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Ferroptosis is an iron-dependent form of cell death, distinct from apoptosis,
necrosis, and autophagy, and is characterized by altered iron homeostasis,
reduced defense against oxidative stress, and increased lipid peroxidation.
Extensive research has demonstrated that ferroptosis plays a crucial role in
the treatment of gynecological malignancies, offering new strategies for
cancer prevention and therapy. However, chemotherapy resistance poses an
urgent challenge, significantly hindering therapeutic efficacy. Increasing
evidence suggests that inducing ferroptosis can reverse tumor resistance to
chemotherapy. This article reviews the mechanisms of ferroptosis and discusses
its potential in reversing chemotherapy resistance in gynecological cancers. We
summarized three critical pathways in regulating ferroptosis: the regulation of
glutathione peroxidase 4 (GPX4), iron metabolism, and lipid peroxidation
pathways, considering their prospects and challenges as strategies to reverse
chemotherapy resistance. These studies provide a fresh perspective for future
cancer treatment modalities.
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1 Introduction

Gynecological malignancies, including cervical, ovarian, and endometrial cancers pose a
significant threat to women’s health worldwide. Epidemiological data from 2020 revealed
that approximately 1.34 million women were diagnosed with these malignancies, resulting
in approximately 650,000 deaths. Notably, the mortality rate of endometrial cancer has
steadily increased annually by approximately 1% (Siegel et al., 2023) Despite the twofold
increase in the incidence of ovarian cancer in developed nations, the cumulative mortality
risk remains similar between developed and developing regions (Zhang et al., 2019).
Currently, the primary therapeutic modalities for these malignancies include surgery,
chemotherapy, radiotherapy and targeted/immune therapies. Despite remarkable
advances, modern medicine still faces the formidable challenge of drug resistance. This
resistance not only reduces therapeutic efficacy and increases recurrence risks, but also
imposes considerable financial burdens on healthcare systems (Guy et al., 2019; Vasan et al.,
2019; Nie et al., 2022). Therefore, exploring the potential molecular mechanisms and
therapeutic targets related to the treatment of chemoresistant gynecological malignancies is
highly important.
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Ferroptosis was initially characterized by Dixon et al., in 2012 as
a distinct form of regulated cell death, intrinsically linked to iron
accumulation (Tang et al., 2021). Unlike classic cell death pathways
such as apoptosis, necrosis, and autophagy, the morphological
features of ferroptosis include a significant reduction in cell
volume, increased mitochondrial membrane density, disruption
of membrane structures, decreased volume, and loss of
mitochondrial cristae, while the nuclear structure typically
remains unchanged (Trump et al., 1997; Saraste and Pulkki,
2000; Elmore, 2007; Mizushima and Yoshimori, 2007; Mizushima
et al., 2011; Stockwell et al., 2017; Liu X. et al., 2022; Chen et al.,
2022). These changes are induced by elevated levels of intracellular
iron, which accelerates the generation of reactive oxygen species
(ROS) through lipid peroxidation, leading to specific oxidative stress
that damages mitochondria and lysosomes (Xie et al., 2016; Tang
et al., 2019). In recent years, numerous studies have shown that

ferroptosis plays a significant role in the pathogenesis and treatment
of chemoresistance in gynecological malignancies. For example,
ferroptosis inhibits the proliferation of ovarian cancer cells and
their spread within the peritoneal cavity (Basuli et al., 2017) and can
also reverse chemoresistance in ovarian cancer (Zhou et al., 2019).
Thus, conducting in-depth research on ferroptosis may offer new
opportunities for addressing chemoresistance in gynecological
malignancies.

2 Mechanism of ferroptosis

Ferroptosis is a unique cell death mechanism. In-depth
exploration of its molecular pathways not only aids in devising
targeted interventions to induce cancer cell death but is also crucial
for addressing chemotherapy resistance (Zhang et al., 2022). Since

FIGURE 1
The three main regulatory pathways of ferroptosis: GPX4-regulated pathway, iron metabolism pathway, and lipid peroxidation pathway. Color
coding and symbol usage: Red indicates proteins or inhibitors that suppress ferroptosis, green represents proteins or inducers that promote ferroptosis,
and yellow is used specifically to denote biochemical processes such as the Fenton reaction and ferroptosis itself. Squares are used to mark chemical
substances and biochemical processes, while ellipses are used to represent proteins and other biomolecules. Abbreviations: ROS, reactive oxygen
species; GPX4, glutathione peroxidase 4; GSH, glutathione; xCT, the Xc-transport systemSLC7A11, solute carrier family 7 member 11; SLC3A2, solute
carrier family 3 member 2; TXNRD1, thioredoxin reductase 1; γ-GCS, gamma-glutamylcysteine synthetase; GSS, glutathione synthetase; PUFA-OOH,
polyunsaturated fatty acid hydroperoxides; PUFA-OH, polyunsaturated fatty acid alcohols; TFR1, transferrin receptor 1; DMT1, divalent metal transporter
1; PUFAs, polyunsaturated fatty acids; ACSL4, Acyl-CoA synthetase long-chain family member 4; LPCAT3, lysophosphatidylcholine acyltransferase 3;
PUFA-CoA, polyunsaturated fatty acyl-CoA; PUFA-PL, polyunsaturated phospholipid; POR, cytochrome P450 oxidoreductase; PL-PUFA-OOH,
phospholipid polyunsaturated fattyacid hydroperoxides; SCD1, stearoyl-CoA desaturase-1; MUFAs, monounsaturated fatty acids; ALOXs, arachidonate
lipoxygenases; POR, Cytochrome P450 Oxidoreductase; LIP, labile iron pool.
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the seminal discovery of the glutathione peroxidase 4 (GPX4)-
centered mechanism in 2014, the research momentum
surrounding ferroptosis has intensified, with efforts increasingly
focused on elucidating the complex pathways involved in this
process (Yang et al., 2014). Based on the established GPX4-
dependent pathway, emerging evidence has revealed several
GPX4-independent pathways, and ultimately, three mainstream
theories of ferroptosis mechanisms have been identified: the
GPX4-regulated pathway, the iron metabolism pathway, and the
lipid peroxidation pathway (Richardson and Ponka, 1997; Conrad
and Pratt, 2019). These three pathways and the important molecules
involved are summarized below and illustrated in Figure 1.

2.1 GPX4-regulated pathway

GPX4, a crucial selenoenzyme antioxidant, reduces
phospholipid hydroperoxides (PLOOH) on the cell membrane,
preventing oxidative damage caused by free radicals and
maintaining the integrity of cell signaling and normal functions
(Ursini et al., 1982). Additionally, some studies have shown that
GPX4 works synergistically with GSH, a major intracellular
antioxidant. Lipid-derived ROS are eliminated, thereby
maintaining the cellular redox balance (Maiorino et al., 2018).
The Xc-transport (xCT) system, composed of solute carrier
family 7 member 11 (SLC7A11) and solute carrier family
3 member 2 (SLC3A2), functions as an intracellular cystine-
glutamate antiporter and is essential for the synthesis of GSH
(Bridges et al., 2012; Conrad and Sato, 2012; Koppula et al.,
2018). This system plays a crucial role in maintaining the
antioxidant status of cells, similar to GPX4. The system Xc-
transports extracellular cystine into the cell while exporting
intracellular glutamate, thereby maintaining amino acid balance
(Lin et al., 2020).

Wang H. et al. (2021) demonstrated that downregulating the
expression of GPX4 can induce ferroptosis in endometrial cancer
cells and inhibit their growth. Similarly, Ye et al. (2021) showed that
depleting glutathione (GSH) and inactivating GPX4 can also induce
ferroptosis in cervical cancer cells, thereby enhancing the
therapeutic effects against cervical cancer. Inside the cell, cystine
is reduced to cysteine by thioredoxin reductase 1 (TXNRD1). This
cysteine then combines with glutamate, catalyzed by γ-
glutamylcysteine synthetase (γ-GCS), to form γ-glutamylcysteine
(Andor et al., 2023; Griffith, 1999). Subsequently, γ-
glutamylcysteine is converted into GSH in the presence of
glycine, which is catalyzed by glutathione synthetase (GSS) (Zhu
et al., 2023). GPX4 utilizes GSH to reduce polyunsaturated fatty acid
hydroperoxides (PUFA-OOH) to polyunsaturated fatty acid
alcohols (PUFA-OH), effectively preventing the accumulation of
lipid peroxides (Ursini and Maiorino, 2020). When GPX4 activity is
inhibited, such as by RSL3, PUFA-OOH accumulates within the cell,
thereby inducing ferroptosis (Dai et al., 2020). Similarly, if the
activity of SLC7A11 is inhibited by agents such as erastin, the
intracellular transport of cystine is inhibited, leading to a
reduction in GSH synthesis, indirectly inhibiting the activity of
GPX4, and consequently leading to the accumulation of lipid
peroxides and ferroptosis (Stockwell and Jiang, 2020). Therefore,
modulating the GPX4 pathway to induce ferroptosis has contributed

to the development of new anticancer strategies and enhanced the
therapeutic efficacy against tumors.

2.2 Iron metabolism pathway

Ferritin, an iron storage protein, consists of heavy and light
chain subunits. It can store a substantial amount of iron ions and
catalyze the oxidation of Fe2+ at its iron oxidation center, preventing
the formation of oxygen radicals through the Fenton reaction by free
Fe2+, and inhibiting iron-induced oxidative stress (Theil, 1987;
Arosio et al., 2009; Zhang J. et al., 2021). Iron is an essential
micronutrient for cell growth, and its transport is critical for
maintaining a balance between uptake and excretion. It is
primarily transported into cells via transferrin and transferrin
receptor 1 (TFR1), and is stored in ferritin (Zhou and Tan, 2017;
Li et al., 2020). Under physiological conditions, iron ions (Fe3+),
which enter the cell via TFR1, are reduced to ferrous ions (Fe2+) in
the endoplasmic reticulum by STEAP3, a metalloreductase. While
excessive intracellular Fe2⁺ can generate substantial amounts of
hydroxyl radicals through the Fenton reaction, leading to
oxidative stress, under physiological conditions, a balance
between Fe2⁺ and Fe³⁺ is maintained to prevent such oxidative
damage. Excess Fe2+ ions are transported by divalent metal
transporter 1 (DMT1) within the cell and stored in ferritin to
prevent excessive free iron from generating ROS (Bogdan et al.,
2016). This internalization and storage process is vital for
controlling ferroptosis (Stockwell et al., 2017).

The precise regulation of iron storage and excretion is primarily
mediated by ferritin and the iron exporter solute carrier family 11a
member 3 (SLC11A3) (Xie et al., 2016), which is involved in the
export of iron ions, thus reducing the accumulation of iron within
cells and effectively decreasing the production of ROS (McKie et al.,
2000; Yang et al., 2002). Regulating iron metabolism has been
proven to be an effective strategy for inducing ferroptosis in
cancer cells (Chang et al., 2018). Using dysregulated iron
metabolism in cancer cells, researchers have exploited the
accumulated Fe2+ to increase the production of ROS through the
Fenton reaction, thereby inducing ferroptosis in cancer cells
(Winterbourn, 1995; Dixon and Stockwell, 2014). Research by
Zhang YY. et al. (2021) has shown that quinone compounds,
such as juglone, can disrupt iron homeostasis in Ishikawa
endometrial cancer cells by modulating heme oxygenase and
transferrin, leading to increased accumulation of Fe2+ and
inducing ferroptosis, which inhibits the proliferation of
endometrial cancer cells. Therefore, modulation of the iron
metabolic pathway not only plays a crucial role in the occurrence
of ferroptosis but also offers new targeted strategies for the treatment
of gynecological malignancies.

2.3 Lipid peroxidation pathway

The peroxidation of polyunsaturated fatty acids (PUFAs) has
been reported to produce PLOOH and subsequently generate 4-
hydroxynonenal or malondialdehyde, which may lead to cell
membrane damage, cellular dysfunction and ultimately
ferroptosis (Conrad and Pratt, 2019; Chen et al., 2021; Liang
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et al., 2022). Acyl-CoA synthetase long-chain family member 4
(ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3)
play crucial roles in this process. They enhance the susceptibility of
cell membranes to lipid peroxidation by promoting the acylation
and re-esterification of PUFAs into phospholipids. ACSL4 and
LPCAT3 catalyze the conversion of PUFAs into polyunsaturated
fatty acyl-CoA (PUFA-CoA) and PUFA-CoA into polyunsaturated
phospholipid (PUFA-PL), respectively, thereby promoting the
formation of lipid peroxides, which directly contribute to
ferroptosis (Cui et al., 2023).

Additionally, the lipid peroxidation enzyme involved in lipid
metabolism is vital for ferroptosis, and is primarily regulated by
lipoxygenases (LOXs) and cytochrome P450 oxidoreductase (POR).
LOXs, which are iron-containing enzymes, directly catalyze the
transformation of both free and esterified PUFAs into lipid
peroxides, thereby facilitating cell susceptibility to ferroptosis
(Porter et al., 1995; Shah et al., 2018). Morever, POR, which acts
downstream of cytochrome P450, accelerates the peroxidation of
PUFA-containing lipids, particularly in the formation of
phospholipid polyunsaturated fatty acid hydroperoxides (PL-
PUFA-OOH), thereby promoting ferroptotic cell death (Ghosh
et al., 1997; Zou et al., 2020).

Moreover, inhibiting stearoyl-CoA desaturase-1 (SCD1) shifts
the cellular lipid composition toward increased saturated fatty acids
and reduced monounsaturated fatty acids (MUFAs). This change
decreases the availability of substrates for lipid peroxidation,
potentially reducing cellular susceptibility to oxidative damage
and inhibiting ferroptosis (Tesfay et al., 2019). Accordingly,
precisely manipulating lipid metabolism pathways is a potential
new approach for the treatment of diseases in which ferroptosis
plays a key role.

3 Reversing chemoresistance in
gynecological malignancies through
ferroptosis

3.1 Ferroptosis in chemotherapy and
chemoresistance of gynecological
malignancies

In the treatment of gynecological malignancies, particularly
ovarian, cervical, and endometrial cancers, chemotherapy remains
one of the primary therapeutic approaches. Common
chemotherapeutic drugs include platinum-based agents (such as
cisplatin, carboplatin, and oxaliplatin) and taxanes. Platinum-based
drugs and taxanes induce cell death through different mechanisms:
the former through DNA damage and apoptosis (Kleih et al., 2019),
and the latter by disrupting microtubule dynamics (Abal and
Barasoain, 2003). Additionally, studies have shown that cisplatin
and paclitaxel can enhance the efficacy of chemotherapy by inducing
ferroptosis. Cisplatin acts by forming complexes with GSH,
depleting intracellular GSH levels, and enhancing lipid
peroxidation (Fu et al., 2023). Paclitaxel effectively induces
ferroptosis by inhibiting the expression of SLC7A11, reducing
GSH levels, and increasing oxidative stress and lipid peroxidation
(Lv et al., 2017). These studies reveal the potential role of platinum-
based drugs and taxanes in inducing ferroptosis, highlighting their

importance in enhancing the efficacy of chemotherapy. Nonetheless,
the presence of chemoresistance poses a significant challenge to the
clinical application of these findings.

Furthermore, dysregulated iron metabolism is a key
characteristic of malignant tumors. The increased demand for
iron in tumor cells leads to elevated levels of TFR1 and ferritin
light chain (FTL) (Ludwig et al., 2015; Adachi et al., 2019).
Abnormal iron metabolism plays a crucial role in tumor
development, survival, proliferation, and metastasis, making it an
important focus in cancer treatment (Shen YLX. et al., 2018; Guan
and Zhu, 2023). Chemoresistant cancer cells often exhibit
abnormally high intracellular iron levels, which may be key
factors in chemotherapy resistance and poor prognosis, such as
breast cancer (Chekhun et al., 2013; Conti et al., 2016; Kazan et al.,
2017; Shen et al., 2018b), esophageal cancer (Wang et al., 2022)
pancreatic ductal carcinoma (Song et al., 2021). Specifically,
increased expression of the ferritin light chain may help cancer
cells store more iron, thereby reducing ferroptosis. This mechanism
is associated with chemoresistance in cancer cells (Chekhun et al.,
2013). Additionally, defense mechanisms in chemoresistant cancer
cells can further inhibit ferroptosis, enhancing resistance to
chemotherapeutic drugs. These mechanisms include the
activation of the Hippo pathway, regulated by the kinases MST1/
2 and LATS1/2, which are controlled by the cell adhesion molecule
E-cadherin under conditions of high cell density. This leads to a
reduction in the nuclear presence of the transcription coactivators
YAP/TAZ and a decrease in the expression of ferroptosis-promoting
proteins such as ACSL4, epithelial membrane protein 1 (EMP1), and
NADPH oxidase 4 (NOX4), thereby inhibiting ferroptosis (Yang
et al., 2019; He et al., 2022; Cui et al., 2023). Additionally, the
ferroptosis regulator nuclear factor erythroid 2-related factor 2
(NRF2), under the regulation of the antioxidant response protein
Kelch-like ECH-associated protein 1 (KEAP1), translocates to the
nucleus, resulting in increased expression of anti-ferroptosis
proteins such as heme oxygenase-1 (HO-1), FTH1, and GPX4,
thus resisting ferroptosis (Song et al., 2024). These regulatory
factors play a crucial role in combating chemotherapy-induced
cell death, underscoring the potential of modulating ferroptosis-
related molecular pathways to reverse chemoresistance (as shown
in Figure 2).

Given these findings, an in-depth exploration of the therapeutic
potential of targeting specific ferroptotic pathways has emerged as a
new focus in the treatment of gynecological malignancies. By
focusing on the GPX4 regulatory pathway, iron metabolism, and
lipid peroxidation, we propose a novel strategy to overcome
chemoresistance and enhance the efficacy of gynecological
cancer therapies.

3.2 Targeting the Gpx4-regulatory pathway

Research has shown that GPX4 dysfunction is associated with
tumor cell resistance (Hangauer et al., 2017). In gynecological
malignancies, cell lines resistant to chemotherapeutic drugs such
as cisplatin, carboplatin, and paclitaxel have been found to increase
GPX4 expression and activity by modulating the expression of
ferroptosis-related genes, thereby resisting ferroptosis induction.
For instance, in the ovarian cancer-resistant cell line CAOV2R,
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downregulation of the transcriptional coactivator with PDZ-binding
motif (TAZ) leads to increased expression and activity of GPX4,
thereby enhancing cells resistance to ferroptosis and contributing to
carboplatin resistance. Conversely, overexpression of TAZ can
decrease GPX4 activity, reverse resistance, and increase sensitivity
to carboplatin (Yang et al., 2020). In the HEC-1A/DDP and
Ishikawa/DDP cell lines, overexpression of protein arginine
methyltransferase (PRMT3) decreased the m6A modification of
GPX4 mRNA, which not only reduced the expression of the
GPX4 protein but also impaired its function, thereby inhibiting
ferroptosis and leading to cisplatin resistance. PRMT3 inhibitors,
such as SGC707, can restore the normal m6A modification of
GPX4 mRNA, reversing cisplatin resistance in endometrial
cancer cells (Wang Y. et al., 2023). Similarly, increased
expression of SCD1 and fatty acid desaturase 2 (FADS2) leads to
enhanced GPX4 activity, resulting in resistance to cisplatin in the
ovarian cancer cell line PEO4. The use of inhibitors of SCD1 and
FADS2 can reduce GPX4 activity and enhance the sensitivity of
ovarian cancer cells to cisplatin (Xuan et al., 2022). In the ES-A cell
line, increased expression of xCT leads to elevated levels of GSH and
GPX4, inhibiting ferroptosis and resulting in resistance to paclitaxel.
However, combined treatment with paclitaxel (PTX) and
sulfasalazine (SAS) can reduce GPX4 levels, increase intracellular

iron content and ROS accumulation, enhance sensitivity to
paclitaxel, and reverse resistance (Wang Y. et al., 2021). These
findings highlight the central role of GPX4 in chemoresistance
and suggest the potential for targeting GPX4 to reverse resistance.

Additionally, GPX4 activity is closely related to the increased
expression of SLC7A11, a component of the cystine/glutamate
antiporter that influences intracellular cystine levels and thereby
affects GSH synthesis. Changes in the levels of GSH, the essential
coenzyme of GPX4, directly affect the enzyme’s ability to reduce
lipid hydroperoxides, thus influencing its antioxidant capacity and
the regulation of ferroptosis (Endale andMengstie, 2023). Therefore,
the overexpression of SLC7A11 in ovarian cancer cells enhances
GPX4 activity by increasing GSH levels, which assists cells in
resisting ferroptosis and promotes cancer cell proliferation,
invasion, and chemoresistance (Fantone et al., 2024). Qin et al.
(2023) also reported that SLC7A11 protein levels were significantly
greater in cisplatin-resistant A2780/DDP and SKOV3/DDP ovarian
cancer cell lines than in their cisplatin-sensitive counterparts.
Silencing circSnx12 increased the expression of miR-194-5p,
which can reduce SLC7A11 expression, thereby increasing
cisplatin sensitivity and reversing resistance.

Moreover, chemoresistant cells evade ferroptosis by enhancing
antioxidant defense mechanisms (Viswanathan et al., 2017). GPX4,

FIGURE 2
The relationship between ferroptosis escape and chemotherapy-resistant in tumor cells. Color coding and symbol usage: Red indicates proteins or
inhibitors that suppress ferroptosis. Green represents proteins or inducers that promote ferroptosis. Yellow is used specifically to denote biochemical
processes, including ROS. Squares are used to mark chemical substances and biochemical processes, while ellipses are used to represent proteins and
other biomolecules. Abbreviations: MST1/2, Mammalian Ste20-like kinases 1 and 2; LATS1/2, Large tumor suppressor kinase 1 and 2; ECAD,
E-Cadherin; YAP, Yes-associated protein; YAP/TAZ, Yes-associated protein and transcriptional coactivator with PDZ-binding motif; ACSL4, Acyl-CoA
synthetase long-chain family member 4; EMP1, Epithelial Membrane Protein 1; NOX4, NADPH oxidase 4; ROS, reactive oxygen species; NRF2, Nuclear
factor erythroid 2-related factor 2; KEAP1, Kelch-like ECH-associated protein 1; HO-1, Heme oxygenase-1; TFR1, transferrin receptor 1; Gpx4,
glutathione peroxidase 4.
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a key antioxidant enzyme, utilizes the reducing power provided by
nicotinamide adenine dinucleotide phosphate (NADPH) to reduce
lipid peroxides, thereby resisting ferroptosis (Ye et al., 2024).
Lowering NADPH levels weakens GPX4’s antioxidant capacity,
increasing the sensitivity of cells to GPX4 inhibitors and
suggesting new possibilities for inducing ferroptosis. In a study
involving 192 ovarian cancer patients, high levels of GPX4 were
associated with resistance to platinum-based drugs, and siRNA-
mediated knockdown of GPX4 reduced the resistance of ovarian
cancer cells to these drugs (Wu et al., 2022). Based on these findings,
the research and development of GPX4 inhibitors have become
promising. For example, the GPX4 inhibitor RSL3 effectively
inhibits the proliferation of the medroxyprogesterone acetate
(MPA)-resistant endometrial cancer cell line ECC-1 by
enhancing oxidative stress and inducing ferroptosis, thereby
reversing resistance (Murakami et al., 2023). Luo et al. (2022)
designed a GPX4 degrader, dGPX4, that degrades GPX4 in
tumor cells via the proteasome pathway, achieving an efficiency
five times greater than that of inducing ferroptosis with ML162, a
GPX4 inhibitor. Additionally, they developed biodegradable lipid
nanoparticles (dGPX4@401-TK-12) to deliver
dGPX4 intracellularly, targeting the cancer cell
microenvironment to induce selective ferroptosis. When
administered intravenously, these nanoparticles effectively
inhibited tumor growth without significant side effects.

3.3 Targeting the iron metabolism pathway

Ferritinophagy is a selective autophagy process mediated by
coactivator 4 (NCOA4), which releases stored iron by degrading
ferritin in lysosomes, helping chemoresistant cancer cells maintain
high iron levels. Therefore, chemoresistant cells can adapt to
oxidative stress induced by chemotherapeutic drugs by enhancing
ferritinophagy, thereby increasing their tolerance to these drugs
(Terman and Kurz, 2013; Zhou et al., 2020; Yu et al., 2022).
However, when ferritinophagy is excessively activated, it can lead
to an imbalance in the iron pool, triggering the Fenton reaction and
ultimately inducing ferroptosis (Masaldan et al., 2018; Yu et al.,
2022). Research by Qiu et al. (2021) confirmed this finding, showing
that downregulation of NCOA4 is associated with drug resistance,
while overexpression of NCOA4 promotes ferritin degradation, and
triggers ferroptosis, thereby enhancing sensitivity to
chemotherapeutic drugs, and reversing resistance. Furthermore,
dihydroartemisinin (DHA) induces NCOA4-mediated
ferritinophagy in cervical cancer, leading to increased labile iron
pool (LIP), enhanced Fenton reaction, and excessive ROS
production, triggering ferroptosis, and sensitizing cervical cancer
cells to doxorubicin (Shi et al., 2023).

Chemoresistance is also closely related to changes in iron
metabolism. In ovarian cancer cells, the expression of TFR1,
DMT1, and hepcidin (HAMP) is increased, while the expression
of FPN is decreased. This leads to elevated intracellular iron
concentrations and increased levels of FTL, contributing to
resistance to chemotherapeutic drugs (Arezes and Nemeth, 2015;
Xue et al., 2016; Basuli et al., 2017; Wang et al., 2019). The iron
chelator desferrioxamine (DFO) can deplete iron required by tumor
cells, reduce the activation of tumor cell enzymes, exhibit anticancer

activity (Han et al., 2019; Recalcati et al., 2019). Existing literature
suggested that DFO can restore the drug sensitivity in cisplatin-
resistant cells by altering mitochondrial iron metabolism. Thus, the
reduced cisplatin dose can diminish the side effects of the
chemotherapy (Liu WJ. et al., 2022). Wang et al. (2019)
confirmed that DFO effectively inhibits the proliferation of
SKOV-3 and OVCAR-3 ovarian cancer cells, enhances the
efficacy of cisplatin treatment, and reverses cisplatin resistance in
ovarian cancer.

3.4 Targeting the lipid peroxidation pathway

SCD1 is a key enzyme in the lipid oxidation pathway, and is
primarily responsible for catalyzing the conversion of saturated fatty
acids to monounsaturated fatty acids (Bednarski et al., 2016; Tesfay
et al., 2019). Studies have shown that SCD1 can promote
chemoresistance in tumors by inhibiting ferroptosis (Zhang H.
et al., 2021; Luis et al., 2021). In study on gynecological
malignancies, Xuan et al. (2022) reported that SCD1 is
abnormally upregulated in ascites-derived ovarian cancer (OvCa)
cells, and is closely associated with tumor invasiveness and
chemoresistance. Using the SCD1 inhibitor CAY10566 or
silencing SCD1 via CRISPR/Cas9 technology can delay tumor
growth, reduce the formation of cancer stem cells, and decrease
resistance to platinum-based drugs. Additionally, another study
demonstrated that in chemoresistant ovarian cancer cells
(SKOV3-CIS and A2780-CIS), inhibiting SCD1 expression by
activating the AMPKα signaling pathway can induce ferroptosis,
enhance the sensitivity of ovarian cancer cells to platinum-based
drugs, and reverse chemoresistance (Tang et al., 2022).

In addition to SCD1, LOXs also play important roles in
ferroptosis. LOXs mediate ferroptosis through the direct
oxygenation of polyunsaturated fatty acids (Kuhn et al., 2015).
For example, downregulation of arachidonate 15-lipoxygenase
(ALOX15) has been reported to enhance sensitivity to cisplatin
and paclitaxel in breast cancer (Li et al., 2016). However, in
endometrial cancer cell lines (AN3CA and Ishikawa),
downregulation of aarF domain containing kinase 3 (ADCK3)
reduces the transcription of ALOX15, affecting lipid peroxidation
and inhibiting ferroptosis, thereby leading to MPA resistance.
Silencing or knocking out ADCK3 via siRNA or CRISPR/
Cas9 technology can enhance lipid peroxidation, promote
ferroptosis, and reverse MPA resistance (Zhang et al., 2023).

Another key factor is the iron-sulfur protein ferredoxin 1
(FDX1), which plays a crucial role in the biosynthesis of iron-
sulfur clusters and steroidogenesis (Grinberg et al., 2000; Sheftel
et al., 2010). FDX1 is important for maintaining cellular iron
homeostasis. Depletion of FDX1 not only leads to iron
homeostasis disruption but also causes mitochondrial iron
overload, both of which are key drivers of ferroptosis (Shi et al.,
2012). Studies have shown that FDX1 is upregulated in platinum-
resistant ovarian cancer cell lines (A2780/DDP and SKOV3/DDP),
inhibiting ferroptosis and resulting in cisplatin resistance. Silencing
the FDX1 gene via siRNA can enhance lipid peroxidation, promote
ferroptosis, and promote cisplatin resistance (Takahashi et al., 2023).

In summary, the GPX4 pathway, iron metabolism pathway, and
lipid peroxidation pathway play crucial roles in reversing
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chemotherapy resistance. By precisely regulating key genes within
these pathways, we can effectively restore or enhance the induction
of ferroptosis, thereby reversing the resistance of tumor cells to
chemotherapeutic drugs. Table 1 lists the gene changes induced by
chemotherapy drugs, providing potential targets for focusing on
these pathways.

4 Prospects of ferroptosis in the
treatment of gynecological
malignancies

4.1 Ferroptosis and traditional treatment

In the treatment of gynecological malignancies, the combined
use of ferroptosis inducers has shown significant potential with
conventional treatment modalities such as chemotherapy, targeted
therapy and radiotherapy. In recent years, ferroptosis inducers have
demonstrated significant efficacy in overcoming chemoresistance.
For instance, the use of erastin can reduce the efflux of the multidrug
resistance protein ATP-binding cassette subfamily B member 1
(ABCB1), leading to increased accumulation of chemotherapeutic
drugs within tumor cells, thereby reversing resistance to docetaxel
and platinum-based drugs (Zhou et al., 2019). This finding indicates
that the combined use of ferroptosis inducers and chemotherapy
drugs can enhance chemotherapy efficacy by modulating the
ferroptosis pathway. Ferroptosis inducers activate ferroptosis by
promoting lipid peroxidation and increasing intracellular iron ion
concentrations, while chemotherapy drugs indirectly support this
process by increasing the production of ROS (Wang YWX. et al.,

2023). This synergistic effect not only enhances the sensitivity of
tumor cells to chemotherapy drugs but also helps overcome
chemoresistance, offering new strategies for the treatment of
gynecological malignancies. Additionally, tumor heterogeneity
particularly complicates the management of treatment resistance,
tumor progression, and recurrence (Fidler, 1978; Hallou et al., 2017).
Li et al. (2021) revealed that in multiple ovarian cancer cell lines, the
majority (10 out of 11) exhibited high expression of the autophagy
marker MAP1LC3B-II, which was positively correlated with
sensitivity to ferroptosis induced by erastin or RSL3. This
discovery suggests that effective personalized treatment strategies
can be developed based on the differential sensitivity of various
tumor subtypes to ferroptosis inducers.

In the field of targeted therapy, olaparib, a well-known PARP
inhibitor, is primarily used for treating patients with BRCA-mutated
ovarian cancer. However, its efficacy is often limited in patients with
wild-type BRCA1/2. Studies have shown that enhancing ferroptosis
through the use of ferroptosis inducers (FINs) can synergize with
PARP inhibitors, increasing the sensitivity of non-BRCA-mutated
ovarian cancer cells and their xenografts (Hong et al., 2021). This
strategy offers a new therapeutic direction for the use of PARP
inhibitors in the treatment of ovarian cancer patients with functional
BRCA. In addition to their applications in chemoresistance and
targeted therapy, ferroptosis inducers also show potential in
radiotherapy. Radiotherapy kills cancer cells by inducing
oxidative stress and lipid peroxidation. However, it also induces
the expression of SLC7A11 and GPX4, proteins that help cells resist
ferroptosis in cancer cells, thereby reducing treatment efficacy (Lang
et al., 2019). By depleting or inhibiting SLC7A11 or GPX4, such as
by using erastin (an SLC7A11 inhibitor) or RSL3 (a GPX4 inhibitor),

TABLE 1 Key ferroptosis related gene and protein targets in chemo-resistant gynecological cancer cell line.

Drugs Tumor Cell
line

Gene Expression Target
pathway

Resistance
mechanism

Reversal
method

References

Carboplatin Ovarian
cancer

CAOV2R TAZ ↓ GPX4-
regulated
pathway

siRNA-mediated knockdown
of TAZ reduces ANGPTL4,
decreases NOX2 activation,
increases GPX4 expression,
leading to ferroptosis
resistance

Overexpressing
TAZ

Hangauer et al.
(2017)

Cisplatin Ovarian
Cancer

A2780/
DDP
SKOV3/
DDP

FDX1 ↑ Lipid
metabolism
pathway

FDX1 downregulation affects
mitochondrial membrane
potential and lipid
peroxidation, inhibiting
ferroptosis

siRNA-mediated
FDX1

Shi et al. (2012)

PEO4 SCD1
FADS2

↑
↑

GPX4-
regulated
pathway

Overexpression of SCD1/
FADS2 increases
GPX4 expression, inhibiting
ferroptosis

Inhibition of SCD1 and
FADS2

Wang et al.
(2023a)

Endometrial
cancer

HEC-1A/
DDP
Ishikawa/
DDP

PRMT3 ↑ GPX4-
regulated
pathway

PRMT3 overexpression
decreases m6A modification
of GPX4 mRNA, and inhibits
ferroptosis

SGC707
(PRMT3 inhibitor) sh-
PRMT3

Yang et al. (2020)

Paclitaxel Ovarian
cancer

ES-2 xCT ↑ GPX4-
regulated
pathway

xCT overexpression elevates
GSH and GPX4, inhibiting
ferroptosis

Combined treatment
with PTX and SAS

Xuan et al.
(2022)

MPA Endometrial
cancer

AN3CA
Ishikawa

ADCK3 ↓ Lipid
metabolism
pathway

ADCK3 downregulation
affects lipid peroxidation,
inhibiting ferroptosis

Silencing or knocking
out ADCK3 using siRNA
or CRISPR/Cas9

Li et al. (2016)
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radiotherapy-induced ferroptosis can be enhanced, significantly
increasing radiotherapy sensitivity (Xie et al., 2011; Pan et al.,
2019; Lei et al., 2020). This phenomenon is also observed in
ovarian cancer, where FINs enhance the effects of radiotherapy
by inhibiting SLC7A11-mediated cystine uptake or GPX4 activity. In
patient-derived ovarian cancer tumor organoids, the combination of
FINs and radiotherapy significantly enhanced cell death induction
and reduced cell viability (Lei et al., 2021). Similarly, Lang et al.
(2019) pretreated ID8 ovarian cancer cells with ferroptosis inducers
(such as erastin and FINs) before radiation exposure, and found that
this pretreatment enhanced the sensitivity of ovarian cancer cells to
radiotherapy.

In summary, these strategies not only hold promise for
enhancing the efficacy of existing therapies, but also pave the
way for new avenues in clinical research on the treatment of
gynecological malignancies through ferroptosis.

4.2 Ferroptosis and emerging technologies

Facing therapeutic challenges, researchers have proposed a
series of innovative treatment strategies, that showcasing the
potential of ferroptosis in transforming the field of cancer
therapy. In this domain, using radiomic features extracted from
dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI), Su et al. (2023) highlighted the significance of ferroptosis
as a therapeutic target in highly heterogeneous tumors. These
techniques enable researchers to more precisely identify and
target tumor subtypes that may be more sensitive to ferroptosis
inducers. Additionally, Cao et al. (2024) identified methotrexate
sodium as an effective inhibitor of GPX4 through fluorescence
polarization, a method that surpasses traditional cell phenotype
screening, providing a more precise approach for selecting potent
ferroptosis inhibitors. Concurrently, Chen et al. (2020) utilized the
IVIS bioluminescence imaging system to track biomarker changes
during the ferroptosis process, thereby validating the efficacy of
therapeutic strategies in real time.

With technological advancements, the application of
nanotechnology in ferroptosis research has increased.
Nanoparticles have served as primary carriers for ferroptosis
inducers in several studies. Nanoiron (Nano-Fe) can release iron
ions within tumor cells, triggering the Fenton reaction and inducing
ferroptosis. Due to the high demand for iron by tumor cells, these
nanoparticles are preferentially taken up in large amounts by tumor
cells, while uptake by normal tissues remains minimal, enhancing
the targeting of the therapy. Moreover, the release of iron ions can be
monitored via magnetic resonance imaging (MRI), offering the
possibility of real-time monitoring of the treatment, which
further improves the safety and efficacy of the therapy (Shen
et al., 2017; Shen et al., 2018c; Hassannia et al., 2019; Liu et al.,
2019; Sang et al., 2019). For instance, Guan et al. (2020) designed
SRF@MPDA-SPIO nanoparticles, a technology that loads sorafenib
onto ultrasmall superparamagnetic iron oxide (SPIO) nanoparticles.
These nanoparticles not only leverage their targeting ability to
deliver sorafenib directly to tumor cells but also simultaneously
release iron ions, which can be monitored via MRI, thereby
enhancing the efficacy and safety of the treatment. Similarly, Fan
et al. (2023) designed magnetic iron oxide nanoparticles with AND

logic gate functionality. This design exploits the unique biochemical
signals present in the tumor microenvironment to activate the
nanoparticles, significantly enhancing the targeting and efficacy
of ferroptosis therapy. Guided by MRI, these nanoparticles can
precisely release iron ions within tumor cells, inducing ferroptosis
without affecting surrounding normal cells. These innovative
methods and technologies bring new hope for the treatment of
cancer with dysregulated iron metabolism including gynecological
malignancies. Future research will continue to explore how to
maximize the efficacy of ferroptosis inducers and translate these
findings into clinical practice.

5 Conclusion

The role of ferroptosis in the treatment of gynecological
malignancies, particularly in combating chemoresistance, has
garnered widespread attention. Utilizing the three key pathways
of ferroptosis—GPX4 regulation, iron metabolism, and lipid
peroxidation-to develop new therapeutic strategies has shown
significant potential in overcoming chemoresistance. Research by
Wang et al. (2023) further underscores the effectiveness of
ferroptosis inducers in overcoming resistance to
chemotherapeutic drugs. However, the clinical translation of
ferroptosis-based therapies still faces numerous challenges, and
the underlying mechanisms are highly complex. In addition to
the aforementioned three key pathways, many other pathways
remain to be explored. So far, no ongoing clinical trials targeting
ferroptosis in gynecological malignancies have been documented.
Therefore, more in-depth research and attempt for ferroptosis-
targeted clinical trials are in dire need to identify more effective
therapeutic approaches for the treatment of gynecological
malignancies.
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