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Migrasomes are organelles produced by migrating cells that form on retraction
fibers and are released during cell migration. Migrasomes are involved in
physiological and pathological processes such as intercellular communication,
cell homeostasis maintenance, signal transduction, disease occurrence and
development, and cancer metastasis. In addition, methods and techniques for
studying migrasomes are constantly evolving. Here, we review the discovery,
formation process, regulation, and known functions of migrasomes, summarize
the commonly used specific markers of migrasomes, and the methods for
observing migrasomes. Meanwhile, this review also discusses the potential
applications of migrasomes in physiological processes, disease diagnosis,
treatment, and prognosis, and looks forward to their wider application in
biomedicine. In addition, the study of migrasomes will also reveal a new
perspective on the mechanism of intercellular communication and promote
the further development of life science.
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1 Introduction

Extracellular vesicles (EVs) are structures that are released by all cells into their cellular
environment. They are encased in lipid bilayers and contain components in the cells that
release them. As important communication tools between cells, extracellular vesicles
participate in various physiological and pathophysiological processes. Migrasomes,
which are formed during cell migration, have recently attracted much attention as a
potential tool for cell communication. Migrasomes are organelles generated by migrating
cells and vesicles formed on the retraction fibers (RF) of migrating cells (Ma et al., 2015).
Migrasomes are organelles rather than extracellular vesicles (Ma et al., 2015). Although
detached migrasomes are extracellular vesicles, the production of extracellular vesicles (the
detachedmigrasome) is just one of many functions of the migrasomes that they can perform
as part of the cell before shedding from the cell. In this article, we review the discovery
process of migrasomes and summarize their formation process, what is known about their
functions in intercellular communication and embryonic development, their role in
physiological and pathological processes, and the methods for observing and studying
migrasome movement. Possible future research areas and clinical applications of
migrasomes are also proposed.
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2 Discovery of migrasomes

Cell migration refers to the movement of cells after receiving
migration signals or feeling the gradient of certain substances. Cell
migration is a fundamental function of normal cells, a physiological
process of proper body growth and development, and a universal
mode of movement for live cells. Cell migration plays a role in
embryonic development, angiogenesis, wound healing,
immunological and inflammatory responses, atherosclerosis,
cancer metastasis, and other processes (Kobayashi et al., 2003;
Sahai, 2005; Coles et al., 2007; Friedl and Gilmour, 2009; Shaw
and Martin, 2009; Weijer, 2009).

In 2015, Yu et al. accidently discovered that during themigration
process of cells under the microscope, rapidly moving cells were lit
up by fluorescent proteins and dragged behind them by a large
number of long filamentous lines, called “retraction fibers” (RFs).
The migrating cells will pull out many RFs behind them, and some
small vesicles about 0.5μm–3 μm in diameter will be produced at the
tips and intersections of these RFs. Because the formation of these
vesicles is dependent on cell migration, they are named
“migrasomes” (Ma et al., 2015). These vesicles also contain

vesicles with a diameter of 50–100 nm (the number of vesicles
ranges from 10 to 300), which were originally called
pomegranate-like structures (PLS) because they resembled
pomegranate (Yu and Yu, 2022). In the process of cell migration,
the cell will continue to transport some intracellular substances to
the migrasomes through the channel of the RFs, and then the cell
will migrate away, the RFs will break, and the migrasomes will be
released. Cellular contents such as vesicles and cytosol can be
released from the cell by migrasomes and subsequently taken up
by the extracellular space or surrounding cells.

The formation of migrasomes has a fixed pattern: an
initial rapid growth, followed by a relatively stable period.
Finally, the RFs are broken, the migrasomes separate, and the
migrasomes and their contents, including cytosolic components
and small vesicles, are released into the matrix, which can also
be taken up and utilized by other cells. This migration-
dependent release mechanism is termed “Migracytosis” (Ma
et al., 2015).

The first systematic observation of migrasomes revealed that
they form and carry intracellular substances during cell migration,
and observed the whole process of migration-dependent release

FIGURE 1
The formation of migrasomes. (A)Migrasome nucleation process. The recruitment of PIP5K1A and de novo synthesis of PI(4,5)P2 at the migrasome
formation site may be the trigger signal for migrasome formation, and the interaction between active Rab35 and integrins creates the necessary adhesion
sites formigrasome formation. (B)Migrasomematuration process. Cells migrate away, and the anchored SMS2 spot remains on the retraction filament as
the migrasome formation site. At the SMS2 spot site, ceramide is converted into sphingolipin, which induces migrasome growth. (C) Migrasome
expansion process. TSPAN4 can self-assemble or integrate with other transmembrane proteins and cytoplasmic proteins to form TEMs, which then
aggregate into TEMAs to form a migrasome structure.
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mechanism called “Migracytosis”. It lays a foundation for further
study on the formation, release and function of migrasomes.

3 Molecular mechanisms of the
bioformation process of migrasomes

As mentioned above, the macroscopic formation of migrasome
was observed under the microscope. Migrasomes are mainly derived
from the ends and intersections of RFs in motile cells. Their
production is closely related to cell motility and undergoes three
key steps: nucleation, maturation, and expansion (Zhai et al., 2024)
(Figure 1). In this section, we will further explore the specific
mechanism of migrasome formation from the molecular level.

Migrasome formation is an active biogenesis process that is tightly
regulated by signaling pathways, rather than a membrane shedding
process wheremembrane debris is passively lost from the trailing edge
of migrating cells (Ding et al., 2023). Phosphoinositol kinases have
long been proposed to trigger migrasome formation (Zhen and
Stenmark, 2023). PIP5K1A is recruited to the migrasome
formation site to convert PI4P to PI(4,5)P2 and accumulate.
Rab35, an evolutionarily conserved Rab GTPase located at
endosomes and plasma membranes, has attracted much attention
for its role in cytokinesis and cell migration (Klinkert and Echard,
2016). During cell division, PI(4,5)P2 hydrolysis is important for
normal cytokinesis shedding as well as local remodeling of the F-actin
cytoskeleton in intercellular bridges, whichmay bemediated by Rab35
(Dambournet et al., 2011). During the formation of migrasomes,
PI(4,5)P2 recruits Rab35 to the migrasome formation site by
interacting with the C-terminal multibase cluster of Rab35. Active

Rab35 promotes migrasome formation by recruiting and
concentrating integrin α5 at the migrasome formation site
(Figure 1A). Taken together, the recruitment of PIP5K1A and de
novo synthesis of PI(4,5)P2 at the migrasome formation site may be
trigger signals for migrasome formation. Interactions between active
Rab35 and integrins at the migrasome formation site prepare
adhesion sites for molecules required for tetrasamectin dependent
amplification for migrasome formation (Ding et al., 2023).

The plasma membrane contains a large proportion of
sphingomyelin (SM) (Huitema et al., 2004). Sphingomyelin
synthase (SMS) is the only enzyme in mammals that produces
SM by transferring phosphocholine from phosphatidylcholine to
ceramide (Taniguchi and Okazaki, 2021). Sphingolipid synthase 2
(SMS2) is primarily localized at the plasma membrane (Yeang
et al., 2008), and primarily regulates the activity of plasma
membrane SM (Huitema et al., 2004), directly or indirectly
altering the biophysical properties of the membrane (Milhas
et al., 2010). SM forms SM-rich microdomains on the cell
membrane, which profoundly affect cell signaling, such as cell
migration (Taniguchi and Okazaki, 2014). SMS2 is an essential
protein for migrasome biogenesis, and the formation of
sphingolipid catalyzed by SMS2 is enriched in migrasomes.
Liang et al. revealed the important role of ceramide and
sphingomyelin in the formation of migrasomes and showed
that SMS2 forms a basement membrane surface junctional
structure that predetermines where migrasomes grow (Liang
et al., 2023). Cells migrate away, and the anchored SMS2 spot
remains on the RFs and becomes the migrasome formation site. At
the SMS2 spot position, ceramide is converted into sphingolipid,
which induces the migrasome to enter the growth phase (Figure 1B).

FIGURE 2
Physiological functions of migrasomes. (A) The migrasomes may contain mRNAs, proteins, cytokines, and other substances found in the cytoplasm
of the cell body. When a cell migrates away, the migrasome will remain in place until it breaks down or is engulfed by other cells, thus carrying out the
intercellular material transfer. (B) Migrasomes are involved in the maintenance of cell homeostasis and the removal of stress mitochondria.
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Knockdown of SMS2, Sgms2 genes, or treatment of cells with
SMS2 inhibitors significantly reduced the number of migrasomes.
The formation ofmigrasomes is initiated by the assembly of SMS2 foci
at the leading edge of migrating cells (Liang et al., 2023).

TSPANs are a family of four transmembrane proteins that are
present in every cell type (Rubinstein, 2011). Overexpression of
TSPAN1, 2, 3, 4, 5, 6, 7, 9, 13, 18, 25, 26, 27 and 28 enhance
migrasome formation, and among them TSPAN1, 2, 4, 6, 7, 9, 18,

FIGURE 3
Macro function and application prospect of migrasomes. (A–D) Migrasomes have shown important roles in embryonic development, tumor
migration, and disease occurrence and development. (E,F) Because of its role in intercellular communication, the prospect of migrasomes as drug
carriers or therapeutic targets should not be underestimated.

TABLE 1 Distinction between migrasomes and exosomes.

Migrasome Exosome

Diameter 0.5–3 µm 50–60 nm

Detach from the cell
body

Ordered, marking the path of cell movement spread rapidly and disorderly after leaving the cell

TSPANs expression
profile

TSPAN4, TSPAN7, etc TSPAN6, 8, 24, 25, 26, 27, 28, 29, 30, etc

Markers of
membrane

TSPAN4, TSPAN7, ITGB1 (Integrin β1), ITGA5 (Integrin α5) CD63, CD80, HSP60, etc

Only 27% of protein
is the same

Four specific proteins: NDST1, EOGT, PIGK, and CPQ Transmembrane proteins PGRL, LAMP1, LAMP2, CD9, CD63,
CD81, CD151

Process of biogenesis Formed by the assembly of large domains on the plasma membrane,
cytoplasmic material is translocated into the migrasome and then released by

the destruction of RFs

First produced as vesicles of multivesicular bodies (MVBs) and are
released when MVBs fuse with the plasma membrane

Function • Signal molecules, such as chemokines, cytokines, and growth factors, form
local regional signal centers with the distribution of migrasomes
• Maintenance of cellular homeostasis, such as removal of stressed

mitochondria
• Development of cells

Intercellular signaling, through membrane surface molecules bind
directly or contents release
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27 and 28 have a strong effect (Huang et al., 2019). Each TSPANs has
specific partners, including various integral proteins (Charrin et al.,
2009). Tetraspanin 4 (TSPAN4) has previously been shown to be
abundant in migrasome membranes (Ma et al., 2015), and required for
migrasome formation (Huang et al., 2019). As one of the most potent
tetraspanins to induce migrasomes, Tetraspanin4 (TSPAN4) and
cholesterol play a key role in the formation of migrasomes. Yu et al.
established three normal rat kidney (NRK) epithelial cell lines stably
expressing different levels of TSPAN4 and green fluorescent protein
(GFP) and found that TSPAN4 is one of the most effective tetraspanin
proteins to induce migrasomes (Ma et al., 2015). TSPAN4 and
cholesterol are required for migrasomes formation in vivo (Huang
et al., 2019). Furthermore, an in vitro system mimicking the process of
migrasome formation was able to demonstrate that TSPAN4 and
cholesterol are sufficient to form migrasome-like structures (Huang
et al., 2019). TSPANs can form TEMs by interacting and regulating
related molecules at the membrane plane (Charrin et al., 2009). Like
other members of the TSPAN family, TSPAN4 can self-assemble or
integrate with other transmembrane proteins and cytoplasmic proteins
to form tetraspanin-enriched microdomains (TEMs) (Huang et al.,
2019). During migrasome generation, TEMs assembled by
TSPAN4 can aggregate to form micron-level macrodomains
(TEMAs), which eventually deform the membrane tube to generate
migrasomes. The latter expanded into a large vesicular migrasome
shape (Huang et al., 2019). Cell migration induces a high local
enrichment of Tspan4 protein and cholesterol on RFs, thereby
increasing the flexural stiffness of the membrane in the enriched
region, resulting in the formation of a migrasome structure (Dharan
et al., 2023) (Figure 1C). The primary role of Tspan4 is to stabilize the
migrasome structure, while migrasome nucleation and the initial
growth phase can be driven by membrane mechanical stress
(Dharan et al., 2023). Knockdown of TSPAN4 reduced the
formation of migrasomes (Lee et al., 2024).

In summary, three key steps are involved in the process of
migrasome formation, in which molecules such as Rab35,
SMS2 and TSPAN4 and their interactions with other molecules

play important roles. An in-depth understanding of these
molecular mechanisms will help to explore the functions and
regulatory mechanisms of migrasomes.

4 Cytoskeletal compositions of
migrasomes

It is well known that the cytoskeleton is a network of
interconnected microtubules, microfilaments, and intermediate
fibers. Using inhibitors of cytoskeletal components, researchers
found the compositions of the migrasome includes F-actin, α-
tubulin and vimentin intermediate filaments, which is a solid
step to explore the cytoskeletal compositions of migrasomes.

3D rendering of the migrasomes revealed that they contained
F-actin and α-tubulin, and analysis revealed that actin was present in
the RFs and their associated migrasomes, whereas α-tubulin was
restricted to the migrasomes (Deniz et al., 2023).

Aggregation of active Rab35 at the formation adhesion site has
been observed during the nucleation step of migrasome formation.
Rab35 is thought to act as a key regulator to regulate F-actin at the
plasma membrane, thereby achieving its various cellular functions
(Klinkert and Echard, 2016). The formation of migrasomes also
depends on the polymerization of actin. When preventing the
formation of branched actin networks (application of arp2/
3 complex inhibitor), the formation of migrasomes was greatly
reduced (Ma et al., 2015). The polymerization of actin could
either inhibit the formation of migrasomes by inhibiting cell
migration or, more likely, directly affect the formation of
migrasomes structures.

Recent studies have shown that vimentin intermediate filaments
interact and regulate cytoskeletal dynamics that drive cell motility
(Battaglia et al., 2018). Vimentin controls actin stress fibers through
RhoA and promotes cell migration (Jiu et al., 2017). Loss of vimentin
results in defects in both persistence and speed of cell migration,
producing fewer migrasomes than wild-type cells (Fan et al., 2022).

TABLE 2 Factors found in migrasomes

Migrasome Known facts

Diameter 0.5–3 µm

Detach from the cell body Ordered, marking the path of cell movement

Process of formation Nucleation, maturation, and expansion

Cytoskeleton F-actin, α-tubulin and vimentin intermediate filaments

Release Formed by the assembly of large domains on the plasma membrane, cytoplasmic material is translocated into the migrasome and then
released by the destruction of RFs

Biomarkers Four specific proteins: NDST1, EOGT, PIGK, and CPQ
Markers of membrane: TSPAN4, TSPAN7, ITGB1 (Integrin β1), ITGA5 (Integrin α5)

Means of observation • Transmission electron microscopy
• Scanning electron microscopy
• Long-term high-speed high-resolution 3D imaging: 2pSAM
• Better spatiotemporal resolution and lower phototoxicity: DAOSLIMIT

Function • Releasing signaling molecules
• Maintaining cell homeostasis
• Development of cells
• Indicating disease progression
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5 Cell migration affects
migrasome formation

It is worth noting that the formation of migrasomes depends on
cell migration. It has been established that the generation of PLS is
premised on cell migration (Ma et al., 2015; Lu et al., 2020). In NRK
cells stably expressing TSPAN4-GFP and in zebrafish embryonic
cells, it was found that the number of migrasomes increased with the
use of agonists that enhance cell migration and decreased with the
use of inhibitors that suppress cell migration (Lu et al., 2020). These
studies confirmed that the generation of migrasomes is dependent
on cell migration. Treatment of cells with blebbistatin, a myosin II
inhibitor that interferes with cell migration, inhibits migrasome
formation (Wu et al., 2017).

The pattern of cell migration can also indirectly affect the
formation of migrasomes. During non-persistent migration, cells
formed fewer migrasomes due to the narrower tail of cells during
turning, producing fewer RFs; In addition to motility persistence,
cell migration speed limits migrasome formation by controlling the
length of RFs.

The basic mechanism of intrinsic regulation of cell-directed
migration is related to the Rho family of small GTPases and the
integrin family of ECM receptors (Raftopoulou and Hall, 2004;
Caswell and Norman, 2006).

As an important adhesion molecule in cell migration, Integrin
mediates the mutual recognition and adhesion between cells and
cells as well as between cells and extracellular matrix, and has the
role of connecting the external action of cells with the internal
structure of cells (Hynes, 2002). The correct pairing of integrins with
extracellular matrix components is also a key factor in the formation
of migrasomes. In contrast to the relatively low expression on RFs,
ITGB1 (integrin β1) and ITGA5 (integrin α5) in the integrin family
are relatively highly enriched in migrasomes and have been
suggested as possible specific markers for migrasomes detection
(Wu et al., 2017). By using siRNA to eliminate the levels of
ITGA5 and TSPAN4, fewer RFs and migrasomes were observed
in U87MG cells than in control cells (Lee et al., 2024).

In addition, high-throughput screening has identified Rho-
associated kinase 1 (ROCK1) as a regulator of migrasome
formation (Lu et al., 2020). By screening, the ROCK1 inhibitor
SAR407899 was identified, which interferes with migrasome
biogenesis but does not significantly reduce RFs formation,
and is not cytotoxic or causes impaired cell proliferation (Lu
et al., 2020). ROCK1 regulates cell adhesion to fibronectin
(Bhadriraju et al., 2007), an important factor in regulating
migrasome formation.

6 Methods and techniques for studying
migrasomes

A common protocol for the purification and observation of
migrasomes has been developed (Jiang D. et al., 2023): a) Detection
and observation of migrasomes by fluorescence microscopy
imaging; b) Purification of migrasomes from cultured cell lines
and embryos by density gradient centrifugation; c) Characterization
of migrasomes by electron microscopy imaging and
biochemical analysis.

6.1 Microscopy and imaging methods used
to visualize migrasome dynamics

Studying migrasomes relies heavily on imaging. Migrasomes
were first observed by transmission electron microscopy (TEM) and
scanning electron microscopy (Migrasomes, 2021). In 2015, Yu et al.
used TEM to observe membrane-bound vesicle structures in the
extracellular space surrounding NRK cells, with RFs attached at their
base and finally identified these pomegranate-like structures as
migrasomes (Ma et al., 2015). This indicates that observation
under TEM remains the most reliable and definitive method for
the identification of migrasomes.

Long-term high-speed high-resolution 3D imaging of deep
tissues remains an unresolved systemic challenge. Serial 3D
imaging by two-photon microscopy (TPM) can cause severe
damage to Drosophila embryos. Using the same laser power,
2pSAM can continuously record the entire process for more than
17 h at high 3D imaging speeds and with higher hatching rates
(Zhao et al., 2023), providing excellent opportunities to better
understand how living systems organize and respond to different
stimuli over longer time windows. However, for dense samples, the
net imaging rate slows down (Zhao et al., 2023).

Small size (0.5–3 μm) and high 3D mobility make it difficult to
visualize migrasome dynamics in vivo. Compared with TPM, digital
adaptive optics scanning light-field mutual iterative tomography
(DAOSLIMIT) exhibits better spatiotemporal resolution and lower
phototoxicity. There have been reports that capture the entire
process of migrasome biogenesis in mice (Wu et al., 2021).
DAOSLIMIT allows in vivo observation of 3D subcellular
dynamics on a millisecond scale for up to an hour, which is of
great value for precise and complete observation of the activity of the
studied migrating cells and the formation of migrasomes.

6.2 Markers of the migrasome model

In terms of markers for migrasome visualization, the
transmembrane protein TSPAN4 is not unique to migrasomes, it
is also localized to the plasma membrane and RFs (Ma et al., 2015),
and therefore cannot be used to identify migrasomes. However, it
has been identified as an imaging marker because it is highly
enriched on migrasomes.

The pairing of integrins with their specific ECM chaperones is a
determinant of migrasome formation, which may become an
important principle in determining when and where migrasome
is generated in vivo (Wu et al., 2017). Although TSPAN4 and
integrins are highly enriched on migrasomes, especially integrin-
GFP was rarely localized in RFs, while TSPAN4 protein was also
detected in large quantities in RFs (Wu et al., 2017). Excellent
integrin antibodies are commercially available, so they may
become an important tool for the study of migrasomes in vivo.

Protein composition is only 27% identical between migrasomes
and exosomes (Zhao et al., 2019). Four specific proteins
present in the migrasomes were identified: NDST1
(bifunctional heparan sulfate N-deacetylase/N-sulfotransferase
1), PIGK (phosphatidylinositol glycan anchor biosynthesis, class
K), CPQ (carboxypeptidase Q) and EOGT (EGF domain-specific
O-linked N-acetylglucosamine transferase). They are enriched in
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migrasomes but are absent or barely detectable in exosomes and
can be used as markers for the biochemical detection of
migrasomes (Zhao et al., 2019).

7 Function and biological significance
of migrasomes

In addition to participating in cell migration, migrasomes also
have many important physiological functions (Figure 2). According
to the relevant studies published so far, the physiological functions of
migrasomes are mainly manifested as follows.

7.1 Maintenance of cell homeostasis

Migrating cells consume more energy than quiescent cells, so
they may have higher respiration rates, ROS production, and
mitochondrial stress load (Poole and Macleod, 2021). Therefore,
migrating cells necessarily require additional mechanisms to
mitigate this higher mitochondrial stress burden. Mitochondrial
shedding contributes to mitochondrial quality control (Melentijevic
et al., 2017). Migrasomes can regulate the quality of mitochondria,
thereby maintaining intracellular mitochondrial homeostasis by
clearing out damaged mitochondria (Jiao et al., 2021) and
avoiding the adverse effects caused by the accumulation of
damaged mitochondria, such as cytochrome C release from
mitochondria and subsequent caspase activation (Jiang and
Wang, 2004; Bock and Tait, 2020). This process is known as
mitocytosis. Current studies have shown that there are two main
ways to solve mitochondrial stress in vivo, called mitocytosis and
mitophagy. mitocytosis is induced by mild mitochondrial stress.
Notably, 10 μMCCCP (the dose used to induce mitophagy) induced
only a small amount of mitocytosis. This may be explained by the
fact that cells barely migrated in the presence of 10 μM CCCP (Jiao
et al., 2021). Mitocytosis and mitophagy may serve as a two-gear
system to maintain mitochondrial quality in migrating cells, with
mitocytosis responsible for handling mild mitochondrial damage,
which may occur frequently under physiological conditions, while
mitophagy handles severe mitochondrial damage associated with
pathological conditions (Jiao et al., 2021).

7.2 Migrasome-derived nanoparticles:
intercellular communication

As a single-layer, releasable vesicular structure, researchers have
proposed that migrasomes function as signaling organelles,
providing specific biochemical information to neighboring cells
(Jiang et al., 2019).

The active transfer of cytoplasm from the main body of the cell
to the migrasomes was observed by GFP tracing (Ma et al., 2015),
and therefore the migrasomes may contain mRNAs, proteins,
cytokines, and other substances that are possessed in the
cytoplasm of the cell body (Zhu et al., 2021). When a cell
migrates away, the migrasome remains in place until it breaks
down or is engulfed by other cells (Ma et al., 2015), thereby
carrying out intercellular material transfer (Zhu et al., 2021).

In addition, small vesicles containing different numbers termed
migrasome-derived nanoparticles (MDNPs), were observed in the
migrasomes. Such nanoparticles are produced by the migrasome by
self-rupture and release of internal vesicles by a process similar to
cytoplasmic membrane budding (Ma et al., 2023). MDNP has a
membrane structure with typical circular morphology and has
characteristic markers of migrasomes. Interestingly, MDNP is
also loaded with a large number of microRNAs that are distinct
from those in migrasomes, which predicts additional functions for
these released small vesicles. MDNP is present or released as a
content of the migrasome. Some scholars have suggested that
migrasomes are capable of carrying and releasing vesicular
structures, even exosomes (Ma et al., 2015). Further studies are
needed on the properties, structure, and composition of MDNP.

7.3 Signal integration between cells

The presence of chemokines, cytokines, growth factors, and
other signaling molecules in migrasomes suggests that they have
complex and special functions. Recent studies have shown that
migrasomes play an important role in signal transduction in
embryonic development, immune response, and cancer metastasis.

Studies on the role of migrasomes in zebrafish embryonic
development have found that migrasomes serve as membrane-
coated carriers of signal molecules, which determine the spatial
and temporal distribution of signal molecules, and thus play a new
mechanism in regulating organ development (Figure 3A). Studies
have found that when the production of migrasomes is blocked,
zebrafish will show abnormal phenotypes of organ morphology,
including organ morphology defects and left-right asymmetry
defects, etc. Exogenous supplementation of migrasomes can
significantly reduce the proportion of defects (Jiang et al., 2019).

Migrasomes can mediate the transfer of mRNA between cells:
the mRNA is transferred to the recipient cells by the migrasomes
(Jiang Y. et al., 2023), and the mRNA in the recipient cells can
change the life activities of the recipient cells.

The regulation of cancer cells in the tumor microenvironment,
such as migrasomes in pancreatic cancer cells, can induce an
inhibitory immune microenvironment to promote tumor growth
(Qin et al., 2022).

7.4 Relationship of migrasome to cellular
stress, development, and disease states

Current studies have revealed the role of migrasomes in the
development and progression of diseases (Figure 3B).

Studies targeting nanoplastic-induced abortion in women have
shown that in vivo expression of ROCK1 can effectively rescue
trophoblast cell migration/invasion and migrasome formation,
thereby reducing abortion (Wan et al., 2024), suggesting that the
reproductive toxicity of some environmental exposure may be
mediated by inhibition of migrasome formation.

The study of migrasomes in metastatic tumors has been carried
out (Figure 3C). Violently migrating glioblastoma cells have the
potential to produce migrasomes (Lee et al., 2024). Migrasomes are
formed by inhibition of autophagosome/lysosome fusion, which is
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important for the degradation of cellular cargo under stress
conditions (Jiao et al., 2021). In addition, ER-associated proteins
are abundant in the migrasomes and increased ER stress can
generate more migrasomes in glioblastoma cells. However,
reduced migration promotes the unfolded protein response,
thereby enhancing cell death under stress conditions (Lee et al.,
2024). Migrasomes have a stress-relieving function for brain tumor
cells under ER stress conditions.

BMSCs-derived migrasomes containing dermcidin enhance
LC3-associated phagocytosis of pulmonary macrophages and
prevent post-stroke pneumonia, demonstrating dual functions of
anti-infection and immunomodulation and superior therapeutic
efficacy over antibiotics (Li et al., 2023).

The retinal pigment epithelium (RPE) can generate migrasomes
in the microenvironment of proliferative vitreoretinopathy (PVR)
(Wu et al., 2022). Since migrasomes can be internalized by RPE, they
play a key role in the activation of RPE and the progression of PVR,
increasing the migration and proliferation ability of RPE.
TSPAN4 expression and migrasome production in such lesions
are induced through the TGF-β1/Smad2/3 signaling pathway
(Wu et al., 2022). Targeting TSPAN4 or blocking migrasome
formation may be novel therapeutic approaches against PVR.

The migrasome and its element TSPANs are widely expressed in
the cardiovascular system, and TSPAN8, TSPAN24, TSPAN12, and
TSPAN29 are the major TSPAN family members that promote
angiogenesis (Hemler, 2014; Bucher et al., 2017; Heo and Lee, 2020).
Thus, TSPAN, migrasomes, and migrating cells may play important
roles in regulating vascular homeostasis. Quantitative mass
spectrometry has shown that monocyte migrasomes are enriched
in proangiogenic factors and that purified migrasomes promote the
capillary formation and monocyte recruitment in vivo (Zhang et al.,
2022). Macrophage-derived migrasomes and subsequent
complement activation are responsible for blood-brain barrier
damage in cerebral amyloid angiopathy (CAA) (Hu et al., 2023).

8 Migrasomes are organelles rather
than extracellular vesicles

Although migrasomes can also function as EVs, there are
significant differences between migrasomes and other
extracellular vesicles and can be used as a means of differentiation.

The most important distinction between microvesicles and
other EVs is the mode of biogenesis. Microvesicles are generated
by direct out-budding and fission through the plasma membrane
(Cocucci et al., 2009), a process that results from a dynamic interplay
between phospholipid redistribution and cytoskeletal protein
shrinkage (Akers et al., 2013). Unlike migrasomes, exosomes, and
microvesicles, which are secreted during normal cellular processes,
apoptotic bodies are formed only during programmed cell death.
They are also characterized by the presence of organelles within the
vesicles (Akers et al., 2013). Membrane blistering is mediated in part
by actin-myosin interactions (Coleman et al., 2001). Microvesicles
and apoptotic bodies are obviously different from other EVs and can
be identified.

There are a variety of proteins on the membrane of exosome
vesicles, among which tetraspanin 4 (TSPAN4) and integrin family
adhesion molecules are the most abundant. CD9, CD63, CD81,

CD151, and tetraspanin 8 (TSPAN8), as adhesion molecules of
specific tetraspanin families, participate in the biological processes of
exosomes. Exosomes contain a variety of lipids, including
cholesterol and sphingomyelin. In addition, exosomes also
contain many RNA and DNA molecules, such as mRNA,
microRNA (miRNA), long non-coding RNA (lncRNA), and
mitochondrial DNA (mtDNA) (Xu et al., 2018; Kalluri and
LeBleu, 2020). This is very similar to the migrasome components
described above, including TSPAN4, cholesterol, integrin, mRNA,
and microRNA (miRNA). Finally, using mass spectrometry, the
researchers found that the two structures shared only about 27% of
the protein, and the proportion of the material was not the same on
their respective membranes (Zhao et al., 2019). It was finally
demonstrated that although the migrasome is a membrane-
wrapped vesicular structure similar to MVB, it lacks the surface
marker of MVB, lysosomal-associated membrane protein 1
(LAMP1) (Ma et al., 2015). Exosomes are released from cells by
fusion of MVBS with the plasma membrane (Kowal et al., 2014).
Instead, the migracytosis involves translocation of cytoplasmic
material into the migrasome, which is then released by
disruption of RFs. Thus, migracytosis and exosome release are
mechanistically distinct processes. We sorted out the differences
between migrasomes and exosomes, including protein expression,
production and release processes and biological functions, to clearly
distinguish them (Table 1).

Migrosomes are membrane-bound cellular structures with
characteristic morphological features that cells can use to release
cellular contents, including vesicles and cytoplasmic proteins (Ma
et al., 2015). In cell biology, organelles are specialized subunits of
cells that perform specific functions. Another key feature of an
organelle is that it is usually enclosed within its own membrane.
Having a fixed membrane structure and being able to perform
specific biological functions supports the idea that the migrasome
is an organelle and not just a vesicular structure.

9 Discussion

As an organelle that can be released outside the cell, the
migrasome exhibits an intercellular communication function
through the nanoparticles released by its rupture (Figure 3). The
specific source, composition, biological role, and final destination of
these nanoparticles may hold the key to explaining certain
physiological or pathological processes. As mentioned above,
migrasomes have been found to play a role in bone and eye
diseases, and have been proposed as potential targets for
some tumors.

In terms of migrasome production, it has been found that
PIP5K1A is recruited to migrasome formation sites before
migrasome formation (Ding et al., 2023), and forms a possible
trigger signal. It remains unknown how PIP5K1A is recruited to this
particular site. In addition to integrins, there may be other effectors
and adaptor proteins that contribute to migrasome biogenesis.
Moreover, it is not clear how the activity of these proteins is
regulated in the context of migrasome biogenesis.

There is a possibility of an association between autophagosome
and migrasome formation in the maintenance of cellular
homeostasis. It has been observed that inhibition of
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autophagosome/lysosome fusion to increase the number of
autophagosomes can generate migrasomes capable of alleviating
cellular stress (Lee et al., 2024) (Figure 3D). Complementation
experiments of autophagy induction and autophagy-related genes
are important to reveal whether autophagy and migrasome
formation are related.

The observation in zebrafish is that migrasomes providing the
CXCL12 chemokine are produced in both mesodermal and
endodermal cells and that CXCL12 chemotaxis induces normal
migration of dorsal first cells (DFC) (Jiang et al., 2019). Thus, it
has been established that migrasomes play an important role in the
development of organisms and that migrasomes are signaling
organelles that can provide specific biochemical information to
coordinate organ morphogenesis. The release of exosomes from
cranial neural crest cells in the chick embryo promotes their
directional migration and velocity (Gustafson et al., 2022), and
monocytes deposit migrasomes rich in pro-angiogenic factors to
promote angiogenesis (Zhang et al., 2022). More and more studies
have focused on the role of migrasomes in embryonic development
in different animals.

Other cells derived from the monocytic lineage, such as
osteoclasts (OC), play key roles in bone development, bone
remodeling, and fracture healing (Kylmaoja et al., 2016; Yahara
et al., 2022). Studies of the timing and properties of RANKL-
stimulated OC differentiation have revealed the appearance of
migrasome-like vesicles along filopodia when mononuclear
preosteoclasts approach and fuse with other preosteoclasts
(Lampiasi et al., 2021). Migrasomes provide spatiotemporal
information for cell communication during cell migration (Ma
et al., 2015). These migrasomes generated during the migration
of mononuclear pre-OC may also mediate the migration and fusion
of pre-OC and subsequent OC differentiation (Lampiasi et al.,
2021) (Figure 3D).

EVs carry proteins and nucleic acids derived from parental cells
and can be used for early diagnosis of a variety of diseases (Drees
et al., 2021; Zhang et al., 2021; Sun et al., 2022). Migrasomes that are
detached outside the cell can play a role similar to that of EVs.
Podocytes release “damage-associated” migrasomes during
migration, and urinary migrasomes serve as potential diagnostic
markers of early podocyte injury and are a more sensitive indicator
of podocyte injury than proteinuria (Liu et al., 2020) (Figure 3B).
Thus, similar to EVs, purification analysis of migrasomes may
become a more intuitive indicator for clinical diagnosis of some
diseases, or play an earlier role in suggesting diseases.

Tumor cells are mostly migratory and invasive, and the
studies that have been carried out in glioblastoma have shown
the broad prospects of migrasomes in the field of cancer, and the
first pan-cancer analysis of migrasomes has found that they play
an important role in tumor development and immune escape
(Qin et al., 2022). High expression of migrasomes is associated
with poor prognosis in cancer patients and may lead to poor
patient survival (Qin et al., 2022). Therefore, aberrant migrasome
expression may serve as one of the evaluation indicators for
predicting pan-cancer in humans. In the case of pancreatic
cancer, migrasome are rich in chemokines such as CXCL5 and
cytokines such as TGF-β1, which can be released into the
surrounding environment to recruit immune cells and induce
their differentiation into immunosuppressive and carcinogenic

phenotypes, further contributing to malignant biological
functions and immune escape of pancreatic cancer (Zhang
et al., 2020).

It was mentioned above that the migrasomes play a role by
releasing intracellular material after rupture or phagocytosis.
Proposed cancer nanodrug therapies utilize nanoparticles to form
shells on RFs and migrasomes (Cheng et al., 2022), thereby blocking
the recognition, endocytosis, and elimination of migrasomes by
surrounding tumor cells, potentially erring tumor metastasis
mechanically (Figure 3E).

Future studies will reveal the role of migrasomes in the disease
microenvironment and immune process. As migrasomes can
mediate intercellular material transfer like other EVs,
migrasomes, as vaccine or drug carriers, become potential
delivery agents of targeted drugs in the process of disease
prognosis and immunotherapy, to achieve the effect of precision
therapy (Figure 3F). Interestingly, unlike EVs, migrasomes display
directional and chemotactic properties when they do their job, such
as guiding immune cells along the correct path and direction.
Migrasomes released by neutrophils guide CD8+ T cells to the
site of influenza infection (Lim et al., 2015). This may suggest
that the characteristics of attracting immune cells of migrasomes
can be used to form new therapeutic ideas in tumors or
other diseases.

Migrasomes have shown an important role in cell-to-cell
communication of stem cells, and mesenchymal stem cells
(MSCs) associated migrasomes have the property of
chemotactic hematopoietic-derived cells (Deniz et al., 2023),
affecting embryonic development, and may provide new
insights into disease therapy. However, whether MSCs-
associated migrasomes affect the migration and/or retention of
metastatic cancer cells in the bone marrow and thus constitute
potential targets for cancer therapy remains to be evaluated. At
the same time, it remains to be seen whether the disease
microenvironment can affect the formation and role of
migrasomes. Finally, it remains to be evaluated whether
MSCs-associated migrasomes, like MSCs, have therapeutic
uses in post-transplant host tissues, such as
immunomodulatory properties.

10 Conclusion

In summary, our article reviews the facts that have been found in
migrasome studies (Table 2). As a kind of organelle, migrasomes
play an important role in cell homeostasis. In addition, intercellular
communication is crucial in multicellular organisms. As a kind of
organelle widely present in migrating cells, it has profound
significance in revealing how cells interact with each other.
Recent studies have shown that migrasomes play an important
role in the physiological process of the body, the occurrence and
development of diseases, as well as the diagnosis and prognosis of
diseases. Several methods for isolation, identification, and
observation of migrasomes have been proposed. Given the
widespread existence of cell migration in the physiological and
pathophysiological processes of the body, we believe that
continued research on the migrasome will reveal its role in more
fields in the future.
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