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A common problem in confocal microscopy is the decrease in intensity of
excitation light and emission signal from fluorophores as they travel through
3D specimens, resulting in decreased signal detected as a function of depth.
Here, we report a visualization program compatible with widely used
fluorophores in cell biology to facilitate image interpretation of differential
protein disposition in 3D specimens. Glioblastoma cell clusters were
fluorescently labeled for mitochondrial complex I (COXI), P2X7 receptor
(P2X7R), β-Actin, Ki-67, and DAPI. Each cell cluster was imaged using a laser
scanning confocal microscope. We observed up to ~70% loss in fluorescence
signal across the depth in Z-stacks. This progressive underrepresentation of
fluorescence intensity as the focal plane deepens hinders an accurate
representation of signal location within a 3D structure. To address these
challenges, we developed ProDiVis: a program that adjusts apparent
fluorescent signals by normalizing one fluorescent signal to a reference signal
at each focal plane. ProDiVis serves as a free and accessible, unbiased
visualization tool to use in conjunction with fluorescence microscopy images
and imaging software.
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Introduction

Confocal microscopy is a robust and widely used tool for imaging and analysis of cells
and tissue samples in biological research (Justyna, 2017). Optical sectioning routinely
provides a way to visualize internal structures of biological material. A primary advantage is
the ability to provide depth information without physically cutting a specimen. However,
there are limitations to optical sectioning while imaging thick specimens, including
fluorescence intensity loss as a function of imaging depth. Many common fluorophores
emit light that can only penetrate a limited distance through biological material (Kobat
et al., 2011; Benninger and Piston, 2013). This is a contributor to the fundamental depth
limit, caused by several physical properties such as light scattering and absorption
(Benninger and Piston, 2013).

We developed a computational method to proportionally compare pixel values across
the depth of 3D specimens, accounting for the decrease in fluorescence intensity we and
others have previously observed (Helmchen and Denk, 2005; Kobat et al., 2011; Brenna
et al., 2022; Čapek et al., 2006). While there are existing programs available for such an
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endeavor, to the best of our knowledge, none account for loss of
signal by normalizing against a housekeeping signal, and they are
expensive and/or require a high level of technical expertise to use.
For example, the popular commercial software Imaris (RRID:SCR_
007370) is costly, and its use requires considerable experience. On
the other hand, the free, open-source software package ImageJ/Fiji
(RRID:SCR_003070) is versatile, but complex for novice users
(Schneider et al., 2012; Brenna et al., 2022).

To maximize accuracy of signal distribution in a 3D specimen,
critical when studying macromolecules that are not homogenously
distributed within a 3D structure, we developed ProDiVis, an
accessible Z-stack validation suite written in the python
programming language (RRID:SCR_008394), designed to be user-
friendly. ProDiVis allows users to analyze Z-stacks quickly and
efficiently. Our method takes Z-Stack outputs acquired from
bioformat files (CARL ZEISS .czi or Leica .lif) and generates a
heatmap of differentially localized protein(s) normalized to a user-
selected fluorescent housekeeping signal. Heatmaps can be
generated from any fluorescent Z-stack and serve as an unbiased
visualization tool. In addition to heatmaps, ProDiVis outputs a
normalized Z-stack that can be readily used with concurrent
microscopy images. To facilitate image analysis, ProDiVis
provides built-in tools to show useful sample information such as
depth-dependent signal intensity loss and pixel value distribution
pre- and post-normalization.

ProDiVis is run entirely in a Jupyter notebook (RRID:SCR_
018315) that requires minimal user input. ProDiVis analyzes and
normalizes one Z-stack at a time with two fluorescent channels. The
first channel is the user-selected signal of interest (SOI). The second
channel corresponds to the user-selected normalization signal (NS).
When evaluating biological features in model organisms, imaging
each sample presents its own unique challenges. Therefore, choosing
a suitable NS signal is at the discretion of the user. When using
ProDiVis, each Z-stack must originate from the same sample and
should feature optical sections of identical thickness and resolution.
Normalization by ProDiVis begins with histogram thresholding,
which segments an image by setting a range of pixel values to be
considered for analysis. This selects the object of interest within the
image, where ProDiVis excludes any pixel value(s) outside of the
user-defined boundaries.

When using ProDiVis, users must consider the following: 1)
fluorescence signal lost by the NS and SOI are proportional to each
other. For example, a probe that photobleaches rapidly for the NS
while the SOI exhibits greater stability would reduce normalization
quality. 2) The chosen NS has uniform distribution throughout
sample depth, or a distribution similar to that expected for the SOI,
which eliminates underrepresented information that may be lost.
This may be a fluorescently labeled housekeeping protein or a
fluorescent DNA stain such as 4′,6-Diamidino-2-phenylindole
(DAPI), depending on the context. 3) Histogram thresholding is
sufficient to distinguish signal from background. Image
segmentation by histogram thresholding a widely used method to
separate signal from background (Tobias and Seara 2002; Li et al.,
2020). ProDiVis assumes that anything set outside the bounds of the
user-defined threshold is background or an experimental artifact.

To preserve the biological features of raw image data while
accounting for the decrease in fluorescence as a function of depth,
we developed Section-Specific Intensity Normalization (SsIN). SsIN

normalizes fluorescence signal distribution in Z-stacks acquired
with multi-color imaging (Figure 1). SsIN first determines the
non-zero mean of the NS at each optical section of a Z-stack.
Then, ProDiVis performs a pixel-wise division of SOI signal
intensity using the NS mean at the corresponding focal depth to
create a new, normalized Z-stack. Applying SsIN provides multiple
advantages to image analysis in a biologically relevant context: 1)
determination of SOI distinct spatial distribution within a 3D
structure by minimizing methodological artifacts such as light
attenuation or other factors hindering proper signal detection, 2)
creation of a normalized Z-stack that can be displayed in color
images similar to confocal software, 3) can be used in conjunction
with another parameter in ProDiVis, which creates a
multidimensional heatmap that shows the areas in a sample
where each SOI is predominantly localized.

In addition to normalizing fluorescence intensity with SsIN, we
developed an intensity projection function in ProDiVis. Section-
Normalized Intensity Projection (SNIP) provides an additional way
to visualize normalized Z-stacks produced by ProDiVis by
displaying the average intensity of x, y, and z dimensions
simultaneously (Figure 1). SNIP has multiple functions: 1)
generates a heatmap of protein localization from any
unprocessed Z-stack, 2) can be used coupled to SsIN to create a
heatmap using the normalized Z-stack produced by SsIN. SNIP also
produces orthogonal projections, aiding in the visualization of a
particular SOI. Therefore, used in combination with SsIN, SNIP
allows the user to gain insight on the biological features of protein
distribution in a 3D sample.

SNIP begins by computing the mean of parallel grayscale values
at each x-y coordinate in a Z-stack to produce an x-y matrix,
identical to how mean intensity projections are calculated (Ohira
et al., 2016). To utilize the entire visual range in the output image,
min-max scaling was applied: the smallest values in the image are
scaled to 0 while the largest values are scaled to 255 (8-bit scale).
SNIP can therefore highlight local regions of high signal intensity
that may be of particular interest.

In short, ProDiVis is a comprehensive Z-stack validation suite
with several different features. ProDiVis generates histograms of
pixel values for the NS and SOI; users can visualize data distribution
before and after normalization. ProDiVis also provides a graphical
representation of depth loss for both NS and SOI. Normalization
and image rescaling features are provided, and a built-in graphical
user interface allows for visualization of normalized images. The
built-in heatmap feature is particularly useful for both highlighting
signal distribution throughout the specimen and visualizing the
impact of normalization on SOI intensity. Overall, ProDiVis is a
simple yet effective program that provides biologists with a powerful
tool for Z-stack analysis and validation, while preserving the
biological features of the sample.

Materials and methods

Cell culture and immunostaining

U87-MG cells were obtained from American Type Culture
Collection: U87-MG (ATCC HTB-14, RRID:CVCL_0022). Cells
were maintained at 37°C and 5% CO2 with humidity on 10 cm
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dishes (Fisher Scientific Cat. No. FB012924) in DMEM with 4.5 g/L
glucose and glutamine without sodium pyruvate (Corning Cat. No.
10-017-CV) supplemented with 10% FBS (ScienCell Cat. No. 0500)
and 1% penicillin/streptomycin (Gibco Cat No 15140). U87-MG
cells were seeded at a density of 50,000 cells per chamber in an
8 chamber Permanox® slide (Thermo Fisher Scientific Cat. No.
177445) and allowed to form cell clusters for 48–72 h. Cells were
prefixed in each chamber with 200μl of cell culture media and 200 μl
of 4% paraformaldehyde, 0.2% glutaraldehyde solution for 10 min
on ice. Following prefixation, cells were washed with PBS 3x for
5 min and incubated with 200μl of fixation buffer (4%
paraformaldehyde, 0.2% glutaraldehyde) for 30 min at room
temperature. Cells were washed again with PBS 3x for 5 min and
incubated with 50 mM glycine +0.1% Triton-X for 30 min. Cells
were then blocked with blocking solution (10% goat serum (Gibco
Cat. No. 16210-064) + 0.2% Triton-X) for 1 h at room temperature.

Primary antibodies were diluted into blocking solution and were
incubated in each chamber overnight at 4°C, followed by 3 washes
with PBS +0.1% Triton-X for 15 min the following day. Primary
antibodies are as follows: COXI (Thermo Fisher Scientific Cat. No.
459100, RRID:AB_2532223) at 1:250; P2X7R (Alomone Labs Cat.
No. APR-004, RRID:AB_2040068) at 1:100; Actin (Cell Signaling
Cat. No. 3700s -also 3700P, 3700S- RRID:AB_2242334) at 1:5,000.
Ki-67 (Abcam Cat. No. AB16667, RRID:AB_302459) at 1:250. This
step was identical for secondary antibody incubation using Goat
anti-Rabbit IgG Alexa Fluor 488™ (Thermo Fisher Scientific Cat.
No. A-11008 -also A11008- RRID:AB_143165) at 1:2000, and Goat
anti-Mouse IgG Alexa Fluor 594™ (Thermo Fisher Scientific Cat.
No. A-11005, RRID:AB_2534073) at 1:2000. Prior to mounting the

coverslip, cell clusters were incubated with DAPI (Thermo Fisher
Scientific Cat. No. D1306) for 45 min at room temperature in PBS
and washed twice with PBS +0.1% Triton-X for 15 min. The
resulting slide was mounted with a #1.5 cover slip (Thermo
Fisher Scientific Cat. No. 152250) using Prolong™ Gold Antifade
Mountant (Thermo Fisher Scientific Cat. No. P10144).

Confocal imaging

Mounting Medium was allowed to cure for at least 24 Hours.
Each cell cluster was imaged on a Zeiss LSM 780 NLO confocal
microscope using a ×40 oil objective and the pinhole was set to 1 AU.
For image acquisition, cell clusters were located and optically
sectioned to adjust laser power in each channel, ensuring no
pixels would become saturated. Laser power was adjusted
separately for each cell cluster. To scan and image cell clusters,
we determined the optical section at the top and bottom of cell
clusters. Those focal planes were saved in ZEN software (RRID:
SCR_018163) and line scanning began at the top of cell clusters
moving down the specimen. Images were acquired either as an 8-bit
dynamic or 16-bit dynamic range and saved as a. czi file.

Visualizing depth loss and normalization
using ProDiVis

Using ZEN software or Imagej/Fiji, images were split into their
corresponding color channels (red, green, or blue), then split by the

FIGURE 1
Schematic Overview of SsIN and SNIP. Prior to image analysis, ProDiVis requires a multichannel image taken from a fluorescent microscope. The
normalization signal and signal of interestmust be separated individually into separate directories. (A) The averageNS at each optical section is stored. The
SOI signal is then divided by each corresponding NS. (B) Using the normalized images produced by SsIN, SNIP produces an orthogonal projection of the
average pixel values across the x, y, and z dimensions which are then min/max scaled and displayed in a heatmap.
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Z-axis and exported in .tiff format to a new directory as an image
sequence, where each image in its final folder corresponds to a single
color at a single depth in the specimen.

Within the ProDiVis Jupyter notebook interface, the file path to
the NS folder and SOI folder are assigned by the user. Before
analysis, the user is also required to assign a pixel value
threshold range to consider for analysis. Any pixel value below
or above the bounds of the threshold will be excluded. This is
especially useful when analyzing images with known experimental
artifacts. For example, antibody precipitation can occur in one or
more optical planes. Antibody precipitation usually contains
saturated punctate areas, and those pixels may skew
interpretation in the downstream analysis.

After these initial parameters, ProDiVis uses the OpenCV
(RRID:SCR_015526) python library (Bradski, 2000) to import
images while preserving bit-depth. If input images are in grey-
scale, they are processed as-is. If input images are multichannel, they
are converted to grayscale using OpenCV’s BGR2GRAY lookup
table. Any pixel values outside of the threshold range set by the user,
including any zero value pixels are not included in the mean
calculation. The image means are calculated for the NS and SOI
separately and the maximummean value for each respective signal is
determined. Depth loss plots are then produced as the mean pixel
value per optical section as a percentage of the maximum average
pixel value of the entire Z-stack.

An image histogram helps a user visualize the range and
abundance of pixel values that are being represented, although
this can be overwhelming when viewing tens or hundreds of
individual histograms for thick Z-stacks. We therefore
implemented a parameter in ProDiVis that condenses each
histogram in a Z-stack into a single 3-dimensional plot. The
x-axis represents histogram bin, while the y-axis represents
optical section number, and the color represents count. To plot
histograms of each image in a respective Z-stack, images were
analyzed using the same method above. ProDiVis reads every
image in a Z-Stack and creates a histogram of each image using
the NumPy (RRID:SCR_008633) library. Histograms are appended
together in a list and represented as a heatmap using a log
scale color bar.

For the purpose of normalization, we applied histogram
threshold segmentation only to the SOI and not the NS. We
found that much of the depth loss information was stored in low
(0–10) pixel values of the selected NS. Once eachmean of the NS was
calculated, it was aligned with each optical section of the SOI at its
corresponding index. Pixel by pixel, the SOI value was divided by the
average NS value, generating a normalized image. As each SOI image
is normalized, it is output into a new directory with its native
resolution and bit-depth. Normalized images can then be assigned
any color in image analysis software as required by the user(s).

Analysis using the 8-bit dynamic range may present drawbacks,
due to the smaller range of possible values to represent pixel or
fluorescence signal intensity. This becomes more apparent in
ProDiVis since the program applies division to each individual
pixel. Dividing by a number in an 8-bit image (256 possible values)
impacts the values more than dividing that same number in a 16-bit
image (65,536 possible values), since integers in the 8-bit image
represent a larger percent of the total dynamic range. To meet the
user’s need, ProDiVis can process images in any dynamic range.

Heatmap generation

Orthogonal projections are commonly used in many areas of
microscopy, including neuroscience, cell biology, and
developmental biology. We created a projection method similar
to methods that are currently used. SNIP therefore combines an
average intensity projection with an orthogonal projection. As each
image is analyzed, SNIP stores the pixel values in amultidimensional
matrix, whose size is dependent on the resolution of the image.
Across the x, y, and z planes within the matrix, the mean of pixel
values superimposed on each other will be calculated. This results in
numbers which each represent the x, y, and z dimensions of the
sample which are then min/max scaled and displayed in a heatmap
at the same resolution as the original input images.

Scaling images

While SsIN effectively accounts for depth loss, dividing by a
normalization mean can lead to lower pixel values in the normalized
Z-stack. An optional post-processing brightness and contrast
adjustment was implemented via a basic linear transform. A
graphical user interface integrated into ProDiVis allows users to
scroll through the output image stack to select a reference focal plane
to scale by. Images across the Z-stack are multiplied by a scale factor
(α) and adjusted by an offset factor (β) (Szeliski, 2021). First, α is
calculated by dividing the maximum intensity of an 8-bit image by
the intensity range set by the user when viewing each image. Next, β
is calculated by multiplying the user-selected minimum intensity by
α. This maps the user-selected minimum intensity to the zero
percentile and maps the user-selected maximum intensity to the
100th percentile. The adjusted stack is then saved to the
user’s filesystem.

Results

Fluorescence intensity decreases with
imaging depth

As light passes through thick biological material such as tissue,
varying refractive indexes cause light scattering and ultimately
fluorescence quenching (Stanciu et al., 2010). As a proof of
principle, we evaluated the effect of these phenomena on
fluorescence intensity across the depth of 3D cell culture models.
Human U87 cells were cultured until they formed cell clusters,
followed by a staining protocol for DAPI (Ferro et al., 2017). Cell
clusters ranged from ~30 μm to 70 µm in thickness, near the
penetration depth of confocal microscopy reported to be
~100 µm (Graf and Boppart, 2010). DAPI binds to DNA
stoichiometrically and its fluorescence possesses a linear
relationship relative to DNA content (Ferro et al., 2017; Kubista
et al., 1987). To confirm that light attenuation in Z-stacks was not
exclusive to DAPI or a particular fluorescent probe, we
immunostained cell clusters for the following SOIs
simultaneously: cell membrane P2X7 receptor (P2X7R), a widely
expressed protein in the central nervous system (Leeson et al., 2018),
andmitochondrial complex I (COXI, NADH dehydrogenase 1 alpha

Frontiers in Cell and Developmental Biology frontiersin.org04

Nguyen et al. 10.3389/fcell.2024.1420161

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1420161


subcomplex subunit 9). Focal plane brightness was visibly
diminished in deeper planes for DAPI and each SOI (Figures 2A, B).

To quantitatively confirm depth-related fluorescence intensity
loss, confocal images were exported as TIFF files and analyzed in
ProDiVis. Excluding zero-value pixels when computing the section-
specific mean (SSM) fluorescence intensity ensured quantification of
fluorescence was not affected by large regions of the focal plane
where no cells were present. Each graph (Figures 2C, E) contains
parallel DAPI and SOI signals of all optical sections of the same cell

cluster. The SSM whole-optical section analysis accounts for
multinuclear cells or cells at various stages of the cell cycle by
calculating the mean DAPI pixel intensity values. As expected, signal
for DAPI decreased with imaging depth, with a decrease in
fluorescence of up to 80% in deep focal planes versus shallow
planes (Figures 2C, E). For each cell cluster, the highest signal
for DAPI was detected at a depth range of 0–10 optical sections and
proceeded to decrease beyond that point. Each optical section
equates to a ~1 micron step size per section, dependent on

FIGURE 2
Normalization by SsIN Confirms Protein Localization Throughout Cell Clusters. Z-stack image sequence for 8-bit COXI (red) and DAPI (blue) along
with reference images at the top, middle, and bottom of cell clusters (A), and corresponding 16-bit Z-stack for P2X7R (green) and DAPI (B). Average
fluorescent signal collected at each optical section for COXI and DAPI (C) adjacent to its SsIN-normalized signal (D). The same is shown for P2X7R (E,F). A
heatmap of histograms showing the distribution of SOI pixel intensity values at each optical slice pre- (left) and post- (right) SsIN for COXI (G) and
P2X7R (H).
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excitation and emission wavelengths while using a 1 AU pinhole.
Similarly, intensity of the SOI was also depth dependent. The signal
detected for P2X7R and COXI all had maximum signal intensity in

the range of 0–10 optical sections. These observations suggest that if
the different SOI had distinct spatial distribution within the 3D
structure, the decrease in signal intensity as a function of depth

FIGURE 3
Images Are Reconstructed by SsIN with High Fidelity. Representative image pre- (left) and post- (right) SsIN labeled for COXI (A) or P2X7R (B). Pre-
(left) and post- (right) SsIN orthogonal projections for COXI (C) and P2X7R (D). Fluorescence intensity profile across the diameter of cell clusters pre- (top)
and post- (bottom) SsIN for COXI (E) or P2X7R (F).
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shown in Figures 2C, E would prevent an accurate representation of
the SOI 3D location.

Section-specific-intensity-normalization
ensures proportionality throughout
imaging depth

The effects of SsIN on depth-related intensity loss were
visualized by graphing the mean pixel value pre- and post-
normalization. Although ProDiVis was not developed to produce
pixel uniformity in Z-stacks, we still mitigated fluorescence intensity
loss by about 20% for the cluster stained for COXI (Figure 2D). To
show that normalization by SsIN does not markedly transform the
distribution of pixel intensities per optical section, we generated
multidimensional histograms for pre-and post- SsIN normalized
Z-stacks.While the distribution of pixels per image in the Z-stack for
COXI remained similar, after normalization, there was a
considerable increase in the pixel values corresponding to optical
sections 10–50, suggesting a more homogeneous distribution of the
signal across its depth (Figure 2G). The mean pixel value and
distribution of pixels for the cell cluster stained for P2X7R on
the other hand, remained unchanged, suggesting that the
distribution of the P2X7R signal may be indeed more restricted
to the outer cellular layers of the cell cluster (Figures 2F, H). By
adding SsIN to an image analysis pipeline, users can gain insight on
the relative abundance of their signal of interest, ultimately
improving the understanding of biological features without
data removal.

Section-specific-intensity-normalization
accurately Reconstructs input images

Another important SsIN feature is the ability to produce
normalized images for use with existing images or image analysis
software. To confirm that SsIN normalization techniques can
accurately represent the localization of SOIs, we took SsIN
output images and reconstructed original Z-stacks and
orthogonal projections of cell clusters in ImageJ/Fiji (Figures 3A,
B). For each SOI, input orthogonal projections all inherently biased
fluorescence in favor of the upper optical sections even when signal
was detected throughout cell clusters (Figures 3C, D). When we
performed SsIN and reconstructed orthogonal images of their
respective cell clusters, we accurately represented the localization
of COXI and P2X7R when compared with the input images. Pixel
intensity became more uniform in the Z-stack representing COXI
signal, indicating its homogenous localization throughout cell
clusters. However, P2X7R localization remained unchanged when
comparing pre- and post- SsIN.

To further investigate the effect of SsIN in reconstructed
images, we examined the fluorescence intensity profile across
cell clusters. We analyzed optical sections 10, 40, corresponding
to the upper and lower focal planes, respectively. The fluorescence
profile revealed that COXI was homogenously distributed
throughout the cell clusters, while P2X7R was mainly localized
at the top and sides (Figures 3E, F). We also observed a decline in
fluorescence intensity with depth, as anticipated. However, SsIN

reconstructed images magnified the differences in fluorescence
intensity not seen in input images. For instance, after SsIN, the
fluorescence intensity of COXI in optical section 40 became
comparable to optical section 10. In contrast, for P2X7R, SsIN
reduced background noise and confirmed that P2X7R remained
localized on the sides of cell clusters in optical section 40, while
being uniformly distributed across the cell cluster in optical section
10. These results suggest that normalization with SsIN can reduce
bias and accurately represent the distribution of labeled proteins in
the 3D specimens.

Section-normalized-intensity-projection
provides a complementary method to
represent 3D Z-Stacks

To create a simple and effective representation of signal
distribution throughout Z-stacks, we developed SNIP–an average
intensity projection of x, y, and z dimensions. The purpose of SNIP
is to offer a projection method that emulates a commonly used
technique: an orthogonal projection. SNIP does not modify the
underlying biological features of a Z-stack, it enhances subtle
differences seen within a specimen to facilitate further analysis.

To demonstrate the effectiveness of SNIP, we generated pre- and
post-normalization SNIP heatmaps of cell clusters stained for COXI
or P2X7R. With SNIP, we observed both SOIs were primarily
localized in the upper half of cell clusters. However, this signal
localization may not be representative of the biological context. For
example, SsIN + SNIP confirmed that COXI signal was previously
underrepresented at the bottom of cell clusters. After normalization,
we observed homogenous distribution of COXI independent of
depth (Figure 4A). P2X7R distribution on the other hand,
remained at the top of cell clusters (Figure 4B). In addition, we
co-immunostained cell clusters for COXI and β-Actin or Ki-67 and
β-Actin. In both cases, β-Actin and Ki-67 were primarily localized at
the top of cell clusters (Figures 4C, D). Before image processing, each
fluorescence intensity decreased with imaging depth
(Supplementary Figure S1).

In our particular experimental design, in some cases cells
attached to the plate in a monolayer surrounding cell clusters
interfered with SNIP representation of the clusters because the
excitation and emitted light was not attenuated by any thick
biological material. This was the case for cell clusters represented
in Figures 4C, D. We circumvented this problem by cropping the
original image to only include the cell clusters. Prior to image
cropping, the distribution of COXI was unchanged when
comparing its SNIP versus SsIN + SNIP heatmap (Supplementary
Figure S2A). In cropped images, we were able to better dissect the
differences in COXI and β-Actin localization. After removing the
cells surrounding the cell cluster, the initial non-normalized SNIP
projection showed a bias for fluorescence intensity at the top of cell
clusters. However, COXI signal was equally represented throughout
the cluster after normalization (Supplementary Figure S2B). For
SOIs that have a depth-independent or dependent localization, SNIP
was able to accurately represent pixels and highlight differences in
biological features already present in the images. This analysis
exemplifies the importance of the experimental context set by the
user when applying these tools.
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We further evaluated the accuracy of ProDiVis by using
microscopy data from the public repository Image Data Resource
(IDR) (https://idr.openmicroscopy.org/). The data included 8-bit
Z-stacks from Esteban et al. (2022) corresponding to experiment
Idr0124, atlas specimen E36, containing high-resolution confocal
images with 654 optical sections (~0.8 µm thick) used as part of a
study that established a 3D description of early mouse heart
development. This Z-stack represents a ~5-fold increase in depth
versus the cell clusters. We analyzed cells expressing a fluorescent
probe (membrane GFP) to represent the mesoderm, counterstained
with DAPI. We observed a similar loss of intensity as a function of
imaging depth (Supplementary Figure S3A, C), and normalization
by SsIN recovered pixel intensity loss (Supplementary Figure S3B,
D). After normalization, SNIP heatmaps were able to accurately
represent a frontal view of the mesodermal tissue (Supplementary
Figure S3E, F) (Esteban et al., 2022).

Discussion

Here, we developed ProDiVis, a Z-stack analysis and validation
suite that proportionally visualizes signal distribution in 3D samples.
To our knowledge, no existing Z-stack normalization technique

involves normalization by a fluorescent housekeeping signal.
ProDiVis does not alter the biological features within Z-stacks;
rather, it accentuates differences that may have been hidden by
the limitations of confocal microscopy. The straightforward nature
of ProDiVis offers a valuable tool for researchers seeking to improve
the visualization and analysis of Z-stack information without
introducing potential artifacts.

Several analytical methods have previously been developed to
address light attenuation and photobleaching in Z-stacks (Michálek
et al., 2010; Čapek et al., 2006; Michálek et al., 2008; Yayon et al.,
2018). One way to circumvent light attenuation is histogram
warping, which creates a standard reference histogram based on
the grayscale histogram of each image in a Z-stack. The histogram of
each optical section is then matched to the reference histogram to
achieve the best possible contrast and brightness (Čapek et al., 2006).
Histogram warping assumes if multiple images of the same
biological feature are taken, the brightness of each feature should
be the same. This can be a useful method in image analysis, but not
always optimal, particularly when analyzing biological data.
Confocal optical sectioning often relies on collecting overlapping
signals from each optical section, where each recorded optical
section becomes an average of multiple overlapping scans.
Therefore, an optical section may not always be viewed as an

FIGURE 4
SNIP-Based Reconstruction Produces High Fidelity Heatmaps (A–D) Representative heatmaps of SNIP (left) and SsIN + SNIP (right) orthogonal views
for COXI (A) and P2X7R (B). Additional cell clusters were co-immunostained for β-Actin and COXI (C) and Ki-67 and β-Actin (D).
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individual image but rather a combination of sections part of a larger
3D specimen. In a biological context, the distribution of a protein
within a 3D specimen can vary both spatially and in a depth-
dependent manner. Thus, a particular protein may not conform to
the assumptions necessary for histogram warping, which we aimed
to address with ProDiVis.

There are many open- and closed-source programs to view
microscopy images in 3D space which contain integrated functions
to correct fluorescence intensity loss. These include but are not
limited to ImageJ/Fiji, Imaris, BioImageXD, 3D Slicer, Microscopy
Image Browser, Image-IN, andNapari (Chiu and Clack, 2022; Gupta
et al., 2022; Schneider et al., 2012; Fedorov et al., 2012; Belevich et al.,
2016; Kankaanpää et al., 2012). Several of the mentioned 3D viewers
have their own capabilities of correcting brightness and contrast
issues in fluorescence microscopy images. For example, 3D Slicer,
ImageJ/Fiji, and Napari, have a bleach correction function which
uses multiple methods to correct fluorescence intensity (Miura,
2020). These methods include a simple ratio method–which
assumes that the average observed intensity is constant
throughout the imaging time (or depth, in our case). The
exponential method fits intensity loss to an exponential curve
that represents fluorescence decay. Finally, the histogram
matching method, matches the histogram of each decayed image
with a reference image histogram. While bleach correction is
primarily used for time-lapse imaging, it can be used for Z-stacks
as well. It is also common to find a gamma correction in 3D viewers
mentioned above. While the human eye does not perceive
luminance in a linear fashion, cameras and detectors do.
Therefore, a 1X versus 2X signal may be detected on an
instrument but that visual difference is not able to be noticed by
the human eye. Gamma correction fits an exponential curve to the
histogram of an image, resulting in non-linear scaling, where the
distribution of pixel intensity values become distributed more evenly
(Singnoo and Finlayson, 2010). Each viewer in 3D space we have
tested indeed has gamma correction capabilities. Imaris on the other
hand, has a dedicated feature called “Attenuation Correction” which
is designed to maintain even illumination of structures through
Z-stack depth, similar to gamma correction. This feature calculates a
coefficient representing the rate of pixel loss per optical section
which is then used to exponentially rescale each image. This requires
the user to select an area at the top and the bottom of the Z-stack that
are assumed to have the same intensities.

Intensify3D is a program that performs spatial and temporal
correction to achieve illumination uniformity across x, y, and z-axes,
allowing for the correction of fluorescent signals in large Z-stacks
while also resolving small biological structures (Yayon et al., 2018).
Intensify3D assumes a homogenous background intensity
throughout a 3D structure to separate signal from background. It
then uses background to perform normalization across the Z-stack.
It is important to note that Intensify3D and ProDiVis have different
goals and applications. ProDiVis is designed to visualize underlying
differences in images without requiring complex preprocessing,
while Intensify3D is designed to enhance and quantify biological
features. As far as we know, Intensify3D is the only other
normalization method for Z-stacks that circumvents the
limitations associated with the fundamental depth limit and
would provide complementary information to any analysis
performed using ProDiVis.

A variety of chemical-based methods are also used to increase
imaging depth. Optical clearing, for example, improves the ability to
image thick samples by reducing refractive index changes, ultimately
reducing light scattering (Brenna et al., 2022). Clearing tissue
increases transparency, allowing greater light penetration. Despite
a growing number of methods/protocols developed in recent years
for tissue clearing, this method can present several drawbacks. For
example, tissue clearing methods vary in their ability to increase
transmittance. Such methods also induce size changes to the sample,
reducing brain sections up to 35%. The clearing method may alter
the retention of fluorescence and total imaging depth, which can
range from 200 µm to ~1200 µm (Wan et al., 2018). Optical clearing
can also decrease emission light intensity of widely used
fluorophores and increase crosstalk between emission spectra due
to an emission peak shift (Eliat et al., 2022).

In an effort to maintain the biological features of each particular
sample, ProDiVis provides an alternative approach to current
complex solutions. ProDiVis is therefore a fast and minimally
invasive method for image processing that requires no chemical
alteration. ProDiVis does not introduce chemical or physical
handling of the sample. Here, we used ProDiVis with
fluorophores emitting in the visible spectrum, although ProDiVis
is not limited to any particular dye or wavelength. For example,
choosing an excitation/emission wavelength pair is important in
deep imaging as longer wavelengths have greater penetration
capacity but sacrifice spatial resolution (Helmchen and Denk,
2005; Sanderson et al., 2014). ProDiVis does not perform any
pixel reassignment, but instead, standardizes pixel values across a
reference value to increase proportionality across optical sections.
For groups new to imaging thick samples, they can follow the
classical fixation and antibody staining protocol, followed by
Z-stack reconstruction where ProDiVis can be used.

As proof of principle for this study, we grew glioblastoma cell
clusters and fixed and stained them without using optical clearing
methods. Our samples were below the thickness that is traditionally
needed for optical clearing; however, due to a combination of imaging
time, light scattering, and photobleaching, we observed a substantial
fluorescence intensity loss as a function of depth. By combining raw
image data with normalized images acquired from ProDiVis, we
provided an additional method to confirm that differential protein
localization is not mutually exclusive to cell cluster depth. The spatial
distribution of a given SOImay be dependent on intracellular location,
cell type, relative size of the specimen, and the location of a particular
cell within that specimen. P2X7R was expressed on the plasma
membrane of cells located in the periphery of glioma cell clusters.
Using ProDiVis, we confirmed that P2X7R expression in cell clusters
was most abundant in the periphery of clusters and not an artifact of
imaging methodology. In contrast, when analyzing the distribution of
COXI, an analysis of the original Z-stack suggested increased levels of
COXI present in cells located at the top of cell clusters. However, after
applying SsIN + SNIP, the generated heatmap evidenced a mostly
uniform COXI signal throughout.

Conclusion

In conclusion, ProDiVis enhances the visualization of optical
sections, with the goal of accentuating differences that are not readily
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visible. Through normalization with ProDiVis, we proportionally
compared each optical section within a Z-stack and reconstructed
normalized images with high fidelity. We hope this method
improves the way biologists interpret and analyze their data by
improving the contrast of images without compromising the
biological meaning of the raw data. The SsIN + SNIP approach
further refines this method by normalizing prior to heatmap
generation, aiding in the visualization of protein distributions in
3D specimens.

Limitations and future work

ProDiVis is a qualitative and complementary method to better
dissect and validate what information is currently present. It does
not increase resolution or decrease noise. The quality of
normalization provided by ProDiVis ultimately depends on the
user-selected normalization signal. ProDiVis assumes there is
similar photon attenuation between the two channels. Depending
on the fluorophores chosen, this may not always be the case, and
normalization by ProDiVis could produce incorrect results. While
we wanted to provide a simple, easy to use method, its limitation lies
within selecting a good normalization signal relevant to
the user’s work.

Since ProDiVis uses histogram thresholding, where the user
selects a defined range of pixel values to be included in
analysis–input images must have minimal background and
experimental artifacts due to imaging. While very useful,
histogram thresholding is a rather basic form of image
segmentation. For example, our threshold is a fixed range of
pixel values that is defined at the beginning of normalization and
that range is applied to each image in the Z-stack. Under the
assumption that pixel values decrease across imaging depth,
lower pixel values deeper in the sample that represent true signal
may be omitted from normalization. This may also play a factor in
images or Z-stacks with uneven illumination. If a biological feature
does not have a uniform pixel intensity, a similar problem may
occur, where parts of it are removed because the pixel values are
below the lower threshold limit.
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