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Approximately one-third of the patients with diabetes worldwide suffer from
neuropathic pain, mainly categorized by spontaneous and stimulus-induced
pain. Microglia are a class of immune effector cells residing in the central
nervous system and play a pivotal role in diabetic neuropathic pain (DNP).
Microglia specifically respond to hyperglycemia along with inflammatory
cytokines and adenosine triphosphate produced during hyperglycemic
damage to nerve fibers. Because of the presence of multiple receptors on the
microglial surface, microglia are dynamically and highly responsive to their
immediate environment. Following peripheral sensitization caused by
hyperglycemia, microglia are affected by the cascade of inflammatory factors
and other substances and respond accordingly, resulting in a change in their
functional state for DNP pathogenesis. Inhibition of receptors such as P2X
reporters, reducing cytokine expression levels in the microglial reactivity
mechanisms, and inhibiting their intracellular signaling pathways can
effectively alleviate DNP. A variety of drugs attenuate DNP by inhibiting the
aforementioned processes induced by microglial reactivity. In this review, we
summarize the pathological mechanisms by which microglia promote and
maintain DNP, the drugs and therapeutic techniques available, and the latest
advances in this field.
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Introduction

In recent years, the number of cases and prevalence of diabetes has been steadily
increasing. According to the latest data by WHO, approximately 422 million people
worldwide have diabetes (World Health Organization, 2024). The global prevalence of
diabetes is projected to reach 780 million by 2045 (Sun et al., 2022). Diabetes has become a
typical disease that poses a significant threat to human health. Each year, global mortality
because of diabetic complications equals approximately 1.5 million (World Health
Organization, 2024). Complications of diabetes include diabetic nephropathy,
retinopathy, vascular disease, and peripheral neuropathy, and more than half of the
patients with diabetes worldwide experience diabetic neuropathy (Saeedi et al., 2019).
Diabetic neuropathy is associated with debilitating physical effects to patients and a
significant economic burden. The costs associated with patients suffering from diabetic
peripheral neuropathy exceed those associated with non-diabetic peripheral neuropathy
patients in terms of the number of medications used and total annual medication costs (Pan
et al., 2023). Diabetic neuropathy can be painful or non-painful (Gylfadottir et al., 2019). In
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this review, we focus on painful diabetic neuropathy (hereafter
referred to as diabetic neuropathic pain, DNP), characterized by
sharp, burning, electric shock-like, and evoked pain (Galer et al.,
2000). Among diabetic neuropathy types, DNP is the most severe in
terms of impact on the daily lives of affected patients (Gylfadottir
et al., 2022; Tesfaye et al., 2023). Therefore, clarifying the
pathological mechanism of DNP and its treatment strategies
is essential.

There is much research into the pathological mechanisms of
DNP. In a streptozotocin (STZ)-induced diabetes model, a study
demonstrated that the reactive microglial marker ionized calcium
binding adapter molecule 1 (IBA-1) is highly expressed in the spinal
cord of diabetic mice, implying an inextricable link between DNP
and microglia (Hwang et al., 2024). The involvement of microglia in
the pathological mechanisms of DNP and its therapeutic methods
have become hot topics of research in recent years, suggesting a close
correlation between spinal microglia and the pathogenesis and
progression of DNP.

However, the mechanism underlying the involvement of
microglia in DNP is unclear. We have therefore explored in
detail the hypothesized pathological mechanisms and therapeutic
approaches regarding the involvement of microglia in DNP.

Mechanism of diabetic neuropathy

After diabetes development, typical symptoms including
excessive eating, drinking, urinating, and weight loss ensue.
Hyperglycemia is the most severe sign of diabetes, leading to the
production of toxic metabolites, which at the cellular level are
characterized by the accumulation of mitochondrial dysfunction,
metabolic switch, oxidative stress, and axonal degeneration
(Fernyhough, 2015). During hyperglycemia, abnormalities in
polyols, hexosamine, and protein kinase C (PKC) pathways lead
to inflammation and increased levels of reactive oxygen species
(ROS) (Feldman et al., 2017). These effects can lead to nerve damage,
which in turn can result in neuropathy. In diabetic neuropathy, the
initial occurrence involves functional changes in C fibers, such as
initial degeneration and subsequent regeneration, which lead to pain
and hyperesthesia, and may cause microglial reactivity (Green et al.,
2010; Ota et al., 2021). Diabetic polyneuropathy is the most common
type of diabetic neuropathy, mainly manifested as mixed fiber
polyneuropathy, whereas some are pure small fiber or large fiber
polyneuropathies, with simultaneous involvement of Aβ-, Aδ-, and
C fibers (Galosi et al., 2021). Neuropathic pain in majority of the
patients is clearly associated with small fiber damage (Galosi et al.,
2021). Patients with DNP may also experience phenotypic
alterations in neuronal gene expression or complete loss of
neurons, leading to increased inflammation within the dorsal
root ganglion (DRG) and decreased levels of neuronal
transcriptional material (Hall et al., 2022). DRG neurons exposed
to systemic metabolic and hypoxic stressors are more susceptible to
damage (Feldman et al., 2017), and DRG neuron dysfunction leads
to worsening of DNP (Xie et al., 2022). In diabetes, hyperglycemia
causes nerve damage and discharges messages to the dorsal horn
neurons of the spinal cord to induce central sensitization of the
spinal cord (Zhu et al., 2019; Eid et al., 2023). When diabetic
neuropathy occurs, microglia respond and release signaling

molecules that cause neuro-inflammation and are therefore
involved in DNP.

Role of microglia in neuropathy
and DNP

In recent years, many researchers have emphasized the
diverse and critical roles of microglia in brain development,
homeostasis, and pathology, especially for the central nervous
system (CNS).

Microglia account for 5%–20% of the total neuroglia in the
mouse brain (Lawson et al., 1990), 0.5%–16.6% of the total amount
of all human CNS cells, and are more plentiful in white matter
tracts than in gray matter (Mittelbronn et al., 2001). Microglia are
produced by myeloid progenitor cells in the yolk sac of a
developing mouse before embryonic day 8 (Ginhoux et al.,
2010). Microglia are not only the central integrators of
neurological disease risk, but also critical mediators in
developing neurological pathology (Wright-Jin and Gutmann,
2019). Microglial development requires colony-stimulating
factor 1 (CSF-1) signaling, the CSF-1 receptor articulating
protein DAP12, and the interferon-regulatory factor-8 (Wolf
et al., 2017). At individual microglial cell level, the landscape
can change dramatically in weeks. Microglial population
turnover is a highly dynamic process, with a very high
proliferation rate in the mouse and human brain. With age, the
number of microglia and contact sites with dopamine neurons
increase, but their complexity decreases (Shaerzadeh et al., 2020).

Microglia are continuously dynamic rather than strictly
quiescent in their physiological state. They are recognized as
highly dynamic and plastic cells that exhibit multivariate
morphological/ultra-structural, transcriptional, metabolic, and
functional states in the CNS under both healthy and pathological
conditions (Paolicelli et al., 2022). Microglia have strong plasticity in
the CNS and can respond quickly to subtle transformations in the
surrounding environment. Microglial responses to pathological
conditions, such as trauma, involve them becoming hypertrophic,
and the thin processes are pulled back into their soma, resulting in a
round, amoeboid-like appearance (Perry, 2010).

Microglia regulate existing myelin through TGFβ1, which
maintains the structural integrity of myelin while preventing
demyelination and myelin hyperplasia, and a lack of microglia is
detrimental to myelin health (McNamara et al., 2023). Myelin wraps
around neuronal axons to maintain proper electrical impulse
propagation (McNamara et al., 2023), which is essential for
maintaining CNS function. Additionally, reactive microglia are
involved in phagocytosis, whereas prolonged microglial activation
causes neuronal damage (Yuan et al., 2019). Microglia also release
brain-derived neurotrophic factor (BDNF) to promote synaptic
remodeling and the onset of pain hypersensitivity after peripheral
nerve injury (Huang et al., 2021). The study found that neonatal
administration of STZ (nSTZ) increased OX-42 immunoreactivity
and the percentage of hypertrophied and ameboid microglia in the
spinal dorsal horn (Barragán-Iglesias et al., 2018). Researchers
found that GYY4137 produced neuro-protective effects in
diabetic rats, and abnormal pain as well as mechanical
hyperalgesia were improved in the treated group. At the
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cellular level, treatment with GYY3137 reduced the number of
microglia in the white and gray matter of the spinal cord, and the
researchers believe that GYY4137 may alleviate DNP by reducing
the number of reactive microglia in the spinal cord (Shayea et al.,
2020). This suggests that microglia may be involved in the
pathogenesis of DNP.

Microglial involvement in DNP
pathogenesis

DNP is caused by peripheral nerve damage due to successive
metabolic disruptions of hyperglycemia, which manifests as peripheral
neuropathic pain. The neuropathic painmechanisms involve ion channel
alteration, peripheral sensitization and central sensitization.

Hyperglycemia in the body has a direct toxic effect on the peripheral
nerves and causes peripheral microvascular lesions, resulting in impaired
nutrient supply to nerve cells. Peripheral sensitization caused by a
cascade of inflammatory responses generated by the peripheral
immune cells after nerve injury and central sensitization caused by
reactivity of central glial cells are essential factors in the development and
progression of neuropathic pain.

Peripheral sensitization represents the increased reactivity and
decreased threshold of peripheral neurons to stimulate their
receptive field (International Association for the Study of Pain,
2017). In patients with diabetes, primary afferent neurons, such as
unmyelinated C-fibers and small-myelinated Aδ-fibers, are
continuously stimulated by hyperglycemia. Multiple pathways release
inflammatory factors such as TNF-α, IL-1β, and IL-6, which cause
reactivity of transient receptor potential vanilloid type 1 and the release
of substance P (SP) and calcitonin gene-related peptide (CGRP). The SP
and CGRP release activates peripheral immune cells and promotes
inflammatory factor release (Zang et al., 2023). Macrophages are typical
representatives of peripheral immune cells, which act as house-keeping
cells and play a role in immune detection through phagocytosis and
cytokine secretion. In response to changes in environmental signals,
macrophages shift between M1 pro-inflammatory and M2 anti-
inflammatory phenotypes and function accordingly (Kim et al.,
2019). When primary neurons are damaged, macrophages release
nociceptive mediators and inflammatory cytokines in conjunction
with satellite glial cells to enhance and maintain neuropathic pain
(Yang et al., 2023a).

Central sensitization is the increased reactivity of nociceptive neurons
in the central nervous system to their normal or subliminal afferent inputs
(International Association for the Study of Pain, 2017). Reactivemicroglia
in the dorsal horn of the spinal cord play an important role in initiating
central sensitization. In this review, we have focused on the mechanisms
by which microglia exert their effects in DNP.

The involvement of microglia in DNP can be divided into two
stages: how diabetes activates microglia and how reactive microglia
participate in and maintain DNP.

Association of DNP with microglia reactivity

Hyperglycemia
Hyperglycemia enhances triglyceride levels and PKC reactivity

in endothelial cells and large arteries, leading to an increase in

arachidonic acid release and prostaglandin E2 production, which
inhibits Na+, K+, and adenosine triphosphatase, potentially slowing
nerve conduction. Hyperglycemia also triggers vascular endothelial
cell dysfunction, leading to microvascular lesions causing nerve
trophic disorders, further causing peripheral nerve damage and
necrosis, altering the homeostatic microenvironment of the CNS
and thus affecting the microglia. Hyperglycemia directly increases
the number of microglia involved in DNP development (Lanlua
et al., 2020). When hyperglycemia causes localized inflammation in
the body, adenosine triphosphate (ATP) accumulates at the
inflammation site (Di Virgilio et al., 2020). Hyperglycemia also
causes mitochondria to produce large amounts of superoxide and
increase the flux of polyol hexosamine and PKC channels, leading
to an increase in microglial ROS production (Sharma et al., 2012).
Excessive ROS in microglial cells enhance the role of NLR family
pyrin domain containing 3 (NLRP3) (Zhou et al., 2011). When
microglia are in a hyperglycemia-induced inflammatory
environment, ATP levels in the surrounding environment are
elevated (Koepsell, 2020). Inflammatory factors produced by
peripheral neurons can bind to Toll-like receptors (TLRs) on
microglia; hyperglycemia also prolongs NF-κB activation
induced by lipopolysaccharide (LPS) binding to TLRs (Hung
et al., 2022); and ATP released by stressed or injured cells or
inflammation can bind to P2XR on microglia. By activating the
p38 MAPK and nuclear factor κB (NF-κB) pathways, microglia can
synthesize and release pro-inflammatory cytokines, such as IL-1β,
IL-6, IL-18, and TNF-α, which are involved in pain signaling (Liu
et al., 2021).

P2XR
P2XR is a ligand-gated cation channel activated by

extracellular ATP signaling, and seven separate genes encoding
P2X subunits have been identified and named P2X1-P2X7, who
belong to a larger family, the purinergic receptors (Oken
et al., 2022).

P2X4R is widely expressed in most cell types of the central
and peripheral nervous systems, including neuronal and
immune cells, especially microglia (Montilla et al., 2020). On
microglia, the activation of the microglial intracellular
inflammatory group NLRP3 through the binding of ATP to
P2X4R leads to the maturation and release of inflammatory
factors. It has been demonstrated that modulation of the
P2X4R and NLRP3/ILL-1 inflammatory pathways in microglia
by electroacupuncture resulted in significant pain relief (Zhou
et al., 2024). Such a response is also reflected in P2X7 receptor
(P2X7R), and inhibition of P2X7R expression by
electroacupuncture can also inhibit the secretion of inflammatory
factors by microglia and alleviate the inflammatory response (Lin
et al., 2024).

TLR4
TLRs are an important class of protein molecules involved in

non-specific immunity. Toll-like receptor 4 (TLR4), expressed on
the surface of microglia, plays an important role in mediating LPS-
induced microglial reactivity and inflammatory responses (Zusso
et al., 2019).

TLR4 induces the recruitment of myeloid differentiation factor
88 and the transcriptional process of NF-κB in neurons and glial
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cells, which produces a variety of cytokines such as TNF-α and IL-1β
and contributes to pain induction and persistence (Kawai and Akira,
2010; Sun et al., 2023). Hyperglycemia prolonged the activation of
the microglial NF-κB pathway induced by LPS binding to TLR4 and
secreted more inflammatory factors, which exacerbated the
inflammatory response (Hung et al., 2022).

p38MAPK
p38 is an intracellular signaling lineage-activated protein

kinase (MAPK) that is divided into four isoforms, p38α–δ.
The MAPK pathway is involved in neuron-microglia signaling
and plays an important role in pain generation (Ji et al., 2009).
During DNP, pro-inflammatory substances can activate the
p38MAPK signaling pathway, producing pain signals (Ni
et al., 2016). p38MAPK inhibition can block pro-
inflammatory cytokine secretion (Brown et al., 2015).
Activation of p38MAPK in microglia has been demonstrated
in animal pain models but not in non-painful diabetic animals
(Suzuki et al., 2011). Diabetic pathogenic nerve pain can be
effectively relieved by inhibiting p38 phosphorylation of in
microglia (Zhang T. T. et al., 2018).

NLRP3
NLRP3 is a filamentous signaling platform consisting of three

components (sensor, adapter, and effector) that mediate the
inflammatory response by promoting the maturation of pro-
inflammatory factors. Activation of the NLRP3 inflammatory
vesicle pathway requires two steps; first, NLRP3 expression can
be initiated by cytokines involved in the inflammatory response and
is transcriptionally upregulated upon activation of NF-κB or other
transcription factors (Bauernfeind et al., 2009). NLRP3 can then be
activated by ATP (Perregaux and Gabel, 1994). Activated
NLRP3 becomes an inflammatory complex through aggregation,
and caspase-1 in the inflammatory complex cleaves cytokine
precursors to produce mature forms such as IL-1β and IL-18
(Sharma and de Alba, 2021).

High expression of microglial NLRP3, ASC, and caspase-1
proteins and significant elevation of serum cytokines IL-1β, IL6,
IL18, and TNF-α were found in the STZ-induced diabetic mouse
model (Li et al., 2021b). It has also been demonstrated that by
inhibiting the activation of NLRP3 in microglia, the production of
IL-1β can be reduced and neuroinflammation under diabetes can be
suppressed (Iwasa et al., 2023).

Mediation of factors release by reactive
microglia and its role in DNP

TNF-α, IL-6, and IL-1β released by microglia act on
chemokine receptors in neurons, causing phospholipase C
increase and PKC activation, which in turn, causes
phosphorylation and activation of TRPV. As a result, the
sensory neurons become hyper-responsive, and ROS and
nitrogen radicals causing cytotoxic damage to the nerves are
produced (Bhandari et al., 2021). We thus found that reactive
microglia damage nerves by releasing these inflammatory factors
during DNP, suggesting that microglia contribute to and
maintain the development of DNP.

Interleukin factors
IL-1β is an interleukin-1 subtype that plays a pro-

inflammatory role in the body. The NLRP3 inflammasome
cleaves pro-IL-1β to active IL-1β (Lamkanfi and Dixit, 2014),
which can bind to receptors on cells such as neurons and
cooperate with other cytokines to trigger a spectrum series of
signaling events that result in the exacerbation of inflammatory
cascade responses within the central nervous system (CNS)
(Song et al., 2017). Using high glucose (35 mM) treated
BV2 cells (immortalized primary microglia) to simulate
mimetic hyperglycemia in vitro, IL-1β transcription and
expression levels were elevated after 8 h (Li et al., 2021a).
This suggests that reactive microglia in a hyperglycemic
environment participate in DNP development by releasing IL-
1β, causing nerve damage.

IL-6 is another cytokine involved in the inflammatory
response and in the process of diabetic peripheral neuropathy
(Rahman et al., 2016). In a streptozotocin (STZ)-induced
diabetes model, the study revealed that Mdivi-1 inhibited
microglia from releasing inflammatory factors like IL-6, which
can attenuate inflammation and neuron cell apoptosis (Chung
et al., 2022).

IL-18 is a potent inflammatory cytokine expressed in
microglia in the dorsal horn of the spinal cord. IL-18 receptor
(IL-18R) is expressed mainly in astrocytes and the IL-18/IL-18R
axis mediates the interaction between microglia and astrocytes.
Unlike IL-1β, IL-6, and TNF-α, IL-18 is only released by
microglia in the spinal cord and activates the NF-κB signaling
pathway in astrocytes via IL-18R, triggering a cascade of
responses involved in chronic pain development (Miyoshi
et al., 2008; Ju et al., 2024). Serum IL-18 levels were
significantly elevated and IL-18R was significantly upregulated
in patients with type II diabetes mellitus compared to non-
diabetic controls (Abhilasha et al., 2023). This shows the
involvement of microglia in DNP by releasing IL-18 acting on
IL-18R on astrocytes.

TNF-α
TNF-α is mainly produced by microglia (Welser-Alves

and Milner, 2013), and is recognized as a key player in the
reactivity and morphological changes of microglia in the
spinal cord caused by peripheral nerve injury (Andrade
et al., 2011). TNF-α may be an independent risk factor for
peripheral neuropathy in patients with impaired glucose
regulation (Li et al., 2017). TNF-α protein levels were
significantly increased in a diabetic group of mice
compared to those in the control group (Ghazipour et al.,
2022). This suggests that during the DNP development,
reactive microglia exacerbate peripheral nerve damage by
releasing TNF-α to promote DNP.

BDNF
BDNF is a member of the trophic factor nerve growth factor

family, which acts on motor and sensory neurons in the peripheral
nervous system. A concomitant increase in the expression of BDNF
was observed alongside an increased number of reactive microglia in
the spinal cord of STZ-induced diabetic model (Ismail et al., 2020),
suggesting that BDNF and microglia are involved in the process of
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DNP. BDNF promotes microglial reactivity and IL-1β and TNF-α
release, which exacerbates neuro-inflammation and leads to
mechanical allodynia through BDNF-TrkB-p38/JNK signaling
(Ding et al., 2020).

IGF-1
Insulin-like growth factor-I (IGF-1) is a multifunctional

protein playing a significant role in the development and
maturation of CNS, including promoting neuronal survival
and synaptic growth (Dyer et al., 2016; Falomir-Lockhart
et al., 2019). IGF is mainly derived from microglia in the
brain (Suh et al., 2013). Microglial IGF-1 levels were reduced
in type 1 diabetic mice (T1DM) mice, and the activation of spinal
IGF-1 signaling maintained microglial IGF-1 expression in the
spinal cord of diabetic mice and reduced neuro-inflammation
(Chen et al., 2022).

Chemokine (C-X-C motif) ligand (CXCL)12
CXCL12-CXCR4 chemokine signaling plays a key role

in regulating various neurodevelopmental processes and
modulating synaptic plasticity (Li and Ransohoff, 2008). In
the study of a mouse diabetic model established by injection

of STZ, it revealed that immunostaining showed that
CXCL12 was invariably co-labeled with IBA-1, and reactive
microglia can release CXCL12, which subsequently acts
on neuronal CXCR4 to cause neuronal hyperactivation
(Song et al., 2023). This study demonstrates the involvement
of microglial reactivity in the development of diabetic
neuropathy by up-regulating CXCL12-CXCR4 signaling (Figure 1).

Treatment strategies for DNP

Ammoxetine

The novel and potent serotonin and noradrenaline reuptake
inhibitor (SNRI) ammoxetine, derived from duloxetine, exhibits
important analgesic effects in animal models of neuropathic pain.
Ammoxetine has a shorter onset time than duloxetine (Zhang et al.,
2016), a lower toxicity than duloxetine, and has some hepato-
protective effects (Xue et al., 2013). In the DNP rat model, the
use of ammoxetine did not affect blood glucose concentration.
However, ammoxetine treatment inhibited the p38MAPK and
JNK signaling pathways, significantly reduced the upregulation of

FIGURE 1
Microglial response to the hyperglycemic environment at the cellular level. Microglia located around neurons in the dorsal horn of the spinal cord are
not in an absolutely resting state. Instead, microglia are constantly sensing their surroundings and responding accordingly to regulate their functional
state. ① Under hyperglycemia-induced peripheral sensitization, microglia are exposed to ATP, inflammatory factors and other substances produced by
cascade reactions; ② Through the signaling including purinergic receptors and toll-like receptors, NLRP3 pathway activation is induced, and
through the p38 MAPK/NF-κB signaling pathway, the microglia respond accordingly; ③ Changes to the morphology of microglia such as cellular
hypertrophy and increased thickness occur, resulting in an amoeba-like morphology. At the same time, microglia produce pro-inflammatory cytokines
such as IL-1β, IL-6, TNF-α, and BDNF; ④ Finally, these cytokines act on neurons to cause pain hypersensitivity. All of the above processes illustrate that
microglia are involved in the development and progression of DNP.
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the microglial marker IBA-1 (thereby inhibiting microglial
reactivity) and decreased IL-1β and TNF-α secretion to
ameliorate DNP (Zhang T. T. et al., 2018). A phase Ⅰ clinical trial
demonstrated the outstanding pharmacokinetic profile and safety of
oral ammoxetine (Shen et al., 2021). In the DNP rat model, higher
the dose of ammoxetine within a safe dosage range, more significant
was the observed reduction in mechanical allodynia (Zhang T. T.
et al., 2018). While duloxetine is used as a first-line agent for the
treatment of DNP (Jiang et al., 2022), ammoxetine has been shown
in several basic trials to be superior to duloxetine for treating DNP
(Xue et al., 2013; Zhang et al., 2016). Common side effects of
ammoxetine in clinical trials include nausea, palpitations, dry
mouth, dizziness, insomnia, prolonged QT interval, pyuria,
flushing, tachycardia, and hyperhidrosis (Shen et al., 2021).
However, clinical trials of ammoxetine for the treatment of DNP
have not yet been initiated, and further investigation is warranted.

Photobiomodulation therapy

Photobiomodulation therapy (PBMT) can modulate cellular
mitochondrial redox signaling (Hamblin, 2018) and can be
applied to treat pain. It does not improve metabolic problems
such as hyperglycemia and weight loss in diabetic rats. However,
photobiomodulation therapy (904 nm) treatment reduced
p38 phosphorylation, phosphorylation of extracellular signal-
regulated kinase (ERK)1/2 proteins, p-JNK expression, and
hyperalgesia (Vieira et al., 2022). PBMT also resulted in
decreased expression of the microglial marker IBA-1, inhibited
microglial reactivity, enhanced recovery of microglial morphology
and function from insulin treatment, and prevented allodynia and
hyperalgesia (Liu S. et al., 2023; Daigo et al., 2023; Marques et al.,
2023; Zhang et al., 2023). A clinical trial NCT05032612 (https://
clinicaltrials.gov/) applied photobiomodulation therapy to the
treatment of post-endodontic pain, and the results showed that
patients experienced significant pain relief, with no serious adverse
effects detected. Therefore, further studies on the mechanism by
which PBMT treats DNP via effects on microglial reactivity
are needed.

EGCG

(−)-Epigallocatechin-3-gallate (EGCG) is enriched in green tea,
a popular beverage worldwide. EGCG has potent antioxidant
(Higdon and Frei, 2003), anti-inflammatory (Li et al., 2020), and
antitumor (Kuriyama et al., 2006) effects. EGCG can inhibit
lipopolysaccharide (LPS)-induced neurotoxicity and plays a
neuro-protective role (Liu et al., 2016). EGCG can also be used
as a neuro-protective agent in treating neurodegenerative diseases
(Pervin et al., 2018). Interestingly, EGCG supplementation can
effectively reduce body weight in obese mice, alleviating diabetes
(Wolfram et al., 2006; Lee M. S. et al., 2009) and reduce neural tube
defects induced by gestational diabetes (Zhong et al., 2016). Both
intrathecal (2 μg d-1) and intraperitoneal (20 mg kg-1 d-1)
administration of EGCG can alleviate neuropathic pain and
reduce neuro-inflammation in diabetic mice, inhibiting the
reactivity of microglia and promoting IGF-1 expression in

microglia (Chen et al., 2022). Thus, in future clinical studies,
EGCG may be used as a novel drug to verify its effects in human
DNP. Clinical studies have shown no serious adverse effects in
humans taking 800 mg or less of EGCG daily, but diarrhea and
headache may occur (Siblini et al., 2023). The U.S. Pharmacopoeia
states that long-term high-dose supplementation with green tea
extract may risk potential liver injury (Oketch-Rabah et al., 2020).

JMT

Jinmaitong (JMT) is a traditional Chinese medicinal prescription
consisting of 12 natural medicines that has been historically used to
prevent and treat DNP. JMT treatment modulates microglial reactivity
through inhibition of the JAK2/STAT3 signaling pathway, resulting in
decreased expression of microglia markers IBA-1, CD11B, and CD68,
and suppression of the NLRP3 inflammasome. JMT treatment
inhibited neuro-inflammation and attenuated DNP symptoms (e.g.,
mechanical allodynia and hyperalgesia) in diabetic rats (Sun et al., 2019;
Sun Q. et al., 2021; Wang et al., 2024). JMT targets specific signaling
pathways and modulates the microglial reactivity to effectively alleviate
DNP, providing a basis for investigating this preparation and its
constituent actives.

Koumine

Koumine is a compound extracted from Gelsemium that has
anti-inflammatory and anti-neuropathic effects (Wang et al., 2019;
Ye L. X. et al., 2021). Koumine treatment ameliorates DNP in rats
and significantly reduces the expression of CD86, CD68, TNF-α, and
IL-1β and inhibits microglial reactivity through the Notch-RBP-Jκ
signaling pathway (Jin et al., 2021). Koumine is a potential drug for
the treatment of DNP, and further studies are needed for its specific
application in humans.

Coenzyme Q10

The fat-soluble antioxidant coenzyme Q10 is present in most
plant and animal cells and is involved in electron transfer and
aerobic respiration in mitochondria. It is primarily used as a food
supplement (Arenas-Jal et al., 2020), and its observed safety level in
humans is 1,200mg/day with no severe adverse effects (Hidaka et al.,
2008). Coenzyme Q10 may be used as a supplement in treating
diabetes, but the mechanism is currently undefined (Arenas-Jal
et al., 2020). In a T2DM mouse model, coenzyme Q10 has
analgesic effects in mechanical allodynia and thermal
hyperalgesia. Coenzyme Q10 may relieve DNP by inhibiting the
signaling pathways activated by MAPK, NF-κB, and TLR4 in the
DRG and spinal cord. TLR4 is a key receptor that initiates microglial
reactivity (Tanga et al., 2005); thus, its downregulation may inhibit
microglial reactivity. This study also suggests that long-term use of
coenzyme Q10 may play a role in preventing DNP and has better
therapeutic effects when used in combination with other analgesic
therapies (Zhang et al., 2013). The results of a clinical trial
NCT0286546 (https://clinicaltrials.gov/) showed that coenzyme
Q10 supplementation relieved chronic pain in participants to
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some extent without any serious adverse effect. Coenzyme Q10 may
play an effective, preventive and adjunctive therapeutic role in DNP
by inhibiting microglial reactivity; however, detailed mechanisms
need to be further investigated.

Electroacupuncture

Electroacupuncture (EA) improves sleep and anxiety and has a
favorable antidepressant effect (Zhao et al., 2023). EA relieves
neuropathic pain (Moon et al., 2020), but further trials are needed
to confirm its effectiveness and safety. Receiving continuous
electroacupuncture for 30 min once a day for a week has an
analgesic effect in DNP (Ma et al., 2023) and can downregulate
the expression of P2X7 and P2X4 in the DRG (Hu et al., 2023). EA
reduced DNP-induced expression of IBA-1, BDNF, IL-1β, and TNF-α
and altered microglial morphology (Qu et al., 2023). Thus, EA can
alleviate DNP by regulating microglia. EA may have side effects like
dizziness, gastrointestinal discomfort, and high fever, yet considered
safe (He et al., 2022).

Dexmedetomidine

Dexmedetomidine (Dex) is an α2-adrenergic receptor agonist. Dex
has sedative, analgesic, anti-inflammatory, and antioxidant effects and
reduces sympathetic tone and inflammatory response (Mantz et al.,
2011; Li et al., 2018). Although Dex treatment did not significantly
improve metabolic problems, such as body weight changes and blood
glucose dysregulation in diabetic rats (Zhang et al., 2020), it relieved
neuropathic pain by inhibiting P2X4 expression in the spinal cord
(Kang et al., 2019). Dex (50 μg·kg-1) significantly reduced the
mechanical withdrawal threshold (MWT) and motor nerve
conduction velocity, as well as inhibited microglial reactivity and
partially restored neuronal phenotype (Lu et al., 2017; Kang et al.,
2019; Zhang et al., 2020). Dex also reducesDNP through theWnt10a/β-
catenin (Zhong et al., 2018) and ERK (Chen et al., 2017) signaling
pathways. Common adverse reactions of Dex use are hypotension/
hypertension and bradycardia (Keating, 2015).

Quercetin

Quercetin is a natural flavonoid found in vegetables and fruits (Ay
et al., 2021). Quercetin has anti-inflammatory effects and can relieve
neuropathic pain through the AMP-activated protein kinase (AMPK)/
MAPK pathway (Ye G. et al., 2021). Quercetin treatment blocked
P2X4R expression in the DRG by acting on the P2X4R, impairing its
normal function, and thereby decreasing P2X4R-mediated activation of
p38MAPK in diabetic rats. Quercetin treatment (50 mg·kg-1day-1)
alleviates DNP by acting on P2X4R to decrease thermal and
mechanical hyperalgesia in diabetic rats (Yang et al., 2019; Wang
et al., 2020). Quercetin can impede microglial reactivity and exert
neuro-protective effects by inhibiting NLRP3 inflammasome activation
(Han et al., 2021). Quercetin has shown marked potential as a future
drug for the treatment of DNP, and further investigation of the
mechanism by which quercetin modulates microglial reactivity must
be further investigated.

GLP-1RA

GLP-1 agonists (GLP-1RAs), including exenatide, liraglutide,
lixisenatide, and beheneruptide, are a well-established class of drugs
for the treatment of T2DM (Drucker, 2018). GLP-1RA
administration can ameliorate CNS disorders by reducing
microglial reactivity (Lee et al., 2018). The intracerebroventricular
administration of GLP-1RA inhibits reactivity of microglia in the
brain of DNP rats and relieves thermal and mechanical hyperalgesia
by inhibiting activation of NLRP3 inflammatory vesicles in brain
microglia (Zhang et al., 2022), and no serious adverse effects of GLP-
1 agonists have been detected. Thus, treating DNP with GLP-1RA
represents a potential novel research avenue.

Taxifolin

Taxifolin, also known as dihydroquercetin, is a flavonoid present
in French maritime pine, larch, milk thistle, and onions (Thuan
et al., 2022). Taxifolin has antioxidant and anti-inflammatory
properties and provides neuro-protection against
neurodegenerative diseases (Sunil and Xu, 2019; Yang et al.,
2023b). Taxifolin relieves hyperglycemia-induced neuropathic
pain (Alay et al., 2022). In addition, taxifolin can inhibit TXNIP-
NLRP3 axis activation by decreasing microglial ROS levels, thereby
suppressing microglia-induced inflammatory responses (Iwasa et al.,
2023). Taxifolin may thus achieve relief from DNP by inhibiting the
microglial response to hyperglycemia. Taxifolin has a few or almost
no side effects in normal cells (Das et al., 2021).

Go-sha-jinki-gan

Go-sha-jinki-gan (GJG), a conventional herbal medicine used in
humans at a standard daily dose of 7.5 g, reduces elevated blood
insulin levels (Hirotani et al., 2011) and relieves chemotherapy-
induced peripheral neuropathic pain (Cascella and Muzio, 2017).
GJG can effectively relieve DNP (Jiang et al., 2021). GJG inhibits
microglial reactivity in an experimental autoimmune
encephalomyelitis (EAE) mouse model, reduces TNF-α levels,
and inhibits phosphorylation of p38 in the spinal cord of EAE
mice, thereby reducing CNS inflammation (Jiang et al., 2021). No
adverse effects of GJG have been detected (Kishida et al., 2015). In
the future, GJG could serve as a potential agent for treating DNP by
inhibiting microglial reactivity.

Metformin

Metformin is a first-line prescription drug for T2DM and
effectively controls the blood glucose levels with an impressive
safety profile. Its primary mechanism of action is the inhibition
of hepatic gluconeogenesis (LaMoia and Shulman, 2021).
Metformin reverses and blocks neuropathic pain completely
in male mice and induces AMPK signaling, which is a
negative regulator of MAPK signaling pathway targets
(Inyang et al., 2019). Metformin treatment reduces the
number of IBA-1 staining-positive microglia in the dorsal
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horn and inhibits microglial reactivity (Inyang et al., 2019).
Thus, metformin may alleviate DNP in male mice by inhibiting
the MAPK signaling pathway and suppressing microglial

reactivity. The main adverse effects of metformin are
gastrointestinal disturbances (Hostalek et al., 2015). The
therapeutic effect of metformin is long-lasting in animal

TABLE 1 Latest and potential medications as well as treatments acting on microglia for DNP.

Name Mechanism Treatment results Adverse reaction

Ammoxetine Inhibition of p38MAPK, JNK signaling
pathway and microglia reactivity

Improves DNP Nausea, dizziness, palpitations,
tachycardiaetc.

Photobiomodulation therapy Reduces P38 phosphorylation and p-JNK
expression, inhibits microglia reactivity

Prevents allodynia and hyperalgesia ---

EGCG Inhibition of the reactivity of microglia and
maintenance of microglia IGF-1 expression

Relieves diabetes and reduces DNP Diarrhea, headaches

Jinmaitong Inhibition of the JAK2/STAT3 signaling
pathway

Improves DNP ---

Koumine Inhibits microglia response Improves DNP ---

Coenzyme Q10 Inhibits the signaling pathways activated by
MAPK, NF-κB, and TLR4 in DRG and spinal

cord

Analgesic effects on mechanical allodynia
and thermal hyperalgesia

---

Electroacupuncture Downregulation of P2X7 and P2X4 expression
in DRG and inhibition of microglia reactivity

It has antidepressant properties and
reduces DNP

Dizziness, gastrointestinal distress and
high fever

Dexmedetomidine Inhibition of P2X4 expression and microglia
reactivity

Multiple pathways to relieve DNP Hypotension, hypertension and
bradycardia

Quercetin Inhibition of P2X4 expression and microglia
reactivity

Multiple pathways can be used to relieve
neuropathic pain

---

GLP-1RA Inhibition of NLRP3 inflammatory vesicle
activation in brain microglia

Improves DNP ---

Taxifolin Reduces the activation of TXNIP-NLRP3 axis,
thereby inhibiting microglia response to

hyperglycemia

Relieves hyperglycemia-induced
neuropathic pain

---

Go-sha-jinki-gan Inhibition of microglia reactivity and
phosphorylation of P38

Reduces high insulin levels in the blood and
improves DNP

---

Metformin Inhibits microglia reactivity and induces
AMPK signaling

It has a therapeutic effect on diabetes and
reduces DNP

Gastrointestinal disturbances

Osthole Inhibition of P2X4R expression and microglia
reactivity

Adjuvant treatment of diabetes and
reduction of DNP

---

Dihydromyricetin Reduces P2X7R expression and ameliorates
microglia overactivation

It may lower blood glucose and
improve DNP

---

Palmatine Inhibition of P2X7R expression and microglia
reactivity

Be used to treat diabetes and improve DNP Arrhythmia

Rhodioloside Inhibition of P2X7R expression and microglia
response

Lowers blood glucose and improves insulin
sensitivity, reduces DNP

---

Nanoparticle-Encapsulated
Curcumin

Reduces expression of P2Y12R and inhibits
microglia pyroptosis

Improves DNP ---

Cilnidipine Inhibits endogenous expression of P2X7R in
microglia and suppresses IL-1β release from

microglia

relieves neuropathic pain ---

Resveratrol Inhibition of microglia reactivity and
neuroprotection-mediated secondary glial

reactivity

Improves insulin resistance and DNP ---

Botulinum toxin type A Significantly downregulates mRNA
expression of TLRs and inhibits microglia

reactivity

Improves DNP ---

N-palmitoyl-D-glucosamine Acts on TLR4 to antagonize LPS and inhibits
microglia reactivity

Improves pain ---
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experiments (Inyang et al., 2019), whether metformin is safe and
effective in relieving pain in patients with DNP remains unclear.
Similarly, gender differences in the pain relief produced by
metformin must be investigated in human trials.

Osthole

Osthole is a coumarin derivative found in plants, such as
Angelica pubescens and Cnidium monnier. Osthole has antitumor,
antioxidant, anti-inflammatory, and neuro-protective properties
(Sun M. et al., 2021; Yang et al., 2022) and can be used in the
treatment of diabetes (Liang et al., 2009; Yao et al., 2018). Osthole
(20 mg kg-1 day-1) treatment restored the MWT to normal levels,
inhibited soluble guanylate cyclase activation and P2X4R expression
in the DRG of diabetic rats, and reduced the upregulation of TNF-α,
IL-1β, BDNF, and phospho-p38MAPK, thus alleviating DNP (Yuan
et al., 2018). Osthole treatment reduces the levels of IL-6, IL-1β, and
TNF-α, blocks NF-κB activation, reduces the expression of
microglia, and inhibits microglial reactivity (Kong et al., 2019;
Liu C. H. et al., 2023). Osthole has very few adverse effects (An
et al., 2016). Inhibition of microglial reactivity may be the
mechanism by which Osthole treats DNP, which needs to be
explored in further studies.

Dihydromyricetin

Dihydromyricetin (DHM) is a flavonoid compound that is
found in abundance in Ampelopsis grossedentata (Hand.-Mazz.)
W.T. Wang (Vitaceae) (Zhang J. et al., 2018). DHM lowers blood
glucose, improves the sensitivity of the liver to insulin, and is
used to treat diabetes (Le et al., 2016; Tong et al., 2020).
Treatment with DHM (30 mg kg-1) for 14 consecutive days
significantly reduced the thermal withdrawal latency (TWL)
and MWT of rats with DNP, and the use of DHM reduced
P2X7R expression in rats suffering from DNP and alleviated
neuropathic pain and depression (Guan et al., 2019). DHM has
also been shown to ameliorate microglial over-activation (Al
Omran et al., 2022). No adverse effects have been reported in the
clinical application of DHM (Chen et al., 2015). Thus, DHM may
represent a novel drug suitable for clinical trials for
DNP treatment.

Palmatine

Palmatine, a proto-berberine alkaloid with neuro-protective,
anti-inflammatory, and antioxidant effects (Long et al., 2019), is
also used to treat diabetes. Treatment with palmatine (30 mg kg-1)
for 14 consecutive days reduces MWT and TWL to alleviate DNP by
reducing P2X7R expression, potentially inhibiting IL-1β and TNF-α
secretion, and reducing ERK1/2 phosphorylation in the
hippocampus of rats (Shen et al., 2018). Palmatine reduces TNF-,
inducible nitric oxide synthase, and NF-κB immunoreactivities and
inhibits microglial reactivity (Liu C. H. et al., 2023). Palmatine
treatment may have the side effect of arrythmia (Tarabasz and
Kukula-Koch, 2020).

Rhodioloside

Rhodioloside is the rhizome extract of Rhodiola rosea, which has
anti-inflammatory, antioxidant, antiplatelet, and
immunomodulatory properties. Rhodioloside treatment can
dramatically reduce fasting blood glucose and improve insulin
resistance in diabetic rats, as well as attenuate inflammatory
responses, reduce hyperalgesia, allodynia, and the upregulation of
P2X7R expression (Ni et al., 2017; Zheng et al., 2021). Rhodioloside
modulates the microglial reactivity and is used to alleviate
neuroinflammation (Wang et al., 2018). No adverse effects have
been detected during its clinical application (Zhang et al., 2012).
Therefore, rhodioloside has a promising future in DNP treatment
via inhibition of microglial reactivity.

Nanoparticle-encapsulated curcumin

Curcumin is a diketone compound extracted from the rhizome
of turmeric with anti-inflammatory, antioxidant, anticancer, and
hypolipidemic effects (Park et al., 2021). Nanoparticle-encapsulated
curcumin has increased targeted delivery ability, bioavailability, and
stability compared to un-encapsulated curcumin (Guo et al., 2016).
Nanoparticle-encapsulated curcumin reduced the expression level of
P2Y12R and slowed down mechanical and thermal hyperalgesia in
diabetic rats (Jia et al., 2017). Curcumin inhibited microglial
pyroptosis and pro-inflammatory responses (Ran et al., 2021).
Nano curcumin treatment reduces pain levels and lowers fasting
blood glucose in patients with DNP and is well tolerated (Asadi et al.,
2019). More research is needed in the future to investigate the
mechanisms by which curcumin acts on microglia.

Cilnidipine

Cilnidipine is a Ca2+ channel blocker that inhibits L/N-type Ca2+

channels (Shete, 2016). A study has shown that cilnidipine improves
insulin sensitivity (Yagi et al., 2003). In addition, cilnidipine
inhibited endogenous P2X7R expression in microglia and
suppressed IL-1β release from microglia while relieving
neuropathic pain (Yamashita et al., 2021). Thus, cilnidipine may
alleviate DNP by inhibiting microglial reactivity while improving
diabetic symptoms. Cilnidipine may provide a new research
direction for DNP treatment.

Resveratrol

Resveratrol is a plant antitoxin found mainly in vegetables,
fruits, grains, and wine with antioxidant, anti-inflammatory, and
antitumor properties (Huang et al., 2020). Resveratrol can treat
diabetes by improving insulin resistance (Wong and Howe, 2018),
enhancing glucose uptake and metabolism (Sadi et al., 2015), and
restoring the secretory function of insulin cells (Lee J. H. et al., 2009).
Resveratrol at a dose of 200 mg daily for 24 weeks can control blood
glucose level and reduce inflammation and oxidative stress
associated with diabetes (Mahjabeen et al., 2022). Resveratrol has
considerable neuro-protective ability (Rahman et al., 2020), and can
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inhibit inflammatory damage by inhibiting microglial reactivity
directly and secondary glial reactivity (Mota et al., 2020).
Resveratrol has been proven to relieve DNP in mouse model
(Sharma et al., 2007). Thus, resveratrol may treat DNP by
inhibiting microglial reactivity; however, the exact mechanism
requires further research.

Botulinum toxin type A

Botulinum toxin is an exotoxin originating from the
bacterium Clostridium botulinum. Botulinum toxin type A is
used in medical cosmetology and in the treatment of autonomic
nervous disorders and movement disorders, and has a favorable
effect when included in the treatment of chronic pain (Matak
et al., 2019; Yoshida, 2021). Botulinum toxin type A injection
therapy relieves DNP with few adverse effects (Salehi et al., 2019;
Wang et al., 2021). Injection of botulinum toxin type A (0.18U)
inhibits microglial reactivity and prominently downregulates the
mRNA expression of TLRs, especially TLR5 and TLR2, which is
closely associated with reducing mechanical pain
hypersensitivity behaviors in mice (Chen et al., 2021). Thus,
botulinum toxin type A provides a novel therapeutic approach
for DNP, with a dose of 300–600 U applied for medical
indications (Berry and Stanek, 2012).

N-palmitoyl-D-glucosamine

N-palmitoyl-D-glucosamine (PGA) is a natural molecule
produced by bacteria such as Rizhobium leguminosarum
(Philip-Hollingsworth et al., 1997) with analgesic and
anti-inflammatory effects (Cordaro et al., 2019). PGA acts as a
TLR4 antagonist and antagonizes LPS at TLR4 to inhibit
LPS-triggered NF-κB activation. PGA can prevent LPS-induced
pro-inflammatory cytokine release and attenuate neuropathic pain
(Iannotta et al., 2021). TLR4 is a key receptor that initiates
microglial reactivity; thus, downregulation of TLR4 inhibits
microglial reactivity. Oral PGA inhibits microglial reactivity and
provides pain relief (Gugliandolo et al., 2023). The adverse effects
of using PGA are not well understood. PGAmay play a therapeutic
role in DNP by inhibiting microglial reactivity, but the exact
mechanism requires further investigation (Table 1).

Summary and conclusion

DNP is among the most serious complications affecting patients
with diabetes. Current DNP treatment options are associated with
high costs to patients and inadequate results, creating a considerable
burden for patients and health services alike. During DNP
development, microglia are reactive, and inhibition of P2X4R,
P2X7R, P2Y12R, TLRs, and other microglial surface receptors
involved in the intracellular signaling pathway associated with
microglial reactivity, can provide a good analgesic effect.

Inflammatory factors, biological factors, and chemokines are also
involved in the development of DNP, and studies have suggested
that specific blockade of these biologically active factors can
significantly alleviate pain. Although the signaling pathways of
microglia involved in DNP development are not fully
understood, drugs and treatments are available that have been
subjected to basic experiments to validate their DNP-relieving
effects. Drugs such as ammoxetine have demonstrated superiority
over the current first-line therapeutic drugs, but majority of the
targeted drugs and therapeutic methods have not entered clinical
trials to validate their therapeutic efficacy. In the future,
advancement of these targeted drugs and treatments to the
clinical trial stage is required to offer better treatment outcomes
for patients with DNP.
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Glossary

AMPK AMP-activated protein kinase

ATPase adenosine triphosphatase

BDNF Brain-Derived Neurotrophic Factor

CGRP calcitonin gene-related peptide

CNS central nervous system

CSF-1 Colony-stimulating factor 1

DNP diabetic neuropathic pain

DRG dorsal root ganglion

ERK extracellular signal-regulated kinase

IBA-1 ionized calcium binding adapter molecule 1

IGF-1 Insulin-Like Growth Factor I

IL-1 interleukin-1

IL-1β interleukin-1β

IL-6 interleukin-6

IL-18 interleukin-18

IL-18R interleukin-18

iNOS inducible nitric oxide synthase

JAK/STAT Janus kinase/signal transducer, and the activator of transcription

JNK c-Jun N-terminal kinase

LPS Lipopolysaccharide

MAPK Mitogen-activated protein kinase

NF-κB nuclear factor κB

NLRP3 NLR family pyrin domain containing 3

nSTZ neonatal administration of STZ

P2XR P2X receptor

P2X7R P2X7 receptor

P2X4R P2X4 receptor

PKC Protein Kinase C

ROS reactive oxygen species

SNRI Serotonin and Noradrenaline Reuptake Inhibitors

STZ streptozotocin

TLRs toll-like receptors

TNF-α tumor necrosis factor-α
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