
Investigation of differentially
expressed genes related to
cellular senescence between
high-risk and non-high-risk
groups in neuroblastoma

Xingyu Zhou1,2,3, Yuying Wu2, Lan Qin2,4, Miao Zeng2,
Mingying Zhang2 and Jun Zhang1,3,5*
1Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China, 2National
Clinical Research Center for Child Health and Disorders, Chongqing, China, 3China International Science
and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China,
4Department of Surgical Oncology, Children’s Hospital of Chongqing Medical University, Chongqing,
China, 5Chongqing Key Laboratory of Pediatrics, Chongqing, China

Object: This study aims to identify differentially expressed genes (DEGs) between
high-risk and non-high-risk groups in neuroblastoma (NB), construct a
prognostic model, and establish a risk score formula.

Materials and methods: The NB dataset GSE49710 (n = 498) from the GEO
database served as the training cohort to select DEGs between high-risk and non-
high-risk NB groups. Cellular senescence-related genes were obtained from the
Aging Atlas database. Intersection genes fromboth datasets were identified as key
genes of cellular senescence-related genes (SRGs). A prognostic model was
constructed using Univariate Cox regression analysis and the Lasso algorithm
with SRGs. Validation was performed using the E-MTAB-8248 cohort (n = 223).
The expression levels of AURKA and CENPA were evaluated via RT-qPCR in two
clinical NB sample groups.

Results: Eight SRGs were identified, and a prognostic model comprising five
genes related to cellular senescence was constructed. AURKA and CENPA
showed significant expression in clinical samples and were closely associated
with cellular senescence.

Conclusion: The prognostic model consisted with five cellular senescence
related genes effectively predicts the prognosis of NB patients. AURKA and
CENPA represent promising targets in NB for predicting cellular senescence,
offering potential insights for NB therapy.
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1 Introduction

Neuroblastoma (NB) stands as the most common
extracranial solid tumor in children (Matthay et al., 2016).
While the adoption of multimodal therapy
including surgery, radiation, and aggressive combination
chemotherapy has improved the outcomes for many children
with high-risk NB, the overall survival rate for children in the
high-risk group remains below 50% (Maris, 2010).
Therefore, the treatment of children with high-risk NB
remains a challenge.

Cellular senescence, characterized by stress-induced cell cycle
arrest, occurs across diverse cell types (Muñoz-Espín and
Serrano, 2014; Pérez-Mancera et al., 2014). During tumor
development and progression, cellular senescence can limit
cell proliferation and serve as a mechanism to halt tumor
growth (Muñoz-Espín and Serrano, 2014; Zanotti et al., 2022).
Establishing a prognostic model based on cellular senescence-
related genes can help evaluate the relationship between
prognosis and cellular senescence in children with NB.
Prognostic outcomes differ significantly between high-risk and
non-high-risk NB groups. Investigating the disparities in cellular
senescence-related signatures may provide insights into the
progression, recurrence, drug resistance, or prognosis of high-
risk NB, potentially leading to insights for personalized treatment
approaches.

Our study entailed the screening of pivotal genes linked to
cellular senescence, the development of a prognostic model based
on cellular senescence, and the establishment of a risk score formula.
This systematic investigation into the interplay between cellular
senescence and prognosis in NB elucidates their potential as
prognostic biomarkers.

2 Materials and methods

2.1 Data collection

In this study, we utilized the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/) to retrieve the gene
expression profile of NB from dataset GSE49710 (Zhong et al., 2018)
as our training cohort. Similarly, the ArrayExpress database (https://
www.ebi.ac.uk/biostudies/arrayexpress) provided the gene
expression profile from dataset E-MTAB-8248 (Wang et al.,
2020) for our validation cohort. The training cohort, GSE49710,
comprises 498 neuroblastoma samples, encompassing critical
clinical information such as gender, age at diagnosis, INSS stage,
MYCN status, risk stratification, and patient survival status. The
validation cohort, E-MTAB-8248, includes 223 NB samples, with
detailed clinical data including age, INSS stage, MYCN status, risk
stratification, and survival status. In our analysis, NB samples were
classified into high-risk and non-high-risk groups based on their risk
stratification. These details are summarized in
Supplementary Table S1.

The Aging Atlas website (https://ngdc.cncb.ac.cn/aging/index)
offers a comprehensive range of omics services related to aging
research. In our study, we utilized this resource to identify genes

associated with cellular senescence. These genes are detailed in
Supplementary Table S2.

2.2 Extraction of the differentially expressed
genes (DEGs) and cellular senescence-
related genes (SRGs)

In this study, the limma package (Ritchie et al., 2015) in R
software (version 4.2.3) was utilized to identify differentially
expressed genes (DEGs) between the high-risk and non-high-risk
groups of NB in the training cohort. The analysis results are detailed
in Supplementary Table S3 and illustrated using volcano plot. The
criteria for significant differences were set at an adjusted p-value
(adj.P) of less than 0.05 and an absolute log2 fold change (|log2FC|)
greater than 1. Upregulated and downregulated genes are reported
relative to the non-high-risk group. Furthermore, the Bioinformatics
& Evolutionary Genomics website (https://bioinformatics.psb.
ugent.be) served as an online tool to identify overlaps between
DEGs and genes associated with cellular senescence. These findings
are summarized in Supplementary Table S4 and depicted in a Venn
diagram. In conclusion, eight senescence-related genes (SRGs) were
identified through these methods. The overall survival (OS)
associated with these SRGs was analyzed using Kaplan-Meier
survival curves in GraphPad Prism version 9.5.1.

2.3 Construction of the cellular senescence-
related signatures (SRS)

Univariate Cox regression analysis was employed to select
senescence-related genes (SRGs) using SPSS version 23, detailed
in Supplementary Table S5. We applied the LASSO Cox
regression (Tibshirani, 1997) method via the “glmnet” package
in R to minimize the number of genes and establish a cellular
senescence-related risk score formula. This formula calculates
the risk score as a linear combination of selected gene expressions
weighted by their respective coefficients, optimized through 10-
fold cross-validation:

SRS � ∑
N

i�1
Exp i p Coei( )

Patients in the training cohort were stratified into high- and low-
score groups based on the median SRS. The prognostic utility of the
SRS was assessed using time-dependent receiver operating
characteristic (ROC) curves, with external validation performed
on the E-MTAB-8248 cohort.

2.4 Statistics analysis

Data analysis and graph generation were performed using R
software (version R4.2.3) R Project, SPSS Statistics V23.0, and
GraphPad Prism 9.5.1. Kaplan-Meier survival curves illustrating
OS were generated in GraphPad Prism 9.5.1. Time-dependent ROC
curves for 1-year, 3-year, and 5-year survival rates were plotted using
the “time ROC” R package to evaluate the predictive efficacy of SRS
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scores. All statistical tests were bilateral, with a significance
threshold set at p < 0.05.

2.5 Functional analysis

Functional and pathway enrichment analyses of SRGs were
conducted using the Kyoto Encyclopedia of Genes and Genome

(KEGG) and Gene Ontology (GO). The results were visualized to
highlight significant enrichment pathways.

2.6 Clinical samples and real-time
fluorescence quantitative polymerase chain
reaction (RT-qPCR)

Sixteen children with NB, treated surgically at the
Department of Oncology, Children’s Hospital of Chongqing
Medical University between 2021 and 2024, were selected for
this study. Half were classified as high-risk and the other half as
non-high-risk. Tumor tissues, collected post-surgery, were stored
at −80°C. Only patients who had not received preoperative
chemotherapy or radiotherapy were included. The study was
approved by the Ethics Committee of the Children’s Hospital
Affiliated to Chongqing Medical University. Total RNA was
extracted using a liquid nitrogen grinding method, followed by
reverse transcription. RT-qPCR was performed according to
standard protocols, with conditions of 95°C for 3 min,
followed by 45 cycles of denaturation at 95°C for 5 s,

TABLE 1 The primer sequence.

Gene name Primer sequence

β-ACTIN F-primer:5’-CCTGGCACCCAGCACAAT-3’

R-primer:5’-GGGCCGGACTCGTCATAC-3’

AURKA F-primer:5’-GAGGTCCAAAACGTGTTCTCG-3’

R-primer:5’-ACAGGATGAGGTACACTGGTTG-3’

CENPA F-primer:5’- GACGCCTATCTCCTCACCTTA-3’

R-primer:5’- GTTGCACATCCTTTGGGAAGA-3’

FIGURE 1
Identification of differentially expressed genes (DEGs) and cellular senescence-related genes (SRGs). (A) Volcano plot depicting DEGs in dataset
GSE49710. (B) Venn diagram showing the overlap between DEGs and genes associated with cellular senescence. (C) Forest plot of the univariate Cox
regression analysis identifying 8 SRGs. (D) Lasso coefficient curves for five key SRGs: AURKA, MAD2L1, HJURP, CENPA, TACC3. (E) Ten-fold cross-
validation for tuning parameter optimization in Lasso models.
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annealing at 60°C, and extension for 34 s. Gene expression levels
were normalized against β-ACTIN using the 2̂−ΔΔCt method,
with primers sourced from the Primer Bank (https://pga.mgh.
harvard.edu/primerbank/). The primer sequence is shown
in Table 1.

3 Results

3.1 Screening of SRGs in NB cells

Background correction and normalization were applied to the
NB dataset GSE49710 using the “limma” package in R. This
analysis identified 346 DEGs, with 186 upregulated and
160 downregulated, as illustrated in the volcano plot
(Figure 1A). Further analysis targeting 279 senescence-
associated genes revealed an intersection with DEGs through
the Bioinformatics & Evolutionary Genomics platform,
identifying eight significant SRGs: TACC3, CHEK1, E2F1,
AURKA, MAD2L1, HJURP, CENPA, and PTTG1 (Figure 1B).
Kaplan-Meier survival curves for these genes demonstrated
varied impacts on OS (Figures 2A–H).

Pathway and functional enrichment analyses using KEGG and
GO highlighted significant involvement of these SRGs in critical
biological processes such as the mitotic cell cycle, cell differentiation,
and specific nucleosome assembly related to CENP-A. The
molecular functions predominantly associated with these genes
included protein and DNA binding. These SRGs also featured in
pathways relevant to cell cycle regulation, response to Human T-cell
leukemia virus 1, and oocyte meiosis, detailed in
Supplementary Figure S1.

3.2 Construction of a prognostic model for
cellular senescence-related signatures (SRS)

Univariate Cox regression analysis was applied to eight SRGs
to determine their association with OS. The results,

illustrated in the forest plot (Figure 1C), indicated significant
correlations for all genes (p < 0.05, Supplementary Table S5). To
refine the model, the LASSO algorithm was utilized, resulting in
a five-gene model derived from the optimal λ value, depicted
in Figures 1D, E. The heatmap of these genes is shown
in Figure 3.

Based on the expression levels of these five genes in NB patients,
the following risk scoring formula was established:

SRS = 0.5782* AURKA expression value +0.2177*
MAD2L1 expression value -0.5369* HJURP expression value
+0.4630* CENPA expression value +0.4594* TACC3 expression value.

This scoring formula was utilized to calculate the risk score for
each patient in the training cohort GSE49710, subsequently
categorizing them into low and high-score groups based on the
median risk score. Kaplan-Meier survival analysis revealed a
significantly shorter OS in the high-score group compared to the
low-score group (Figure 4A, log-rank p < 0.0001). Furthermore, the
model demonstrated excellent predictive performance with area
under the curve (AUC) values of 0.84, 0.86, and 0.89 for 1-year,
3-year, and 5-year OS respectively, according to time-dependent
ROC analysis (Figure 4C).

3.3 Validation of the prognostic model in an
independent cohort

The prognostic model was evaluated within an independent
validation cohort (E-MTAB-8248) by calculating the risk score
for each patient using the established formula. Patients were
stratified into low- and high-score groups based on the median
risk score. Subsequently, survival curves and time-dependent
ROC curves were generated to assess the model’s performance.
Kaplan-Meier survival analysis revealed that patients in the high-
risk group experienced significantly shorter OS compared to
those in the low-risk group (Figure 4B, log-rank p < 0.0001).
The time-dependent ROC analysis indicated that the AUC values
for predicting 1-year, 3-year, and 5-year OS was 0.85, 0.78, and
0.78, respectively (Figure 4D).

FIGURE 2
Overall survival analysis based on SRG expression in neuroblastoma (NB). (A–D) Kaplan-Meier survival curves for AURKA, CENPA, CHEK1, and E2F1,
comparing high vs low expression groups in NB. (E–H) Kaplan-Meier survival curves for HJURP, MAD2L1, PTTG1, and TACC3, comparing high vs low
expression groups in NB.
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3.4 Validation of target genes by RT-qPCR

To clinically validate the key genes identified in our prognostic
model, we focused on AURKA and CENPA due to their high

alteration frequency in NB. A total of 16 NB samples were
analyzed for the CENPA gene expression, with equal
representation from both high-risk (n = 8) and non-high-risk
(n = 8) groups. Similarly, 14 NB samples were evaluated for

FIGURE 3
Heatmap Representation of SRGs in GSE49710. Heatmap showing the expression levels of five SRGs in GSE49710, ranging from blue (low
expression) to red (high expression).

FIGURE 4
Validation of the Prognostic Model. (A) Kaplan-Meier curves illustrating overall survival (OS) in the GSE49710 cohort based on the risk score. (B)
Time-dependent ROC curve analysis for 1-year, 3-year, and 5-year OS in the GSE49710 cohort. (C) Kaplan-Meier curves illustrating OS in the E-MTAB-
8248 cohort based on the risk score. (D) Time-dependent ROC curve analysis for 1-year, 3-year, and 5-year OS in the E-MTAB-8248 cohort.
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AURKA gene expression, comprising seven samples each from
high-risk and non-high-risk groups. The RT-qPCR results
demonstrated statistically significant differences in the expression
levels of both genes between the groups (P < 0.05, Figure 5).
Specifically, the expression level of AURKA was significantly
elevated in the high-risk group compared to the non-high-risk
group (P = 0.007, Figure 5A), and a similar pattern was observed
for CENPA, with higher expression in the high-risk group (P =
0.028, Figure 5B).

4 Discussion

In cellular biology, the inevitable transition from cell growth to
cellular senescence and subsequent death is a fundamental
metabolic principle, with cell lifespan varying by types (Sender
and Milo, 2021). Conventionally, cellular senescence has been
recognized as a mechanism that curtails cellular proliferation and
potentially thwarts tumor development (Muñoz-Espín and Serrano,
2014). Currently, most anticancer drugs induce cellular senescence
by disrupting replication, blocking nucleic acid synthesis, or
interfering with the G1/S phase transition, thereby leveraging
anti-tumor effects, a strategy known as pro-senescence therapy
for cancer (Liang et al., 2019; Poratti and Marzaro, 2019).

The induction of cellular senescence is typically related to the
p53/p16 cell cycle inhibition pathway. Various stressors or
damage factors activate the tumor suppressor RB
(retinoblastoma-associated protein, pRB, RB1) through the
p53/p16 signaling pathway, leading to cellular senescence
(Paez-Ribes et al., 2019; Domen et al., 2022). AURKA, a
member of serine/threonine kinase family (Aurora kinase) (Du
et al., 2021) is a key regulatory component involved in the

p53 pathway. AURKA causes the loss of p53 DNA-binding
and transcriptional activation activity through
phosphorylation of p53 Ser215 (Liu et al., 2004). Both in vitro
and in vivo experiments have demonstrated that the inhibition of
AURKA can induce cellular senescence (Huck et al., 2010). In
ovarian cancer, AURKA regulates the p16 pathway through the
SOX8-FOXK1 signaling axis, inhibiting cellular senescence and
enhancing glucose metabolism, ultimately leading to cisplatin
resistance (Sun et al., 2020).

Our study finds that high expression of AURKA gene in high-
risk NB is closely related to poor prognosis in children. We
speculated that the possible mechanism is related to the
inhibition of tumor cellular senescence by p53/p16 signaling
pathway, which leads to increased tumor aggressiveness.
Additionally, other findings suggest that besides being associated
with cellular senescence, the AURKA gene can drive tumor
progression through the LIN28B-RAN-AURKA signaling
pathway (Schnepp et al., 2015), and it also plays a role in
maintaining N-MYC stability in MYCN-amplified NB (Otto
et al., 2009). Emerging pre-clinical evidence suggests that
inhibitors targeting AURKA, such as MLN8237 (Görgün et al.,
2010) and ENMD-2076 (Diamond et al., 2011), could disrupt NB
progression and are currently undergoing clinical evaluation.
Notably, MLN8237 shows potential for inducing N-myc protein
degradation (Brockmann et al., 2013).

CENPA, an H3-related histone variant (Stirpe and Heun,
2023), is integral to centromere assembly (Rosin and Mellone,
2017). Studies have shown that in human primary fibroblasts,
reduction of CENPA leads to cellular senescence dependent on
the p53 pathway (Maehara et al., 2010).And the elevated
expression levels in several malignancies, including
hepatocellular carcinoma, renal clear cell carcinoma, breast

FIGURE 5
Relative Expression of AURKA and CENPA in Clinical Samples. (A) Relative expression of AURKA in high-risk vs non-high-risk groups of clinical
samples. (B) Relative expression of CENPA in high-risk vs non-high-risk groups of clinical samples, with statistical significance indicated (*p < 0.05).
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cancer, and endometrial carcinoma (Rosin and Mellone, 2017;
Wang et al., 2021; Liao et al., 2023; Stirpe and Heun, 2023; Li
et al., 2024; Wu et al., 2024) have been associated with tumor
progression, metastasis, and poor prognosis. Our study
confirmed that CENPA is highly expressed in high-risk NB
samples and is associated with poor prognosis, suggesting that
CENPA may be involved in the negative regulation of cellular
senescence in NB through the P53 pathway.

MAD2L1 (Mitotic arrest deficient two like 1) is a component of
the spindle assembly checkpoint during mitosis (Yang et al., 2008).
In studies related to pulmonary fibrosis, mitochondrial dysfunction
caused by inhibition of MAD2L1leads to cellular senescence (Wang
et al., 2022). HJURP (Holliday junction recognition protein) is a
companion protein of CENP-A during cell division and is involved
in the assembly of nucleosome centromere (Foltz et al., 2009). In
studies on human primary cellular senescence, Jong-Ik Heo et al.
found that knocking down HJURP may induce DNA damage
response to activate p53 pathway, leading to cellular senescence
(Heo et al., 2013). TACC3 is an important component of mitotic
spindles (Gergely, 2002) and a phosphorylation target of AURKA
(Aurora a) (LeRoy et al., 2007). In studies related to breast cancer,
Schmidt et al. (2010) proposed to regulate the p21 pathway through
the Aurora A-TACC3 axis, thereby inhibiting cellular senescence. In
our study, MAD2L1, HJURP, and TACC3 were highly expressed in
both the training and validation cohorts in high-risk group of NB
and were strongly associated with poor outcomes in children.

Based on GEO database, we constructed a prognostic model of five
cellular senescence-related genes through LASSO algorithm and
established a new risk scoring formula, which was well validated in
ArrayExpress database. We reclassified patients into low-risk and high-
risk groups according to the median SRS score, finding that the overall
survival rate of children in the low-risk group was significantly higher
than that in the high-risk group. This indicates that, in addition to the
application of COG risk stratification, multi-mode clinical monitoring
combined with necessary treatments should be adopted to further
improve the survival rate of high-risk NB. Furthermore, the
development of highly specific inhibitors targeting the AURKA
gene, such as MLN8237 and ENMD-2076, suggests that cellular
senescence-related genes could become new targets for NB
treatment. Although our prognostic model has been validated using
publicly accessible databases, its robustness requires further
confirmation via multi-center clinical trials.

4.1 Summary

Our investigation revealed five cellular senescence-related genes in
NB, fromwhichwe constructed prognosticmodels capable of effectively
predicting patients’ outcomes. Notably, among these genes, AURKA
and CENPA have emerged as highly promising markers for evaluating
cellular senescence. Their significant correlation with NB prognosis
underscores their potential as therapeutic targets, providing valuable
insights for the advancement of neuroblastoma treatments. This study
emphasizes the importance of cellular senescence in NB and lays the
foundation for further investigations into targeted therapeutic
approaches.
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