradictory but rather depend on the
specific type of cancer (Figure 2).

4.1 MYH9 is involved in tumor development
as an oncogene

Increased expression of the MYH9 gene is frequently
observed in respiratory neoplasms, including lung cancer (Xu
et al., 2021; Tang et al., 2022), reproductive tumors such as
ovarian cancer (Liu L. et al., 2019; Liu L. et al., 2023), prostate
cancer (Gao et al., 2022), as well as digestive system tumors like
hepatocellular carcinoma (HCC) (Zhang F. et al., 2021; Hou
et al., 2022a; Zhao R. et al., 2022), colorectal cancer (CRC) (Song
M. et al., 2022) and esophageal cancer (EC) (Kai et al., 2022; Li Q.
et al., 2023). Hematologic tumors, such as acute myeloid
leukemia (AML) (Cui et al., 2022), and other malignancies
also exhibit high MYH9 expression, contributing to tumor
progression through diverse mechanisms (Figure 1).

FIGURE 1
MYH9 and cancers. (By Figdraw).
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TABLE 1 Summary of MYH9’s functions in the malignant characteristics of tumors.

Malignant characteristics Tumor types Expression Mechanisms References

Growth and metastasis Hepatocellular carcinoma Upregulated Activate PI3K/AKT signaling pathway Zhao et al. (2022a)

Cell proliferation and differentiation Acute myeloid leukemia Upregulated Cui et al. (2022)

Tumorigenesis and low survival rates Esophageal cancer Upregulated Kai et al. (2022)

Sunitinib resistance Clear cell renal cell
carcinoma

Upregulated Xu et al. (2022)

Malignant progression and resistance to
chemotherapy

Nasopharyngeal carcinoma Upregulated HMGA1 induces MYH9-dependent
ubiquitylation of GSK-3β through the
PI3K/Akt/c-Jun signaling pathway

Liu et al. (2019b)

The postoperative recurrence Esophageal squamous cell
carcinoma

Upregulated Activate GSK 3β/β-catenin signaling
pathway

Li et al. (2023b)

Cell migration and invasion Gastric cancer Upregulated Induces deubiquitination of β-catenin
through the process of EMT

Liu et al. (2020a)

EMT Prostate cancer Upregulated Mediate ubiquitination and degradation
of GSK 3β

Gao et al. (2022)

Nasopharyngeal carcinoma Upregulated Reduce the recruitment of the E3 ligase
UBE3A and hinder the UBE3A-mediated
degradation of p53 through ubiquitination

Hou et al. (2022b)

EMT and cisplatin resistance Lung adenocarcinoma Upregulated Recruit the deubiquitinating enzyme
USP7

Liu et al. (2022)

Cell cycle and EMT signals Lung and colorectal cancers Upregulated Recruit deubiquitination enzyme USP7,
inhibiting the degradation of the c-Myc

Hou et al. (2022a)

Proliferation and metastasis Triple-negative breast
cancer

Upregulated EIF6-224aa interacts with MYH9 and
decreases MYH9 degradation by

inhibiting the ubiquitin-proteasome
pathway and subsequently activating the

Wnt/beta-catenin pathway

Li et al. (2022a)

Cell viability and invasive ability Osteosarcoma Upregulated MRPL23-AS1 correlates with MYH9,
while conversely correlated with miR-30b,
suggesting that the regulatory axis of

MRPL23-AS1/miR-30b/MYH9 does exist

Zhang et al. (2021b)

Proliferation and carcinogenesis Colorectal cancer Upregulated Destabilize p53 pre-mRNA by recruiting
hnRNPA2B1 in the nucleus

Liu et al. (2021b)

Inflammatory response Gastric cancer Upregulated MYH9-p53-RhoA regulatory feedback
loop

Yang et al. (2019)

Colorectal cancer Upregulated circ_0000395 improve the production of
MYH9 by chelating miR-432-5p

Fan et al. (2023)

Cell growth and metastasis Pancreatic ductal
adenocarcinoma

Upregulated circSTX6 controls MYH9 expression by
circSTX6/miR-449b-5p and circSTX6/

CUL2/HIF1A signaling pathway.
MYH9 can interact with CUL2

Gautam et al. (2023), Meng et al.
(2022)

Cisplatin resistance and immune response Non-small cell lung cancer Upregulated miR-138-5p/MYH9 axis Xu et al. (2021), Wang et al.
(2022b)

Differentiation and type resistance Thyroid carcinoma Upregulated miR-370-3p/MYH9 axis Chen et al. (2021)

Glycolysis Gastric cancer Upregulated circ-NRIP1 increases MYH9 expression
via miR-186-5p

Liu et al. (2020b)

Glycolysis, cell migration, and invasion Gastric cancer Upregulated miR-204-5p/MYH9 axis Fang et al. (2020)

Cancer growth Gastric cancer Upregulated miR-9-5p/MYH9 axis Liu et al. (2020c)

Cell proliferation and apoptosis Non-small cell lung cancer Upregulated Alanazi et al. (2023)

Proliferation Lung cancer Upregulated YY1-FGL1-MYH9 axis Tang et al. (2022)

(Continued on following page)

Frontiers in Cell and Developmental Biology frontiersin.org05

Gou et al. 10.3389/fcell.2024.1421763

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1421763


4.1.1 Specific mechanisms by which MYH9 affects
tumorigenesis and development
4.1.1.1 PI3K/AKT pathway

MYH9 overexpression can inhibit the PI3K/AKT signaling
pathway, leading to increased p-PI3K and p-AKT levels, which in
turn participate in tumor cell progression (Xiong et al., 2012; Xiong
et al., 2021; Zhang et al., 2023). In a study by Zhao et al., it was found
that nucleosome assembly protein 1-like 5 (NAP1L5) inhibits the
PI3K/AKT/mTOR signaling pathway in HCC by down-regulating
MYH9, leading to therapeutic effects (Zhao R. et al., 2022).
Enrichment analysis and a protein-protein interaction network

with related genes indicated that Talin1 and MYH9 may bind
and interact with each other involved in the process of AML. It
can regulate significant signaling pathways in hematological tumors,
including PIK3/AKT, promoting tumor cell proliferation and
facilitating differentiation (Cui et al., 2022). Another study
suggested that MYH9 significantly activates the PI3K/AKT/
mTOR axis in esophagus cancer (EC) cells, promoting
tumorigenesis. It is upregulated in EC patients with low survival
rates (Kai et al., 2022). Clear cell renal cell carcinoma (ccRCC) poses
a significant global health threat due to its heterogeneity, which
hampers treatment success and results in poor survival outcomes.

TABLE 1 (Continued) Summary of MYH9’s functions in the malignant characteristics of tumors.

Malignant characteristics Tumor types Expression Mechanisms References

Migration, invasion, deformation, and
proliferation

Lung cancer Upregulated MICAL2, a tumor promoter, as a
nucleoplasmic shuttle protein dependent
on MYH9 and its C-terminal fragment

Ivanov et al. (2009)

Proliferation, migration, invasion,
metastasis, and cisplatin resistance

Ovarian cancer Upregulated Bind to the MYH10 protein, recruiting
deubiquitin-specific protease 45

Liu et al. (2023a)

Cell migration Esophageal squamous cell
carcinoma

Upregulated GSK3β/β-catenin signaling Li et al. (2023b)

Prostate cancer Upregulated Act as a novel androgen receptor co-
repressor

Liu et al. (2021c)

Cell division, adhesion, and migration Acute myeloid leukemia Upregulated Enhanced actinomyosin contractility Chang et al. (2020)

Metastasis Colorectal cancer Upregulated Interact with ATG9B Zhong et al. (2021)

DNA synthesis Upregulated dNTPs augment the thermal stability of
MYH9, then propel cells into the S phase

Nangia-Makker et al. (2022)

Cell activity Colon cancer Upregulated Lee et al. (2023a)

Cell proliferation and migration Cervical squamous cell
carcinoma

Upregulated Regulate the content of lipid droplets by
binding to ARP2/3

Zhao et al. (2022b)

Temozolomide resistance, cell growth,
invasion and migration

Glioma Upregulated Interact with GSK-3β, leading to the
inhibition of GSK-3β protein expression

through ubiquitination

Chen et al. (2023)
Que et al. (2021)

Tumorigenesis HER2+ breast cancers Downregulated Alanazi et al. (2023)

Migration, invasion, tumor growth and
metastasis

Melanoma Downregulated Influence EMT, the ERK signaling
pathways and the tumor

microenvironment by modulating
leukocyte and macrophage infiltration

Singh et al. (2020)

Invasion Head and neck squamous
cell carcinoma

Downregulated Increase survival with low-risk mutp53 Coaxum et al. (2017)

Ovarian clear cell
carcinoma

Downregulated Interaction of membrane ebp 50 Nakagawa et al. (2023)

Resistance to levatinib Hepatocellular carcinoma Upregulated NOTCH pathway Yang et al. (2023)

Stromal stiffness-mediated Metformin
resistance

Hepatocellular carcinoma Upregulated Increase extracellular matrix stiffness Gao et al. (2023)

Docetaxel resistance Prostate cancer Upregulated A positive feedback loop of lincROR/
MYH9/HIF1α

Jiang et al. (2023)

5-FU resistance Colon cancer Upregulated AMPK/mTOR pathway Wang et al. (2021)

Osimotinib resistance Lung adenocarcinoma Upregulated MYH9-RETA fusion and T790M deletion
in plasma ctDNA

Sun et al. (2020)

Cisplatin resistance Neuroblastoma Upregulated Xu et al. (2020), Belhajova et al.
(2022), Li et al. (2022b)

Cisplatin resistance Nasopharyngeal carcinoma Upregulated Interact with FOXO1 Li et al. (2019)
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Mechanistic studies have revealed thatMYH9 can fulfill these crucial
roles via the AKT signaling pathway. Furthermore, the MYH9/AKT
axis influences how ccRCC cells respond to Sunitinib treatment and
may serve as a biomarker for assessing the benefit of Sunitinib in
ccRCC patients (Xu et al., 2022). Que et al. demonstrated that
HMGA1 can induce MYH9-dependent ubiquitylation of GSK-3β
through the PI3K/Akt/c-Jun signaling pathway, thereby promoting
the malignant progression of nasopharyngeal carcinoma and its
resistance to chemotherapy (Liu Y. et al., 2019).

4.1.1.2 β-catenin/MYH9 pathway
LincROR is a significant oncogenic long non-coding RNA (Shao

et al., 2020). In a study by Jiang et al., it was demonstrated that
exosome-mediated lincROR activates a positive feedback loop
involving β-catenin and hypoxia-inducible factor 1-alpha (HIF1α)
by targeting the MYH9 protein. This activation leads to Docetaxel
resistance in prostate cancer (PCa) (Jiang et al., 2023). Moreover, the
MYH9-mediated GSK 3β/β-catenin signaling pathway can promote
the postoperative recurrence of EC (Li Q. et al., 2023). In gastric
cancer (GC), MYH9-induced deubiquitination of β-catenin
promotes tumor cell migration and invasion through the process
of epithelial-mesenchymal transition (EMT) (Liu J. et al., 2020). In
PCa, MYH9-mediated ubiquitination and degradation of GSK 3β
can also activate the β-catenin signaling pathway and induce

associated epithelial-mesenchymal transition (EMT) too (Gao
et al., 2022). Hou et al. discovered that by inhibiting the β-
catenin/MYH9 signaling pathway, the recruitment of the
E3 ligase UBE3A is reduced. This reduction hinders the UBE3A-
mediated degradation of p53 through ubiquitination. Consequently,
the EMT signaling pathway is deactivated, preventing
nasopharyngeal carcinoma metastasis (Hou et al., 2022b).
Furthermore, a comparable mechanism was observed in other
types of tumors, including HCC (Hou et al., 2022a), lung
adenocarcinoma (LUAD) (Liu et al., 2022), diffuse large B-cell
lymphoma (Hu et al., 2022), triple-negative breast cancer (Li Y.
et al., 2022), and osteosarcoma (Zhang H. et al., 2021).

4.1.1.3 p53 protein
p53 is a crucial tumor suppressor known for its role in reducing

EMT (Hou et al., 2022b). Studies have demonstrated a significant
upregulation of circMYH9 in CRC tissues. This upregulation
destabilizes p53 pre-mRNA by recruiting hnRNPA2B1 in the
nucleus. hnRNPA2B1 binds to and stabilizes N6-methyladenosine
in the 3′ untranslated region of p53 pre-mRNA. This, in turn,
regulates serine/glycine metabolism and redox homeostasis, thereby
promoting the proliferation of cancer cells. Moreover, in vivo
transfection of circMYH9 mediated by adeno-associated virus
serotype 9 (AAV9) can induce chemically driven carcinogenesis

FIGURE 2
The overview of MYH9′ s roles in tumors. (By Figdraw).
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in mice by inhibiting p53 (Liu X. et al., 2021). In other study, Yang
discovered that mucin 17 inhibits the progression of human gastric
cancer by curbing the inflammatory response, a process mediated by
the MYH9-p53-RhoA regulatory feedback loop (Yang et al., 2019).

4.1.1.4 miRNA
A non-coding RNA called miRNA, which has

22–26 nucleotides, makes up 1% of the human genome’s total
number of genes (Hill and Tran, 2021). One method by which
eukaryotic cells control gene transcription is through binding to the
untranslated 3′UTR region of target genes, which in order to inhibit
the target genes’ post-transcriptional activity, that in turn affects the
level of gene expression and consequently intracellular homeostasis
(Lopez-Camarillo et al., 2021). Numerous crucial biological
processes, including cell differentiation, proliferation, apoptosis,
and metabolism, can be controlled by miRNAs (Breulmann et al.,
2023). The fourth deadliest cancer is CRC (Kong et al., 2023).
According to the research, the cyclic RNA hsa_circ_0000395
(circ_0000395), which has been demonstrated to be elevated in
CRC, can improve the production of MYH9 by chelating miR-432-
5p, which in turn causes CRC to advance (Fan et al., 2023). In
pancreatic ductal adenocarcinoma (PDAC) tissues, circSTX6 was
found to be considerably elevated. Through the circSTX6/miR-
449b-5p axis and the circSTX6/CUL2/HIF1A signaling pathway,
circSTX6 controls MYH9 expression. Additionally, through
interacting with CUL2, MYH9 transcription was sped up,
boosting PDAC cell growth and metastasis (Meng et al., 2022;
Gautam et al., 2023). The miR-138-5p/MYH9 axis boosted
cisplatin resistance and decreased immune response in cancer
cells in non-small cell lung cancer (NSCLC) (Xu et al., 2021;
Wang S. et al., 2022). Circ_NEK6 gene was identified to control
the miR-370-3p/MYH9 axis in differentiated thyroid carcinoma,
increasing type I resistance (Chen et al., 2021). By increasing
MYH9 expression via miR-186-5p in gastric cancer, circ-NRIP1
might speed up glycolysis and the disease’s progression (Liu Y. et al.,
2020), and Fang et al. discovered that the miR-204-5p/MYH9 axis
could similarly encourage glycolysis, cell migration, and invasion in
GC cells (Fang et al., 2020). Additionally, GC growth was also aided
by overexpression of the miR-9-5p/MYH9 axis (Liu T. et al., 2020).

4.1.2 Association of MYH9 with tumor metastasis
and prognosis
4.1.2.1 MYH9 is involved in tumor proliferation, migration
and infiltration

Recent studies increasingly demonstrate the involvement of
MYH9 in cell growth, proliferation, tumor invasion, metastasis, and
other significant roles in cancer (Babbin et al., 2009; Rai et al., 2017; Sun
et al., 2022; Wu et al., 2023). NMIIA can form an apical actin network
that influences cell division,migration and accelerates tumor progression
(Figure 1). It is found in the prominent terminal and perinuclear regions
of primary tumor cells (Shutova et al., 2014; Kuragano et al., 2018;
Halder et al., 2019; Surcel and Robinson, 2019; Yamamoto et al., 2019).

In a study by Liu et al., MYH9 expression was significantly
elevated in NSCLC (p < 0.001), and high expression was associated
with significantly reduced patient survival (p = 0.023). Cellular
experiments revealed that MYH9 knockdown significantly
suppressed cell proliferation (p < 0.001) and enhanced apoptosis
(p < 0.05) (Liu F. et al., 2023). In another investigation, Tang et al.

reported that the YY1-FGL1-MYH9 axis regulated the proliferation
of LUAD cells, consequently promoting tumor growth (Tang et al.,
2022). Additionally, a separate study identified MICAL2, a tumor
promoter, as a nucleoplasmic shuttle protein dependent on
MYH9 and its C-terminal fragment. Experimental data showed
that these two factors synergistically promoted the migration,
invasion, deformation, and proliferation of LUAD cells (Zhou
et al., 2020a). NM IIA can bind to the MYH10 protein,
recruiting deubiquitin-specific protease 45, which deubiquitinates
snail to prevent snail degradation. This process ultimately promotes
proliferation, migration, invasion, metastasis, and cisplatin
resistance in ovarian cancer (Liu L. et al., 2023). Human tubulin
beta class IVa (TUBB4A), a member of the β-microtubulin family, is
overexpressed in prostate cancer. MYH9 interacts with TUBB4A to
safeguard the nucleus during cell migration, promoting the
progression of prostate cancer via GSK 3β/β-catenin signaling
(Gao et al., 2022). This pathway has also been linked to the
postoperative recurrence of EC (Li Q. et al., 2023). Experimental
evidence suggests that MYH9 acts as a novel androgen receptor co-
repressor, playing a pivotal role in the progression of treatment-
resistant prostate cancer (Liu C. et al., 2021). MYH9 is a potent
promoter of tumor stem cells that can prompt hepatocellular
carcinogenesis (Lin et al., 2020). Additionally, MYH9 can
expedite the progression of HCC and EC through the PI3K/
AKT/mTOR signaling pathway (Zhao R. et al., 2022; Kai et al.,
2022). Increased phosphorylation of NM IIA and myosin-regulated
light chains indicates enhanced actinomyosin contractility in
various AML cell lines. Actinomyosin-mediated contractility is
essential for processes such as cell division, adhesion, and
migration (Chang et al., 2020). Autophagy-associated protein 9B
(ATG9B) represents a crucial potential target gene for CRC
metastasis. MYH9, which interacts significantly with ATG9B,
facilitates colorectal cancer invasion through non-autophagic
mechanisms (Zhong et al., 2021). A study has verified the
capability of dNTPs to bind MYH9 with differing efficiencies.
Additionally, cellular thermal shift analysis has demonstrated that
dNTPs augment the thermal stability of MYH9. EdU labeling and
flow cytometry-based cell cycle analysis have corroborated MYH9’s
role in propelling cells into the S phase. This data implies a novel
function for MYH9 involving dNTPs binding and its ability to
facilitate DNA synthesis (Nangia-Makker et al., 2022).

MYH9 significantly influences tumor cell migration and
infiltration. It regulates the motility and morphodynamics of
tumor cells, actively engages in relevant signaling pathways, and
interacts with other proteins to impact tumor proliferation,
migration, and infiltration (Wang et al., 2011; Ivanov et al.,
2022). Nonetheless, MYH9 assumes diverse roles across different
types of tumors, each involving distinct mechanisms that warrant
further investigation.

4.1.2.2 High MYH9 expression is associated with tumor
clinical stage, histological type

The expression levels of MYH9 were notably elevated in the
pertinent tumor tissues and exhibited correlations with the clinical
stage, histological type, disease progression, and an unfavorable
prognosis of the tumor.

Li et al. observed that suppressing MYH9 reduced the stemness,
EMT, angiogenesis, metastasis, and tumorigenicity of EC cells,
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implying a pro-tumorigenic role for MYH9 in EC, closely linked to
tumor stage (Li Q. et al., 2023). A computational analysis aimed at
predicting survival in colon cancer integrated data on copy number
variations and gene expression, identifying pathogenic driver genes
associated with patient prognosis. Within this analysis, a survival
prediction model that incorporated the expression of three
candidate genes, including MYH9, demonstrated superior
predictive performance. Further functional analyses confirmed
that the knockdown of MYH9 decreased the primary activity of
colon cancer cells. Notably, validation using an independent cohort
of colon cancer patients established that co-expression ofMYH9 and
other genes correlated with poorer clinical outcomes in terms of
overall and disease-free survival (p < 0.001) (Lee C. J. et al., 2023).
Collectively, these findings highlight a substantial association
between MYH9, colon cancer tumor stage, and an unfavorable
prognosis. Another study revealed that MYH9 regulates the
content of lipid droplets (LDs) by binding to ARP2/3. The
breakdown of LDs releases energy and supports cancer cell
proliferation and migration. The number of LDs and the amount
of triglycerides (TGs) increased following MYH9 intervention.
Notably, the overexpression of ARP2/3 and MYH9 significantly
elevated the expression of genes related to fatty acids and neutral
lipid synthesis (p < 0.05). These changes were strongly linked to a
poor prognosis in cervical squamous cell carcinoma (CSCC) (Zhao
P. et al., 2022). This study provided insights into how cytoskeletal
filaments affect LD metabolism in cancer cells. MYH9 also plays a
role in glioma. A recent study observed increased MYH9 expression
in gliomas, and this elevated expression was associated with WHO
grading. Elevated MYH9 expression can drive the acquisition of a
malignant phenotype in glioma cells and contribute to their
resistance to chemotherapy. Furthermore, MYH9 interacts with
GSK-3β, leading to the inhibition of GSK-3β protein expression
through ubiquitination. Subsequently, the reduction of GSK-3β
promotes the nuclear translocation of β-linker proteins, thereby
enhancing glioma cell growth, invasion, migration, and resistance to
temozolomide (Chen et al., 2023). The level of MYH9 expression
significantly correlates with patient survival and should be
considered as an independent prognostic indicator (Que et al.,
2021). Katono and colleagues discovered a significant correlation
between MYH9 expression and several factors: adenocarcinoma
histology (p = 0.014), poor differentiation (p = 0.033),
intratumoral vascular invasion (p = 0.013), lymphatic invasion
(p = 0.045), and a poor prognosis (p = 0.032) (Katono et al., 2015).

Overexpression of MYH9 has a significant impact on tumor
clinical staging through multiple mechanisms, resulting in a poorer
prognosis. Elucidating MYH9’s mechanism of action can enhance
the clinic’s ability to precisely stage tumors and evaluate prognosis
across different cancer types, thereby improving the development of
more effective therapeutic strategies for patients.

4.1.3 Relationship between MYH9-RD and cancer
MYH9-RD typically denotes autosomal dominant disorders

resulting from MYH9 mutations, with the exception of tumors
(Smith et al., 2019; Bury et al., 2020; An et al., 2022). To date, a
few case reports have suggested a potential link between MYH9-RD
and certain tumors.

In a 19-year-old female harboring a germline MYH9 variant, a
right tongue ulcer was detected, and a biopsy confirmed the presence

of squamous cell carcinoma. At the age of 12, she had received a
prior diagnosis of EPS, a form of MYH9-RD. This study postulates
that MYH9-RD may manifest early as a progressively localized
malignant oral cavity tumor (Yabe et al., 2022). Rheingold
documented another case in which a child with a confirmed
diagnosis of autosomal dominant megathrombocytopenia (FTNS)
went on to develop AML (Rheingold, 2007). In a distinct AML cell
line, NM IIA and myosin-regulated light chain phosphorylation
levels were elevated (Chang et al., 2020). This led to speculation
about a potential connection between these two conditions.

Currently, there is limited documentation on the connection
between MYH9-RD and tumors, and isolated case reports do not
provide sufficient evidence for a definitive correlation. However,
they do hint at the need for clinical professionals to focus on this
aspect and validate these assumptions by amassing a substantial
number of clinical cases. Such an effort will be of immense
importance for future patient prevention, long-term treatment,
and prognosis.

4.2 MYH9 can act as a tumor
suppressor gene

MYH9may act as a tumor suppressor gene in specific cases. Alanazi
et al. observed that inhibiting NM IIA promotes tumorigenesis in
HER2+ breast cancers (Alanazi et al., 2023). Singh et al.
demonstrated that reducing MYH9 expression in melanoma cells
enhances in vitro migration and invasion. Moreover,
MYH9 suppression accelerates tumor growth and metastasis in
mouse models of melanoma. Oncogene analysis indicates MYH9’s
regulation of EMT and the ERK signaling pathways. Additionally,
MYH9 influences the tumor microenvironment (TME) by
modulating leukocyte and macrophage infiltration in tumors, which
suggests an unexpected role as a melanoma tumor suppressor (Singh
et al., 2020). In the case of head and neck squamous cell carcinoma
(HNSCC), a study found that low MYH9 expression correlates with
decreased survival among HNSCC patients with low-risk mutp53.
Furthermore, inhibiting NM IIA leads to increased invasion of cells
containing wild-type p53 (wtp53), accompanied by reduced expression
of p53 target genes. These findings imply that NM IIA acts as a tumor
suppressor in HNSCC (Coaxum et al., 2017). Furthermore, a direct in
vivo RNAi screen demonstrated that NM IIA acts as a tumor suppressor
in squamous cell carcinoma (MYH9 regulates p53 stability and, 2014;
Schramek et al., 2014). Ezrin-radixin-moesin-binding phosphor protein
50 (EBP 50) is a scaffolding protein required for epithelial polarity
(Claperon et al., 2012; Du G. et al., 2016; Oh et al., 2017), and it was
found that the interaction of membrane ebp 50 (Me-EBP50) and
MYH9 is a favorable prognostic factor in ovarian clear cell
carcinoma (Nakagawa et al., 2023).

Elucidating the suppressive functions of MYH9 and NM IIA in
specific tumors can facilitate their clinical exploitation for more
informed treatment strategies.

5 Tumor therapy for MYH9

MYH9 has been observed to be overexpressed in various tumors
and plays a role in tumor development. Recent research has revealed
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that NM II, encoded by MYH9, serves as a crucial cytoskeletal
protein that generates contractile forces essential for cell migration
and subcellular component movement. This discovery positions NM
II as a highly promising target for cancer therapy (Table 2).

5.1 MYH9 promotes tumor drug resistance

Studies have revealed a connection between MYH9 and tumor
drug resistance. Elevated MYH9 levels can modulate the NOTCH
pathway, promoting resistance to Levatinib in HCC (Yang et al.,
2023). It has been shown that increasing extracellular matrix
stiffness not only alters the malignant characteristics of HCC
cells, but also attenuates the efficacy of Metformin treatment
(Gao X. et al., 2020). Interestingly, Gao et al. found that
354 differential membrane proteins, including MYH9, may be
associated with stromal stiffness-mediated Metformin resistance
(Gao et al., 2023). LincROR plays a crucial role in regulating
tumorigenesis and metastasis (Lee Y. H. et al., 2023; Li S. Y.
et al., 2023; Jiang et al., 2023; Mazur et al., 2023). Jiang et al.
discovered that lincROR interacts with and stabilizes MYH9,
enhancing the β-conjugated protein/HIF1α pathway, creating a
positive feedback loop of lincROR/MYH9/HIF1α, and thus,
promoting Docetaxel resistance in prostate cancer (Jiang et al.,
2023). Furthermore, NM IIA can shield colon cancer cells from

5-FU-induced apoptosis and inhibition of proliferation through the
AMPK/mTOR pathway (Wang et al., 2021). A case report on LUAD
identified a novel MYH9-RETA fusion and T790M deletion in
plasma circulating tumor DNA (ctDNA) following Osimotinib
treatment, leading to rapid progression after 5 months and
suggesting a potential resistance mechanism (Sun et al., 2020).
Piskareva et al. found that elevated MYH9 levels induce EMT in
neuroblastoma cells (Piskareva et al., 2015), a crucial feature in the
development of cisplatin resistance in neuroblastoma (Xu et al.,
2020; Belhajova et al., 2022; Li H. et al., 2022).

However, several studies have demonstrated the potential of the
small molecule compound CB to reverse chemotherapeutic drug
resistance associated with MYH9. It achieves this by inhibiting
MYH9 transcription through the suppression of PI3K/AKT
signaling, resulting in the downregulation of c-Jun, a negative
transcription factor for ENKUR, leading to enhanced ENKUR
expression. The reduced MYH9 levels diminish the recruitment
of the deubiquitinating enzyme USP7, which in turn increases
c-Myc ubiquitination and degradation, decreases c-Myc nuclear
translocation, and deactivates the EMT signaling, thereby
mitigating cisplatin resistance in LUAD (Liu et al., 2022).
Additionally, it disrupts the interaction with its binding partner
MYH9, effectively inducing FOXO1-mediated cisplatin sensitivity
in nasopharyngeal carcinoma (Li et al., 2019). Liu et al. also observed
that CB stimulates MAP2K4, subsequently inhibiting the MYH9/

TABLE 2 Therapies targeted MYH9.

Therapies Tumors Mechanism References

Cinobufotalin Lung adenocarcinoma Upregulate the expression of ENKUR through the
inhibition of PI3K/AKT/c-Jun-mediated transcriptional

repression

Liu et al. (2022)

Nasopharyngeal carcinoma Hou et al. (2022b)

Gastric cancer Liu et al. (2020a)

DT-13 Gastric cancer Combine with topotican promoted the degradation of
epidermal growth factor receptor

Yu et al. (2019)

Lung cancer Inhibit human lung cancer metastasis under hypoxic
condition

Wei et al. (2016)

Breast cancer Inhibit migration by regulating stromal cells in the TME Gao et al. (2020b)

Immunotherapy Lung adenocarcinoma YY1-FGL1-MYH9 axis Tang et al. (2022)

Colorectal cancer MAP7D2 interacting with MYH9, MAP7D2 knockdown
increased the infiltration of CD8 CTLs, thereby

inhibiting tumor progression

Wu et al. (2023)

Amidated fullerenes Resulting in altered MYH9 localization, and also
inhibiting metastasis-associated EMT

Huo et al. (2022), Li et al. (2023a), Zhou et al. (2020b)

J13 Weakening MYH9-actin interactions and deactivating
the molecular motors to promotes the mitochondrial
division process, leading to an imbalance in its dynamics

and significantly inhibiting cancer cell survival,
proliferation and migration

Qian et al. (2021)

ITE Glioma Agonizing endogenous aromatic hydrocarbon receptors
and blocks multiple modes of cell migration

Zhao et al. (2020)

Astrocystin Gastric cancer Targeting cytosolic MYH9-induced
CTNNB1 transcription to promote anti-apoptosis as well

as metastasis

Ye et al. (2020)

Apatinib Glioma Target platelet-responsive protein 1 (THBS1), thereby
inhibit glioma cell malignancy through its interaction

with MYH9

Yao et al. (2021)
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GSK3β/β-catenin pathway and downstream tumor stem cell and
EMT signaling, resulting in a significant reversal of EBV-Mir-
BarT2-induced cisplatin resistance in nasopharyngeal carcinoma
(Liu Y. et al., 2019).

While current studies demonstrate that CB can reverse tumor
drug resistance associated withMYH9, its applicability is limited to a
few cancer types, and further investigation is required to determine
its effectiveness in other cancers. Additionally, the exploration of
other drugs with superior reversal properties necessitates more in-
depth research. However, these strategies primarily address drug
resistance once it has already developed. To guide future research,
the central focus should be on elucidating the mechanisms of drug
resistance, resolving its underlying causes, and seeking more
effective drugs for cancer treatment.

5.2 Small molecule drugs targeting MYH9

5.2.1 ENKUR and CB
ENKUR has been identified as a tumor suppressor encoding

Enkurin protein which plays a crucial role in intracellular signaling
by interacting with transient receptor potential cation channel
(TRPC) (Ma et al., 2019a; Ma et al., 2019b). Additionally,
chemically synthesized CB has demonstrated significant
anticancer effects on specific tumors (Li et al., 2019; Li et al.,
2021; Li W. et al., 2022; Wang J. et al., 2022), and there might be
interactions between these two factors. Hou et al. conducted a study
revealing that CB, as a safe and effective anticancer compound, can
enhance ENKUR expression by inhibiting PI3K/AKT/c-Jun-
mediated transcriptional repression. ENKUR or its Enkurin
structural domain binds to MYH9, reducing its expression by
binding to β-catenin and inhibiting its nuclear translocation,
consequently lowering c-Jun levels. This, in turn, inhibits the β-
catenin/c-Jun/MYH9 signaling pathway. The decreased
MYH9 expression hinders the recruitment of the deubiquitylating
enzyme USP7, promoting c-Myc degradation and, subsequently,
inhibiting cell cycle progression and EMT signaling (Hou et al.,
2022a). Moreover, Liu et al. found that CB can also inhibit MYH9-
mediated c-Myc deubiquitination by inducing ENKUR expression
for therapeutic purposes in LUAD (Liu et al., 2022). In
nasopharyngeal carcinoma, CB-induced ENKUR similarly
inhibited β-catenin/c-Jun/MYH9 signaling, reducing UBE3A-
mediated p53 ubiquitination and degradation (Hou et al., 2022b).
Furthermore, ENKUR’s binding to MYH9 reduces its protein
expression by recruiting the E3 ubiquitin ligase FBXW7 to form
a ubiquitination degradation complex. The downregulated
MYH9 protein impairs the recruitment of the deubiquitinase
USP2, promoting the degradation of β-conjugated proteins and
ultimately inhibiting EMT signaling, cell migration, invasion, and
metastasis, indicating its potential as a therapeutic target in gastric
cancer (Liu J. et al., 2020). However, whether CB can upregulate
ENKUR expression for therapeutic purposes in gastric cancer has
not been reported.

5.2.2 DT-13
DT-13, known as saponinmonomer 13, is a bioactive compound

derived from maitake (Du H. et al., 2016; Khan et al., 2018). It has
been reported to effectively inhibit the metastasis of various types of

cancers (Du H. et al., 2016; Wang et al., 2018; Wei et al., 2019).
When combined with topotecan (TPT), DT-13 promotes the
degradation of the epidermal growth factor receptor (EGFR) by
inducing EGFR endocytosis through NM IIA. This process further
inhibits the activity of hexokinase II (HK II). Consequently, DT-13
enhances the suppression of aerobic glycolysis in BGC-823 cells,
ultimately achieving a more effective inhibitory effect on tumors (Yu
et al., 2019). Wei et al. also discovered that, under hypoxic
conditions, DT-13 hinders the metastasis of human lung cancer
by regulating NM IIA activity (Wei et al., 2016). In the TME, cancer
cell migration is promoted by the regulation of NM IIA expression.
DT-13 combats cancer cell migration in TME models by inhibiting
the c-raf/ERK1/2 signaling pathway. This inhibition, in turn,
reduces NM IIA expression, effectively blocking cancer cell
migration (Du H. et al., 2016). Furthermore, DT-13 inhibits
breast cancer cell migration by influencing the MYH9 gene in
stromal cells within the TME (Gao Y. et al., 2020).

5.3 MYH9 and immunotherapy

Immunotherapy is an emerging cancer treatment method that
involves modulating the patient’s own immune system to enable it to
more effectively identify and eliminate abnormal cells in the body.
Immunotherapies targeting MYH9 have also become relevant in cancer
treatment. Lung cancer holds the unenviable title of being the most
prevalent tumor worldwide, with the highest mortality rate and the
second-highest incidence rate (Siegel et al., 2023). Among the various
approaches for treating LUAD, immunotherapy stands out as one of the
most crucial (Song P. et al., 2022; Hao et al., 2022). To explore the
potential of fibrinogen-like protein 1 (FGL1) as a therapeutic option for
LUAD, Tang et al. conducted a study involving 200 LUAD patients.
Their findings revealed that FGL1 canmodulate the secretion of the vital
immune-related cytokine YY1-FGL1-MYH9 axis, thereby influencing its
impact on LUAD (Tang et al., 2022). In CRC patients with
microsatellite-stable (MSS) tumors, the limited presence of
CD8 cytotoxic T lymphocytes (CTLs) significantly constrains
treatment options. In both in vitro and in vivo experiments,
knocking down MAP7D2 resulted in a notable increase in CD8 CTL
infiltration, leading to the inhibition of tumor progression. Subsequent
investigations unveiled that the interaction between MAP7D2 and
MYH9 shields MAP7D2 from ubiquitin-mediated degradation and
subsequently reduces HMGB1 secretion. This, in turn, inhibits
CD8 CTL infiltration in MSS CRC. These findings suggest that
targeting MAP7D2 in MSS CRC could present a novel avenue for
anti-tumor immunotherapy (Wu et al., 2023). Another study revealed
that perforin interacts with non-muscle MYH9 to exert force on the
lesser F-actin in tumor regenerating cells (TRCs). This interaction results
in the stiffening of TRCs and enables perforin to penetrate the cell
membrane, facilitating CTL-mediated killing of TRCs and promoting
tumor immunotherapy (Liu Y. et al., 2021).

5.4 Other anti-tumor methods

Amidated fullerenes exhibit significant antitumor effects. The
synthesized amphiphilic derivative of fullerene, TAPC-4, possesses a
well-defined molecular structure and amphiphilic properties, with a
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terminal amino group that enhances its ability to target MYH9 (Shin
et al., 2011). This targeting may lead to altered MYH9 localization
(Huo et al., 2022) and inhibition of metastasis-associated EMT
(Zhou et al., 2020b). Apatinib targets platelet-responsive protein
1 (THBS1) in glioma cells, thereby inhibiting glioma cell malignancy
through its interaction with MYH9 (Yao et al., 2021). Qian et al.
discovered that the naturally sourced small molecule J13 can directly
target the MYH9-actin molecular motors. By weakening MYH9-
actin interactions and deactivating these molecular motors, it
promotes the mitochondrial division process, resulting in an
imbalance in mitochondrial dynamics and a significant inhibition
of cancer cell survival, proliferation, and migration (Qian et al.,
2021). Another study revealed that the small molecule, methyl 2-
(1H-indole-3-carbonyl)-thiazole-4-carboxylate (ITE), activates
endogenous aromatic hydrocarbon receptors (AHR) and hinders
various modes of glioma cell migration (Zhao et al., 2020).
Astrocystin can target cytosolic MYH9-induced CTNNB1
transcription, promoting anti-apoptosis and metastasis of gastric
cancer cells. This offers a novel therapeutic approach for peritoneal
metastasis of gastric cancer (Ye et al., 2020). Additionally, miRNAs play
a role in targetingMYH9-related signaling pathways (Ye et al., 2017; Ye
et al., 2018; Hart et al., 2019; Liu L. et al., 2020; Chen et al., 2021).

6 Conclusion

MYH9 gene encodes NM IIA, which was previously considered
a constituent of the cytoskeleton, providing cellular support and
facilitating intracellular transport. However, in recent years, an
increasing body of evidence has revealed that NM IIA
participates in numerous pathophysiological processes and even
plays a pivotal role in the onset and development of tumors. This
paper offers a summary, but several unresolved issues and divergent
perspectives endure. Further investigation is required to elucidate
the mechanism by which MYH9 affects tumor proliferation,
infiltration, and migration. Equally important is the exploration
of its role in driving drug resistance in tumors. The current
understanding of the connection between MYH9-RD and tumors
remains unclear, and the limited number of case reports fails to offer
conclusive evidence. This situation also requires clinical doctors’
attention in their practical work, accumulating relevant cases, so as
to accurately determine the correlation between MYH9-RD and
tumors. Nonetheless, unraveling this relationship holds immense
significance for future disease prevention, long-term patient
treatment, and prognosis. While the question of whether
MYH9 functions as an oncogene or a tumor suppressor gene is
contingent upon the specific tumor type, additional research is
warranted. Given the unique role that MYH9 plays in tumors, it

stands as a highly promising and effective target for cancer therapy.
And the new therapies still needed to be explored. The gene can also be
used in early diagnosis, clinical staging and prognosis of cancers. If more
studies focus on these points, they will bring great benefits. This review
summarizes recent research on MYH9’s role in tumors, with the hope
that it can provide insights and references for future clinical studies.
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Glossary

MYH9 myosin heavy chain 9

NM IIA non-myosin heavy chain IIA

CB Cinobufotalin

DT-13 saponin monomer 13

NMMHC IIA non-muscle myosin heavy chain IIA

ROCK1 Rho-kinase 1

RLC Rho light chain

NM II non-myosin II

EMT epithelial-mesenchymal transition

Pi Phosphoric acid

MNA May-Hegglin anomaly

EPS Epstein syndrome

FTNS Fechtner syndrome

SBS Sebastian syndrome

HCC hepatocellular carcinoma

AML acute myeloid leukemia

EC esophageal cancer

ccRCC clear cell renal cell carcinoma

CRC colorectal cancer

AAV9 adeno-associated virus serotype 9

GC gastric cancer

PDAC pancreatic ductal adenocarcinoma

NSCLC non-small cell lung cancer

TUBB4A tubulin beta class IVa

ATG9B autophagy-associated protein 9B

LDs lipid droplets

TGs triglycerides

CSCC cervical squamous cell carcinoma

HNSCC head and neck squamous cell carcinoma

wtp 53 wild-type p53

EBP50 ezrin-radixin-moesin-binding phosphor protein 50

Me-EBP50 membrane EBP 50

ctDNA circulating tumor DNA

HIF1α hypoxia-inducible factor 1-alpha

TPT topotecan

EGFR epidermal growth factor receptor

HK II hexokinase II

TME tumor microenvironment

FGL 1 fibrinogen-like protein 1

MSS microsatellite-stable

CTLs cytotoxic T lymphocytes

LUAD lung adenocarcinoma

TRCs tumor regenerating cells

THBS 1 apatinib targets platelet-responsive protein 1

ITE methyl 2-(1H-indole-3-carbonyl)-thiazole-4-carboxylate

AHR aromatic hydrocarbon receptors

EC esophagus cancer
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