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Ion channels are integral membrane proteins mediating ion flow in response to
changes in their environment. Among the different types of ion channels
reported to date, the super-family of TRP channels stands out since its
members have been linked to many pathophysiological processes. The
family comprises 6 subfamilies and 28 members in mammals, which are
widely distributed throughout most tissues and organs and have an
important role in several aspects of cellular physiology. It has been
evidenced that abnormal expression, post-translational modifications, and
channel trafficking are associated with several pathologies, such as cancer,
cardiovascular disease, diabetes, and brain disorders, among others. In this
review, we present an updated summary of the mechanisms involved in the
subcellular trafficking of TRP channels, with a special emphasis on whether
different post-translational modifications and naturally occurring
mutagenesis affect both expression and trafficking. Additionally, we
describe how such changes have been associated with the development
and progress of diverse pathologies associated with the gain or loss of
functional phenotypes. The study of these processes will not only
contribute to a better understanding the role of TRP channels in the
different tissues but will also present novel possible therapeutic targets in
diseases where their activity is dysregulated.
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Introduction

The super-family of TRP ion channels

The TRP superfamily of ion channels is composed of 28 members that are subdivided
into six subfamilies in mammals. TRP channels are characterized by their low sequence
homology and family clustering based on overall structural similarities (Clapham, 2003;
Clapham et al., 2003; Venkatachalam and Montell, 2007; Cabezas-Bratesco et al., 2022).

The different TRP subfamilies are TRPC (canonical), TRPV (vanilloid), TRPM
(melastatin), TRPA (ankyrin), TRPP (polycystin), and TRPML (mucolipin) (Ramsey
et al., 2006). These families can be divided into two large groups, where TRPC, V, M,
and A form the Class I group while polycystins and mucolipins form Class II group of TRP
channels (Venkatachalam and Montell, 2007). Here, we will focus on the Class I type
expressed in humans.
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The first highlights in the discovery of TRP channels originated
from observations of a phenotypic characteristic in a mutant strain
of the fruit fly Drosophila (Cosens and Manning, 1969), where this
mutant strain exhibited abnormal responses to light stimuli,
indicating potential involvement of specific genes in sensory
transduction processes. It was not until 1989 that Montell and
Rubin assigned an identity using cDNA libraries obtained from
mRNA extracted from the heads of adult Drosophila. They managed
to identify the mRNA, which they named TRP (Montell and Rubin,
1989). Later, in 1992, they provided the first evidence that TRP
proteins function as ion channels (Hardie and Minke, 1992).

TRP channels are tetrameric, non-selective, cation permeating
channels structurally similar to voltage-gated potassium channels
(Kalia and Swartz, 2013). Each TRP channel protomer comprises six
transmembrane segments (S1–6), a pore region between S5 and S6,
and intracellularly located N- and C-terminal domains, reviewed in
(Cao, 2020; Zhang et al., 2023).

These channels can form homotetramers and/or
heterotetramers depending on whether the subunits are identical
or present one or more subunits from other TRP channels (Nilius,
2007; Gaudet, 2008; Cabezas-Bratesco et al., 2022). Furthermore,
these channels interact with several accessory proteins that can
regulate their expression and sub-cellular localization
(Moiseenkova-Bell and Wensel, 2011; Cabezas-Bratesco et al.,
2022; Cai and Chen, 2023).

Different mechanisms can regulate TRP channels, but in this
review, we will focus on regulating the amount of TRP ion channels
in the cell surface or trafficking to/from the plasma membrane
(Royle and Murrell-Lagnado, 2003). In this context, the localization
of an ion channel at the cell surface is determined partly by the
balance between its synthesis and degradation, which occurs on a
relatively slow time scale, as well as by its constitutive and regulated
trafficking mechanisms (Bezzerides et al., 2004; Ambudkar, 2007;
Dong et al., 2010; Toro et al., 2011). One of the main regulatory
mechanisms of ion channels involves modulating the number of
channel molecules expressed at the cell surface, either through the
synthesis of new channels or the degradation of existing ones.
However, if rapid regulation is needed, it can be achieved by
either inserting or removing already synthesized channels stored
in intracellular vesicles, which makes trafficking an important
mechanism for regulating the activity of ion channels in a rapid
fashion (Royle and Murrell-Lagnado, 2003). It is known that the
expression of surface proteins can be regulated in various ways, one
of which might be due to an increase in protein retention through its
interaction with scaffold proteins during or after their insertion into
the plasma membrane (Altschuler et al., 2003; Yu et al., 2011; Zhao
et al., 2015; Van den Eynde et al., 2021).While the surface expression
of ion channels requires the fusion of transporting vesicles mediated
by the exocytic pathway, their internalization mechanisms require
the activation of endocytic pathways (Royle and Murrell-Lagnado,
2003; Estadella et al., 2020).

Concerning the endocytosis of ion channels, the mechanism
relies on various proteins and lipids that are present in specific
domains of the plasma membrane, such as clathrin and caveolin, the
soluble N-ethylmaleimide-sensitive factor attachment receptor
protein (SNARE), or phosphoinositides such as PIP2, (Jahn et al.,
2003; Laude and Prior, 2004). Different studies have shown that TRP
channels traffic to specific cell regions to perform their function in

polarized cells such as in the kidney, gastrointestinal tissue, or
neurons. However, the mechanisms involved in this specific
destination are still unclear for the most part (Altschuler et al.,
2003; Yu et al., 2011; Zhao et al., 2015; Van den Eynde et al., 2021).
Thus, a better understanding of the differential trafficking of these
proteins could explain, for example, how TRPC6 reaches the
basolateral and apical membranes of polarized epithelial cells.
Also, TRPC3 is present on the apical side and TRPC1 is found
mainly on the basolateral membrane (Singh et al., 2001;
Bandyopadhyay et al., 2005; Goel et al., 2007).

This review will focus on the mechanisms reported for the
trafficking and surface localization of the different class I TRP
channels in mammalian cells, providing insights into the proteins
involved in their subcellular targeting and trafficking. Moreover, as
defects in the localization of ion channels have often been linked to
the development of several pathologies, we will also provide an
overview of diseases that have been related to the changes in the
localization of these channels.

The TRPC subfamily of ion channels, insights
into their trafficking and physiological
significance

The TRPC channel subfamily comprises seven members in
mammals (TRPC1-7). TRPC2 is a human pseudogene and,
therefore, was not considered in this review. Like other members
of the TRP channel family (TRPA and TRPV), TRPC channels
feature ankyrin repeat sequences within their N-terminal domain.
Additionally, like the TRPM subfamily, these channels possess a
proline-rich TRP structural domain located in the C-terminal
region, close to the channel’s sixth transmembrane segment. On
the other hand, in the N-terminal portion are three or four ankyrin
repeats depending on the channel and a coiled-coil domain (Philipp
et al., 2000; Lepage et al., 2006).

Like other ion channels, TRPC channels can form heterotetramers.
For example, the TRPC1 channel can co-assemble with TRPC3-TRPC7
(Wu et al., 2004). TRPC channels can be activated through different
mechanisms, such as Gq/11 receptors or receptor tyrosine kinase (RTK)
downstream of the phospholipase C pathway (Trebak et al., 2007). Once
phospholipase C (PLC) is activated, TRPC3/6/7 channels are activated by
diacylglycerol (DAG) independently of protein kinase C (PKC),
indicating that DAG mediates their physiological activation (Hofmann
et al., 1999; Ma et al., 2000; Venkatachalam et al., 2002). On the other
hand, TRPC1/4 and 5 channels are activated by receptor-induced PLC
activation and are not responsive to DAG (Hofmann et al., 1999;
Venkatachalam et al., 2003).

The function of TRPC channels is determined by their
interactions with several proteins that affect their regulation,
trafficking, and scaffolding, in addition to their effects on other
downstream cellular processes (Ong and Ambudkar, 2011). It has
been proposed that these interactions determine their localization
and function in specialized plasma membrane microdomains (Ong
and Ambudkar, 2011). TRPC channels have various conserved
protein-protein interaction motifs in the N- and C-terminal
regions, together with those that interact with WW-repeat
domains, Cav1-scaffolding domains, PDZ-domains, and lipids
such as PIP2. Moreover, they have ankyrin repeats and numerous
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coiled-coiled regions that appear particularly important in the
assembly of the channels and their plasma membrane
localization. Numerous proteins such as Homer, STIM1,
Caveolin, NHERF, and PI3K, interact with specific TRPC
channels and regulate their surface expression and channel
activity (Table 1). Any alterations in these domains and
interactions can result in dysregulation of the surface expression
of the channels, contributing to the development of pathologies,
reviewed in (Englisch et al., 2022).

TRPC1

TRPC1 is expressed in a large range of cell types and tissues.
TRPC1 was originally found in the fetal brain, liver, and kidney
tissues, as well as the adult heart, testes, ovaries, and brain (Wes
et al., 1995). After these first descriptions, different groups have
found the channel to be broadly expressed in mammalian tissues
(Vazquez et al., 2004a; Beech, 2005; Ramsey et al., 2006; Ambudkar,
2013; Dietrich et al., 2014). Up to this point, TRPC1 performs a role
in intracellular Na+ and Ca2+ homeostasis and although its function
is not entirely clear (Hoth and Penner, 1992; Feske et al., 2006; Vig
et al., 2006; Dietrich et al., 2014).

The trafficking of TRPC1 channels is controlled by several
mechanisms involving interactions with lipid modifications,
scaffolding proteins, and post-translational modifications
(Ferrandiz-Huertas et al., 2014a). For instance, the interaction
of TRPC1 with the scaffolding protein Homer has been shown to
support its transfer to the plasma membrane, whereas
palmitoylation of TRPC1 channels is involved in regulating
their permanence and localization in the plasma membrane
(Kiselyov et al., 1998; Torihashi et al., 2002; Yuan et al., 2003;
Ambudkar et al., 2004). Moreover, TRPC1 localization is
regulated by remodeling of the cytoskeleton through
interaction with several proteins, including β-tubulin, IP3
receptor, calmodulin (CaM), PLC, and several other proteins
(Clark et al., 2008). TRPC1 interacts with caveolin-1 through the
C- and N-terminal domains. This interaction seems relevant in
assembling a signaling complex localized in lipid rafts, important
for regulating Ca2+ signaling (Sundivakkam et al., 2009).

The expression of an N terminal-truncated TRPC1 or a
dominant-negative caveolin mutant prevents the TRPC1 trafficking
to the plasma membrane affecting Ca2+ influx associated with
direct activation of TRPC1 by agonists or passive store depletion.
Additionally, in endothelial cells, trafficking of TRPC1 to the
membrane occurs following thrombin stimulation (Mehta et al.,
2003). Following activation, TRPC1 assembles in a complex with
the IP3R and Ras homolog family member A (RhoA), a protein
essential for the remodeling of the cytoskeleton (Liu et al., 2000;
Lockwich et al., 2000; Brazer et al., 2003; Isshiki and Anderson,
2003; Mehta et al., 2003; Ambudkar et al., 2004; Brownlow et al.,
2004; Bollimuntha et al., 2005). Impairments in TRPC1 channel
trafficking have been related to various diseases, including cardiac
hypertrophy. In ventricular myocytes, TRPC1 colocalized with
sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2),
an established marker of sarcoplasmic reticulum (SR), and
sarcomeric α-actinin, which is a marker of the Z-line of the
cardiomyocytes (Hu et al., 2020).

In this context, mutations in the TRPC1 gene have been identified
in patients with familial essential hypertension (Jiang et al., 2014).
Moreover, the abdominal aortic-banded model (AAB) in animals
generates an upregulation of TRPC1 expression and an increased
store-operated calcium entry (SOCE) in hypertrophied
cardiomyocytes. In contrast, the knockdown of TRPC1 decreased
SOCE. In this study, cardiomyocytes were treated with d-amino acid
peptide HYD1 (MTI-101), which induces trafficking of TRPC1 to the
membrane. Co-immunoprecipitation studies indicate that MTI-101
treatment induces the formation of a TRPC1- stromal interaction
molecule 1 (STIM1) complex (Gebhard et al., 2013). This influx of
Ca2+ activates the SOCE pathway and allows TRPC1 trafficking and
insertion into the plasmamembrane. Similar observations weremade in
NCI-H929 and U266 myeloma cell lines where aberrant trafficking of
TRPC1 channels has been linked to the growth andmetastasis of tumor
cells (Gebhard et al., 2013; Myeong et al., 2018; Elzamzamy et al., 2020;
Elzamzamy et al., 2021). Overall, the proper trafficking of
TRPC1 channels to the membrane is crucial for its function in
SOCE, and defects in trafficking can have profound effects on
cellular physiology and human health.

TRPC3

TRPC3 is a non-selective cation permeable channel that
performs a critical role in several physiological activities,
including cardiac hypertrophy, vascular smooth muscle
contraction, and insulin secretion among others (Vazquez
et al., 2004a). Various factors, including post-translational
modifications and the activity of molecular chaperones
through protein-protein interactions control this process (Li
et al., 1999; Gonzalez-Cobos and Trebak, 2010). The proper
localization of TRPC3 channels to the plasma membrane is
vital for their function (Xia et al., 2015; Oda et al., 2017; Fan
et al., 2018).

TRPC3 can be found assembled in a multimeric protein complex
with key Ca2+ signaling proteins such as PLCβ, G alpha-q (Gαq)
subunit of heterotrimeric G protein (Gαq/11), Inositol trisphosphate
receptor (IP3Rs), CaM and PLCγ (Kiselyov et al., 1998; Lockwich
et al., 2001; Zhang et al., 2001; Patterson et al., 2002; Wedel et al.,
2003). However, the precise mechanisms governing
TRPC3 trafficking to the plasma membrane remain unresolved.

Singh and colleagues proposed that agonist-induced activation
of TRPCs also triggers exocytotic trafficking of the channel. They
observed that carbachol (CCh) induces a vesicle-associated
membrane protein 2 (VAMP-2)-dependent increase in the
level of TRPC3 in the plasma membrane, independently of
intracellular calcium concentration. TRPC3-containing vesicles
were found to be positioned immediately beneath the plasma
membrane, likely pre-docked to specific sites through the action
of docking and scaffolding proteins. Moreover, they suggested
that the surface expression of TRPC3 is regulated by both a
recycling-type trafficking mechanism and a regulated event
stimulated by CCh (Singh et al., 2004). Furthermore, in 2008,
Bandyopadhyay and colleagues reported that the receptor for
activated C-kinase-1 (RACK1) serves as a scaffold for localizing
TRPC3 in the plasma membrane of cells. This interaction plays a
crucial role in recruiting the channel into an IP3R-associated
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signaling complex and facilitating its insertion into the cell
surface membrane upon stimulation by agonists
(Bandyopadhyay et al., 2008).

In this context, CCh-induced exocytic trafficking of TRPC3 has
been probed by surface biotinylation labeling showing that channel
externalization occurs in the presence of the calcium chelator 1,2-bis
(2- aminophenoxy) ethane-N,N,N,N-tetraacetic acid (BAPTA),
reducing the possibility of a secondary effect by the Ca2+

mobilizing activity of the agonists (Cayouette et al., 2004; Smyth
et al., 2006). On the other hand, several studies propose that
TRPC3 trafficking is not mandatory for channel activation. They
hypothesize that channel activation by second messengers,
including DAG or conformational coupling of TRPC channels
with the IP3R, could lead to secretion-like trafficking of channels
to the plasma membrane (Vazquez et al., 2004b; Putney et al.,
2004). Moreover, Smyth and colleagues demonstrated that Gd3+

binds to TRPC3 channels at an extracellular site, causing
impaired internalization. Gd3+ effectively “locks” TRPC3 in
the plasma membrane, favoring constitutive exocytosis over
endocytosis and resulting in a swift accumulation of TRPC3 in
the membrane. Furthermore, they observed an elevation in
peripheral TRPC3 localization induced by epidermal growth
factor (EGF), as assessed by total internal reflection
fluorescence (TIRF) microscopy. This suggests that EGF may
similarly stabilize TRPC3 in the plasma membrane by impeding
its endocytosis, although the precise mechanism remains unclear
(Smyth et al., 2006). Nonetheless, it is increasingly evident that
the constitutive cycling of plasma membrane proteins is a
fundamental mechanism for regulating surface membrane
proteins (Royle and Murrell-Lagnado, 2003). TRPC3 also
interacts with caveolin-1, a marker for caveolae, and
disruption of the actin cytoskeleton deregulates the
localization of caveolin-1 and TRPC3 at the plasma membrane
(Ma et al., 2000; Lockwich et al., 2001).

Additionally, it has been reported that the N-terminal of TRPC3,
specifically in amino acids 123-221, interacts directly with VAMP-2.
VAMP-2 is located in the membrane of intracellular trafficking
vesicles and mediates the fusion of vesicles to the plasma membrane,
promoting the insertion of TRPC3 in the plasma membrane (van
Rossum et al., 2000; Singh et al., 2004). Up to this point, the
involvement of SNARE proteins in regulating TRPC3 localization
at the plasma membrane is still not completely clear.

Importantly, atypical trafficking of TRPC3 channels can lead to
diseases, including cardiac hypertrophy, hypertension, and
Alzheimer’s disease (Tano et al., 2010; Smedlund et al., 2012;
Tiapko and Groschner, 2018). It has been described that in cardiac
hypertrophy, excessive trafficking of TRPC3 channels can lead to
enhanced Ca2+ influx and stimulation of downstream signaling
pathways like nuclear factor of activated T-cells (NFAT) and
mammalian target of rapamycin (mTOR), leading to the
development of hypertrophy (Brenner and Dolmetsch, 2007).
These channels have been associated with regulating blood
pressure, and changes in TRPC3 trafficking have been linked to
pulmonary hypertension (Tano et al., 2010). In the brain, it is
involved in the pathogenesis of Alzheimer’s disease, where Aβ
peptides, which are linked to the development of Alzheimer’s
disease, correlate with TRPC3-dependent calcium influx, leading to
neurotoxicity (Montecinos-Oliva et al., 2014; Wang L. et al., 2017).

TRPC4/5

TRPC4/5 channels are ubiquitously expressed in various tissues.
They play a role in calcium signaling and ion homeostasis in various
relevant physiological processes, including taste and vision,
microvascular permeability, vasorelaxation, gastrointestinal
motility, and neurotransmitter release (Fujita et al., 2017; Kim
et al., 2019). Like many other membrane proteins, TRPC4 is
synthesized in the ER, undergoing post-translational
modifications, including glycosylation and phosphorylation. Then
it is shipped to the Golgi apparatus, where it is further modified and
sorted for delivery to the plasma membrane (Duan et al., 2018).
Moreover, TRPC channels are particularly sensitive to mutations
and deletions. These modifications may lead to reduced trafficking
to the plasma membrane and their retention in the ER or Golgi (Xu
et al., 2001; van de Graaf et al., 2003; Wedel et al., 2003; Andrade
et al., 2005).

Additionally, two different studies showed that TRPC4 and
TRPC5 interact with PDZ-domain-containing proteins such as
the Na+/H+ exchanger regulatory factor (NHERF) and the gap
junction protein zona occludens 1 (ZO-1) via their C-terminal
PDZ-interacting domains (Weinman et al., 1995; Tang et al.,
2000). The interface with NHERF facilitates the association of
TRPC4 and TRPC5 with PLCβ, which, in turn, positively
regulates their surface expression (Mery et al., 2002). Moreover,
cellular stimulation by EGF activates protein tyrosine kinases,
leading to the specific phosphorylation of two tyrosine residues
located at the C-terminal end of TRPC4 (Mery et al., 2002). Such
post-translational modification boosts the interaction of TRPC4 and
NHERF and the plasma membrane expression of the channel (Mery
et al., 2002).

TRPC4 is regulated by the growth factor receptor signaling
proteins, such as ezrin, in addition to NHERF binding proteins,
which regulate the vesicular trafficking of TRPC4 (Mery et al., 2002).
In this context, it has been observed that TRPC5 is trafficked to
certain sites in hippocampal neurons and that TRPC5 homomers
are found in growth cones (Greka et al., 2003). Trafficking of
TRPC5 to the growth cone is facilitated via attaching to the
exocytic protein stathmin 2 (a protein associated with ALS),
where Ca2+ influx through the channel prevents the extension of
growth cones. On the other hand, SNARE proteins interact with the
TRPC5 trafficking complex (Greka et al., 2003). TRPC5 channels are
localized in vesicles, and fast trafficking of these vesicles to the
plasma membrane is triggered in response to stimulation with EGF
and nerve growth factor (NGF) and a faint response to brain-derived
neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-
1). Integration of the channel into the plasma membrane also
involves Phosphoinositide 3-kinase (PI3K) and the GTPase Rac
Family Small GTPase 1 (Rac1), as well as PI4P-5 kinase (Bezzerides
et al., 2004). Additionally, TRPC5-including vesicles seem to be
retained in a subplasma membrane region from where they are
rapidly recruited to the membrane (Ambudkar, 2013).

Mery et al. (2002) showed that the proximal N-terminal region
of TRPC4 (amino acids between 23 and 29 in the mice ortholog) is
vital for membrane insertion of TRPC4 channels. Altering this
domain might cause a decrease in trafficking to the plasma
membrane by preventing either the appropriate folding or
heterotetrameric assembly with wild-type TRPC4 (Mery et al.,
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2002). Myeong et al. (2014) demonstrated that the N- and C-terminal
regions interact with each other to make a tetrameric structure and that
PI(4,5)P2 is a strong candidate involved in the interaction with the
membrane-targeting domain at the N terminus of TRPC4/5
heteromers. They reported that the N terminal (amino acids
98–124) and C-terminal (amino acids 700–728) were necessary for
the tetrameric assembly of TRPC4 (Myeong et al., 2014; Hong et al.,
2015). The interaction between the scaffold ERM-binding
phosphoprotein 50 (EBP50) (the NHERF human ortholog) and the
membrane-cytoskeleton adaptors can attach TRPC4 to the cytoskeleton
and prevent its internalization. NHE3 kinase A regulatory protein
(E3KARP), a member of the ezrin/radixin/moesin (ERM) family,
plays an active role in the cell surface delivery of TRPC4 by
enabling the translocation of TRPC4-bearing vesicles from the
cortical actin layer to the plasma membrane. Removal of the last
three C-terminal amino acids in TRPC4 blocks the interaction with
EBP50 and alters the channel’s localization and surface expression
(Mery et al., 2002). In the same study, the authors suggested that
TRPC4 can reach the submembranous compartment but is not
delivered to the cell surface (Mery et al., 2002).

Dysregulation of TRPC4/5 trafficking and/or function can lead to
various diseases (Myeong et al., 2014) in the brain (Mori et al., 1998;
Fowler et al., 2007), peripheral sensory neurons (Wu et al., 2008), and
gastrointestinal organs. Moreover, a few articles have implicated
TRPC4 in ocular diseases, including retinitis pigmentosa and
glaucoma (Yang et al., 2005; Reinach et al., 2015; Yang et al., 2022).
In retinitis pigmentosa, mutations in TRPC4 result in abnormal protein
trafficking to the plasmamembrane, leading to photoreceptor cell death
and vision loss. In glaucoma, the dysregulation of TRPC4 trafficking is
thought to contribute to the death of retinal ganglion cells, which leads
to optic nerve damage and vision loss (Yang et al., 2005; Reinach et al.,
2015; Yang et al., 2022).

TRPC4 is also associated with several cardiovascular diseases,
including cardiac hypertrophy, heart failure, and hypertension.
TRPC4 plays a crucial role in regulating the heart’s electrical
activity, and abnormal trafficking of TRPC4 can lead to
dysregulation of these processes. Mutations in the TRPC4 gene have
been associated with atrial fibrillation, Brugada syndrome, and long QT
syndrome, whereas TRPC5 has been linked to the development of
cardiac hypertrophy and heart failure, as well as pulmonary
hypertension (Watanabe et al., 2008; Camacho et al., 2015; Lüscher,
2015; Du et al., 2021). TRPC5 regulates Ca2+ signaling and vascular
smooth muscle tone, crucial cardiovascular physiology processes.
Impaired TRPC4 trafficking can lead to calcium overload in
cardiomyocytes, which dysregulates their function and can lead to
heart dysfunction. TRPC4 is also involved in regulating vascular smooth
muscle tone, and alterations in its activity can lead to increased blood
pressure and hypertension (Watanabe et al., 2008; Camacho et al., 2015;
Lüscher, 2015; Du et al., 2021).

TRPC4 has been implicated in several neurological disorders,
including multiple sclerosis and Parkinson’s disease, due to its
involvement in the regulation of calcium signaling and neuronal
excitability (Balbuena et al., 2012; Wang L.-K. et al., 2017; Enders
et al., 2020). On the other hand, TRPC5 has been linked to
depression, anxiety, and drug addiction (Yang et al., 2005;
Nazıroglu and Demirdas, 2015; Yang et al., 2015; Sharma and
Hopkins, 2019). Studies have shown that TRPC5 regulates the
release of neurotransmitters and modulates synaptic plasticity, which

are important processes in the pathogenesis of these disorders (Puram
et al., 2011; He et al., 2012). Recent studies have shown that
TRPC4 regulates the volume of airway epithelial cells, and its
dysfunction may contribute to the pathogenesis of cystic fibrosis
(Müller et al., 2022). TRPC5 is predominantly expressed in the renal
system and has been linked to the pathogenesis of several renal diseases,
including focal segmental glomerulosclerosis (FSGS), diabetic
nephropathy, and polycystic kidney disease (Zhou et al., 2017; Yu
et al., 2019; Walsh et al., 2021).

TRPC6

Several factors can affect the TRPC6 expression on the plasma
membrane of channels in non-excitable cells. For instance, the
stimulation of endogenous muscarinic receptors with CCh and the
depletion of intracellular calcium stores generate the translocation
of TRPC6 toward the plasma membrane (Cayouette et al., 2004).
There is still no clear evidence of the participation of SNARE
proteins in the trafficking of TRPC6. It has been reported that the
Human myxovirus resistance protein 1 (MxA), closely related to
the membrane-remodeling GTPase dynamin, interacts with
TRPC6 (Lussier et al., 2005). Among the proteins involved in
TRPC6 trafficking induced by DAG stimulation, the mammalian
uncoordinated-13 (Munc13) family of proteins participates in the
fusion of TRPC6-containing vesicles with the plasma membrane,
providing insights into the DAG-regulated vesicle fusion
mechanism (Xie et al., 2020).

Regarding the glycosylation of TRPC6, it has been described that
it is glycosylated in residues N474 and N561. The removal of
glycosylation in residue N561 is sufficient to convert it into a
constitutively active channel, while trafficking and surface
expression remain unaffected in glycosylation-deficient mutants
(Dietrich et al., 2003; Talbot et al., 2019).

As mentioned above, TRPC6 can form heterotetramers with other
members of the TRPC channel family. Three independent studies
observed that once activated, TRPC6 is translocated to the plasma
membrane along with TRPC3 (Cayouette et al., 2004; Singh et al., 2004;
Kim et al., 2006). In another study, HEK293 cells were stimulated with
CCh, resulting in the translocation of TRPC6 in the caveolae, which are
closely linked to vesicular traffic (Cayouette et al., 2004; Cayouette and
Boulay, 2007). Interestingly, this translocation mechanism is
independent of intracellular calcium increases (Stojilkovic et al., 2005).

Moreover, another mechanism involved in TRPC6 trafficking was
reported by Kanda et al. (2011), who demonstrated that
phosphorylation of a single residue (Y284 in the mice ortholog) is
required for channel surface expression. Moreover, a tyrosine to
phenylalanine mutation (Y284F) showed decreased expression on
the cell surface of both HEK293T cells podocyte cultures, suggesting
that the residue is necessary for PLC-γ1 binding (Kanda et al., 2011). In
addition, the authors observed that in podocytes, the nephrin protein
binds directly to TRPC6 after phosphorylation of Y284, suggesting that
a naturally occurring mutation in this position might be associated with
focal segmental glomerulosclerosis disease (FSGS) (Kanda et al., 2011).
Coincidently, Hagmann and colleagues (2018) have proposed that
phosphorylation at S14 in mice TRPC6 enhances channel
conductance by increasing the membrane expression of TRPC6
(Hagmann et al., 2018).
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TRPC7

The TRPC7 channel is the most recently identified member of
the TRPC family, and little is known about the mechanisms
governing its trafficking to the plasma membrane. Additionally,
there is not much information about naturally occurring
mutations that can affect the channel’s expression and/or
trafficking. Lussier et al. (2005) demonstrated through
different approaches, including GST-pull-down and co-
immunoprecipitation assays, that MxA interacts with the
second ankyrin-like repeat domain of TRPC7 and other TRP
channels. It has been proposed that MxA enhances channel
activity by regulating trafficking to the plasma membrane
(Lussier et al., 2005). However, this functional role seen in
other TRP channels has not been tested on TRPC7 yet.

Figure 1 shows a summary of the different proteins/molecules
involved in the regulation of the trafficking of TRPC channels to the
plasma membrane as were described in this section of the review.

The TRPM subfamily of ion channels,
insights into their trafficking and
physiological significance

The human TRPM subfamily is the largest among those belonging
to the superfamily of TRP channels and was named after the founding
member Melastatin (TRPM1) (Fleig and Penner, 2004). Since the first

description and cloning of TRPM1 in 1998 (Duncan et al., 1998), seven
more members have been added to this subfamily, which can be
grouped into four pairs based on their structural similarity (TRPM1/
TRPM3; TRPM2/TRPM8; TRPM4/TRPM5; and TRPM6/TRPM7)
(Cohen and Moiseenkova-Bell, 2014). As the rest of the TRP
channels, TRPMs are intrinsic membrane proteins with six
transmembrane domains that form functional tetramers. TRPMs
are widely expressed in the human body. Most TRPMs are Ca2+-
permeable cation channels, except for TRPM4 and TRPM5, which
are Ca2+-activated, non-selective, monovalent permeable cation
channels (Chen et al., 2019; Yamaguchi et al., 2019). The members
of the TRPM subfamily of ion channels are characterized by their
polymodal nature of activation as they are regulated by different
stimuli such as voltage, temperature, and the binding of ions,
lipids, or other ligands (Ramon et al., 2007; Diaz-Franulic
et al., 2021).

The TRPM subfamily has garnered greater attention due to its
reported involvement in several physiological processes, such as
taste transduction (Liu and Liman, 2003), temperature sensing
(McKemy et al., 2002; Brauchi et al., 2004), synaptogenesis and
neurite outgrowth (Abumaria et al., 2019), cell death (McNulty and
Fonfria, 2005), and regulation of vasculature (McNulty and Fonfria,
2005). Moreover, the abnormal expression and/or function of
TRPM channels has also been involved in a plethora of
pathological processes such as cancer (Hantute-Ghesquier et al.,
2018; Saldías et al., 2021), neurological disorders (Sita et al., 2018;
Lavanderos et al., 2020), kidney disorders (Hsu et al., 2007), and

FIGURE 1
TRPC channels and their trafficking regulators. Embedded in the plasma membrane is a monomeric subunit representing the various domains and
regions in TRPC channels. These include ANK (ankyrin repeats), CC (coiled-coil), TRP, which refers to the TRP box common to all TRP channels and a
calmodulin, and IP3R binding site (CIRB). The diagram shows a summary of the different regulators involved in the trafficking of TRPC channels.
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others (Jimenez et al., 2020). All this poses TRPM channels and their
regulation as important therapeutic targets.

In the following section, we will discuss the main mechanisms
involved in the trafficking of TRPM channels and how the
dysregulation of this process might trigger different pathologies.
Like TRPC channels, the trafficking of TRPM channels is regulated
by specific protein interactions summarized in Table 2.

TRPM1

TRPM1 received the name Melastatin due to its initial discovery
in the B16 mouse melanoma cell line (Duncan et al., 1998).
TRPM1 expression is not as ubiquitous as with other TRPM
channels. Its expression has been reported in the heart, brain,
skin, and retina (Fonfria et al., 2006; Oancea and Wicks, 2011).
As mentioned before, TRPM1 is involved in Melanoma progression,
where expression of TRPM1 inversely correlates with tumor
aggressiveness and tumor thickness (Deeds et al., 2000; Guo
et al., 2012). It has also been linked to disease-free survival in
patients with melanoma (Brozyna et al., 2017), suggesting that
TRPM1 may function as a metastatic suppressor. Additionally, it
has been reported that TRPM1 is the ion channel that initiates the
ON visual pathway in vertebrate vision in the eye (Koike et al., 2010;
Nakamura et al., 2010; Iosifidis et al., 2022). TRPM1 trafficking
mechanisms have not been fully described yet, but a few reports have
suggested possible mechanisms. Nakamura and colleagues showed
in ON bipolar cells that mutations R624C and F1075S lead to lower
expression in the dendritic tips and mislocalization of TRPM1,
which translates to stationary night blindness in patients. These
results suggest that these residues are important for the protein
trafficking of TRPM1 (Nakamura et al., 2010). Interestingly, the
metabotropic glutamate receptor 6 (mGluR6), specifically its
C-terminal region, appears to have an important role in the
correct localization of TRPM1 to the dendritic tips of
depolarizing bipolar cells, as the mGluR6 knockout and other
mutants show reduced to no expression of TRPM1 in this region
(Xu et al., 2012; Agosto et al., 2021). Moreover, it has been
demonstrated that nyctalopin also forms complexes with
TRPM1 and is necessary for the correct channel localization
(Cao et al., 2011). Additionally, another molecule that has been
involved in the trafficking of TRPM1 and the formation of its
complex with nyctalopin and mGluR6 is Leucine Rich Repeat,
Ig-Like And Transmembrane Domains 3 (LRIT3), which might
serve as a scaffold for the formation of this complex since the
knockout mouse model for this protein showed no localization of
TRPM1 at the dendritic spines of ON bipolar cells (Neuillé et al.,
2015; Hasan et al., 2019). These reports suggest that mutations in the
interacting residues of TRPM1 with proteins might result in channel
trafficking defects.

TRPM2

TRPM2 is a ligand-gated Ca2+-permeable non-selective cationic
channel. Despite having a structure that is very similar to the rest of
the TRPM subfamily, TRPM2 possesses a C-terminal Nudix
hydrolase 9 homologue (NUDT9-H) domain that serves as a

binding site for cytosolic adenosine diphosphate ribose (ADPR)
(Huang et al., 2018). The gating mechanism of TRPM2 channels
seems to require simultaneous co-activation by Calcium (Csanády
and Törocsik, 2009), PIP2 (Tóth and Csanády, 2012), and ADPR
(Perraud et al., 2001; Hara et al., 2002). Although TRPM2 contains
this NUDT9-H domain, it has little to no ADPR-degrading ability
and would only act as a regulatory ligand binding site (Iordanov
et al., 2016). In terms of expression, TRPM2 is nearly ubiquitous in
all human tissues and, thus, has been implicated in regulating several
physiological and pathological processes (Belrose and Jackson,
2018). TRPM2 plays an important role in migration and
chemokine release (Yamamoto et al., 2008). TRPM2 modulates
cell migration and invasion in neuroblastoma, and its expression
has been associated with poor patient prognosis (Bao et al., 2022),
whereas it regulates autophagy during replication of the Hepatitis B
virus (Chen et al., 2022). Moreover, it has also been involved in
regulating cell death in several cell models (Malko et al., 2019;
Zielinska et al., 2021) and as a potential therapeutic target for
treating neurological diseases (Sita et al., 2018; Malko et al., 2019).

About trafficking, the most studied regulatory mechanism of
TRPM2 is the effect that reactive oxygen species (ROS) have over its
localization. Reports have shown that ROS increase TRPM2 activity
(Ali et al., 2021) and treatments with either H2O2 or the non-opioid
analgesic acetaminophen (both leading to the production of ROS)
increase TRPM2 in the plasma membrane (Kheradpezhouh et al.,
2018). Moreover, Mei and Jiang reported that although they saw no
effect for the N-terminal coiled-coil domain of TRPM2 in the
trafficking of the channel, they could not discard a minor
contribution of this domain to the transport of the channel (Mei
and Jiang, 2009). Additionally, the expression of a short splicing
variant of TRPM2 decreased the channel’s activity, mostly by
decreasing the trafficking of the full-length channel to the plasma
membrane (Yamamoto et al., 2019).

TRPM3

TRPM3 is a Ca2+ permeable, non-selective cation channel
activated by heat and chemical activators which, interestingly,
shares certain homology with the heat sensitive TRPV channels
(Vriens et al., 2011). As with other TRPM channels, TRPM3 is
expressed in a wide variety of tissues in the body (Held et al., 2015),
with a relatively higher expression in the brain, spinal cord, sensory
neurons, pituitary, kidney and eye (Fonfria et al., 2006; Shaham
et al., 2013; Oberwinkler and Philipp, 2014). TRPM3 plays an
important role in pancreatic β-cells, where it regulates zinc
uptake (Wagner et al., 2010), and in the eye, where its mutations
lead to cataracts and glaucoma (Bennett et al., 2014; Zhou et al.,
2021). However, its most reported role is the one it plays as a
nociceptor in detecting noxious heat and developing inflammatory
heat hypersensitivity (Held et al., 2015; Mickle et al., 2015; Held and
Tóth, 2021).

The mechanisms involved in TRPM3 trafficking are not well
understood. However, we have some information from the few
works that have addressed the topic. It has been reported that an
18 amino acid sequence encoded by exon 13 of the trpm3 gene
regulates channel insertion in the plasma membrane and is key for
sustaining TRPM3 activity (Frühwald et al., 2012). Moreover, it has
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been recently proposed that mutations in the N-terminal part of the
protein, specifically the L769V mutation, affect trafficking to the
plasma membrane and result in a non-functional channel (Burglen
et al., 2023). Additionally, it has been reported that the activating
transcription factor 4 (ATF4), a member of the CREB family of
proteins, regulates kinesin family member 17 (KIF17) -mediated
TRPM3 trafficking by interacting with KIF17-TRPM3 complex and
modulating dorsal root ganglia (DRG) neuron response to heat
stimuli (Xie et al., 2021).

TRPM4

TRPM4 differs from most other TRP channels by not being
permeable to Ca2+ but only to monovalent cations (showing a high
selectivity for Na+). However, one of its main features is that
intracellular Ca2+ can directly activate it (Launay et al., 2002;
Ullrich et al., 2005). TRPM4 is expressed widely throughout the
different body tissues, although several reports have shown a higher
expression level in the colon, heart, and prostate (Launay et al., 2002;
Fonfria et al., 2006; Syam et al., 2016; Borgstrom et al., 2021).
Moreover, TRPM4 expression has been reported in several other cell
types, such as immune cells, neuronal tissue, and pancreatic β-cells
(Cheng et al., 2007; Barbet et al., 2008; Schattling et al., 2012). This
wide expression pattern underlines the important role this channel
might play in several physiological and pathological processes.
TRPM4 has been reported to play a role in pathologies such as
different types of cancer (Rivas et al., 2020; Borgstrom et al., 2021;
Wang et al., 2022), and cardiovascular (Stallmeyer et al., 2012; Syam
et al., 2016; Wang et al., 2018) and immune system-associated
diseases (Barbet et al., 2008; Schattling et al., 2012; Serafini
et al., 2012).

Trafficking mechanisms of TRPM4, unlike other TRPM
channels, have been more widely studied in recent years. Cho
et al. (2014) demonstrated that membrane targeting of the
channel is regulated by interaction with the 14-3-3γ protein
through the N-terminal region of TRPM4 and that S88 in the
human ortholog, which might be a target of phosphorylation, is
key for 14-3-3γ binding and anterograde trafficking of TRPM4 (Cho
et al., 2014). On the other hand, in patients with human progressive
familial heart block type I, the E7K mutation at the N-terminal
domain caused attenuated deSUMOylation of the channel, which
impaired channel endocytosis and led to an increased activity of
TRPM4 due to an elevated concentration of the channel in the
plasma membrane (Kruse et al., 2009). Interestingly, several other
mutations showed a similar effect in patients with isolated cardiac
conduction. Mutations R164W, A432T, and G844D enhance
TRPM4 current density due to increased channel abundance in
the membrane caused by SUMOylation defects and impaired
endocytosis (Liu et al., 2010). Moreover, in patients with
congenital or childhood atrioventricular block, mutations A432T
and A432T/G582S showed decreased protein expression at the cell
membrane, whereas G582S alone showed increased membrane
expression of the channel (Syam et al., 2016). Although
N-glycosylation also plays an important role in the surface
expression and trafficking of ion channels, its role in
TRPM4 trafficking is somehow controversial. Several reports
showed that the N988 residue in rats and N992/N932 residues in

humans are glycosylation sites for TRPM4, but these mutations did
not affect the surface expression of the channel but rather modulated
its stability (Woo et al., 2013; Syam et al., 2014). Interestingly,
phosphorylation also appears to have a role in TRPM4 trafficking.
Phosphorylation of S839 is necessary for basolateral localization of
TRPM4 in epithelial cells (Cerda et al., 2015). Other mutations have
been reported to impact TRPM4 trafficking without an apparent
change in the electrophysiological properties of the channel, such as
those described in Brugada syndrome, where P779R and K914X
showed a decreased membrane expression whereas T873I and
L1075P showed an increase in membrane localization of TRPM4
(Liu et al., 2013). Another mechanism reported for
TRPM4 anterograde trafficking is its interaction with end-
binding (EB) proteins. Blanco et al. (2019) showed that
mutations in the EB binding motif in TRPM4 prevented its
interaction with EB proteins, which led to a reduced expression
of the channel in the plasma membrane and retention in the ER
(Blanco et al., 2019). Interestingly, TRPM4 localization in the
plasma membrane is also modulated by ROS, given that
hydrogen peroxide treatment lowers the channel density in
mouse cortical collecting duct cells (Wu M. et al., 2016).

TRPM5

TRPM5, like TRPM4, is a nonselective monovalent cation channel
impermeable to divalent cations activated by Ca2+ and has a high
permeability for Na+ (Prawitt et al., 2003). However, unlike TRPM4,
which is widely expressed in several tissues and organs,
TRPM5 expression is more limited to highly specialized cells. For
example, high expression of the channel has been reported in β cells
from pancreatic islets of Langerhans, where it regulates the frequency of
Ca2+ oscillations that lead to glucose-stimulated insulin secretion by β-
cells (Brixel et al., 2010; Ketterer et al., 2011). Moreover, its most iconic
role is played in taste-sensing receptor cells, where it is co-expressed with
other receptors and signaling molecules involved in the process of bitter,
sweet, and umami stimuli detection (Perez et al., 2002; Zhang et al., 2003;
Dutta et al., 2018). TRPM5 expression has also been reported in other
chemosensory cells in the olfactory, respiratory, and digestive systems,
suggesting a broader role in chemosensory processes (Kaske et al., 2007;
Bezencon et al., 2008; Lin et al., 2008). The available information
regarding TRPM5 trafficking is insufficient to relate this process to
specific cellular or tissue failure. However, unlike what has been reported
for surface proteins (Khanna et al., 2001), the N-glycosylation would not
be involved in the trafficking of TRPM5 to the plasma membrane but
rather regulates channel function (Syam et al., 2014).

TRPM6

TRPM6 is a Ca2+ permeable ion channel, which is also highly
permeable to Mg2+ (Schlingmann et al., 2007). Interestingly, it exhibits
an unusual feature, as it contains a transmembrane segment fused to a
cytosolic α-type serine/threonine protein kinase domain, which allows it
to act as a chanzyme (Chubanov et al., 2018). TRPM6 expression is
more restricted than most TRPM channels, with the highest levels of
expression reported in the kidney and the gastrointestinal tract, where it
is, interestingly, regulated by dietary magnesium (Groenestege et al.,
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2006; Lameris et al., 2015). The most important role of TRPM6 is
related to the homeostasis of systemic Mg2+ homeostasis, where
different mutations and dysregulation of its activity have been
widely reported in patients with different forms of hypomagnesemia
(Schlingmann et al., 2002; Chubanov et al., 2007; Lainez et al., 2014)
while also being important for the correct functioning of colonic
epithelial cells (Luongo et al., 2018).

It has been reported that patients with hypomagnesemia with
secondary hypocalcemia present the S141Lmutation, which causes a
decrease in the expression of TRPM6 at the plasma membrane
(Chubanov et al., 2004). Moreover, Bouras et al. (2020) showed that
short-term exposure to type 2 diabetes mellitus drug metformin
(1,1-dimethylbiguanide) increased TRPM6 expression in the plasma
membrane while, interestingly, long-term exposure significantly
decreased the plasma membrane expression of the channel
(Bouras et al., 2020). Another interesting mechanism reported for
TRPM6 trafficking suggests activating the EGF receptor increased
TRPM6 trafficking to the plasma membrane through the src kinase-
Rac1 pathway (Thebault et al., 2009). Moreover, Furukawa et al.
suggested that Tumor necrosis factor α (TNFα) could regulate
TRPM6 trafficking to the plasma membrane (Furukawa et al.,
2017). Additionally, although phosphorylation by the close
relative TRPM7 and TRPM6/TRPM7 multimers does not appear
to alter TRPM6 trafficking (Brandao et al., 2014), it appears
TRPM7 is still necessary for the correct trafficking of TRPM6 to
the plasma membrane (Schmitz et al., 2005; Shari et al., 2010).

TRPM7

TRPM7, although being discovered independently, is very
similar in structure and function to its homolog TRPM6, being
also aMg2+/Ca2+ permeable ion channel (Nadler et al., 2001; Runnels
et al., 2001; Schmitz et al., 2003). As with TRPM6, it contains the
unique C-terminal serine/threonine protein kinase domain, which
shares a low homology with other kinases and is important for the
autoregulation of channel activity (Schlingmann et al., 2007;
Cabezas-Bratesco et al., 2015; Chubanov et al., 2018). Unlike
TRPM6, TRPM7 is widely expressed in many tissues and organs
(Nadler et al., 2001; Runnels et al., 2001) but a higher expression has
been reported in the heart and kidney (Montell, 2005).

Given its ubiquitous expression, TRPM7 has been involved in
several physiological and pathological processes (Visser et al.,
2014). For example, in the brain, it regulates synaptic
transmission and plasticity, while on the other hand, it also
regulates neuronal death following ischemia or neuron injury
(Aarts et al., 2003; Krapivinsky et al., 2006; Abumaria et al.,
2018). In this context, the fusion of synaptic-like vesicles in
PC12 cells is somewhat modulated by vesicular TRPM7 activity
(Brauchi et al., 2008). Moreover, it has been reported in several
types of cancer, such as breast (Guilbert et al., 2013) and ovarian
cancer (Wang et al., 2014), as a metastasis promoter. In contrast, in
the heart, it has been involved in forming cardiac fibrosis (Yu
et al., 2014).

In the context of TRPM7 trafficking, its most studied regulator is
its close homolog, TRPM6. It has been reported that the
TRPM6 kinase domain can phosphorylate TRPM7 in serine
residues, resulting in altered TRPM7 trafficking. However,

TRPM7 phosphorylation of TRPM6 showed no effect on its
localization (Schmitz et al., 2005; Brandao et al., 2014).

Interestingly, another regulator of TRPM7 trafficking is
TRPM7 itself. It has been shown that S1360 of TRPM7 is a key
residue for autophosphorylation, mediating both TRPM7 stability
and intracellular trafficking. Other important autophosphorylation
residues in the channel were S1403 and S1567, whose
autophosphorylation by TRPM7’s kinase activity regulates its
interaction with the 14-3-3θ chaperon protein, which regulates
channel trafficking (Cai et al., 2018).

TRPM7 channels experience two types of trafficking. The complete
gene product traffics to the plasma membrane, where a proteolytic
cleavage product containing the kinase domain (M7CKs) is generated
and translocated to the nucleus. These fragments establish interactions
with proteins composing chromatin remodeling complexes
(Krapivinsky et al., 2014). This mechanism is relevant during
development (Desai et al., 2012), and the transient overexpression of
mouse TRPM7 in HEK293 cells was found to significantly alter the
cellular transcription of hundreds of genes (Lee et al., 2011). Finally, it
has been shown that sheer stress on blood vessels can increase
TRPM7 in the plasma membrane (Oancea et al., 2006).

TRPM8

TRPM8 is a non-selective Ca2+-permeable channel activated by
cold, membrane depolarization, and different cooling compounds
and is considered the most important thermoreceptor in cold
perception (McKemy et al., 2002; Brauchi et al., 2004; Bautista
et al., 2007). TRPM8 was initially identified in prostate tissue and
reported as upregulated in prostate cancer (Tsavaler et al., 2001).
The cold current was first identified in DRG sensory neurons (Reid
and Flonta, 2001), and then, the channel was identified, cloned, and
described (McKemy et al., 2002).

Although mainly expressed in sensory neurons, channel
expression has also been reported in several other tissues and
organs, such as the cardiovascular system, lungs, bladder, and
urogenital tract (Dhaka et al., 2008; Iftinca and Altier, 2020; Liu
et al., 2020). Growing evidence has linked TRPM8 expression and
function to several types of cancer, including prostate, lung, and
breast cancer (Fuessel et al., 2003; Dhennin-Duthille et al., 2011;
Hantute-Ghesquier et al., 2018). Additionally, it has also been
involved in the development of neuropathic pain (Proudfoot
et al., 2006; De Caro et al., 2019) and irritable bowel syndrome
(de Jong et al., 2015).

As one of the most studied TRP channels, there’s a wide variety of
articles regarding TRPM8 trafficking and membrane context. It was
initially reported that TRPM8 channels are located in lipid rafts
(Morenilla-Palao et al., 2009). These overexpressed TRPM8 channels
reside in a near membrane compartment, actively recycling in and out
of the plasma membrane where its motility is restricted (Veliz et al.,
2010; Ghosh et al., 2014). This recycling is associated with the SNARE
protein VAMP7 (Ghosh et al., 2016). These recycling modes have been
shown to vary in response to channel activation, modulating the
number of available channels at the plasma membrane in vitro and
in vivo (Toro and Brauchi, 2015). It is worth mentioning that in vitro
experiments challenged the later observation (Ghosh et al., 2014).
Recently, Cornejo et al. (2020) demonstrated that trafficking of
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TRPM8 along the cold-sensitive peripheral axons depended on the
axonal ARF-GEF Golgi-specific brefeldin A-resistance factor 1 (GBF1)
(Cornejo et al., 2020).

Moreover, the same group demonstrated that phosphorylation
of the channel is also a regulator of TRPM8 trafficking,
demonstrating the versatility of mechanisms involved in this
process (Rivera et al., 2021). Interestingly, two other factors
named TRP channel–associated factors (TCAFs) have been
described as interactors of TRPM8 that regulate its trafficking
but with opposite effects on TRPM8 gating properties, with
TCAF1 decreasing its activity and tumoral properties of prostate
cancer cells and TCAF2 increasing it along with also promoting
migration of prostate cancer cells (Gkika et al., 2015).

Additionally, Tsuruda et al. (2006) demonstrated that the
C-terminal of the channel contains a coiled-coil domain that is
necessary for channel assembly and trafficking (Tsuruda et al.,
2006). On the other hand, it has been suggested that the coiled-coil
domain was not necessary for trafficking but rather for channel
stabilization and added that the mutation N934Q lowered the
glycosylation of the channel and its plasma membrane trafficking.
However, it did not prevent it completely, suggesting that
glycosylation is not mandatory for channel trafficking (Erler
et al., 2006). Moreover, the L1089P mutant prevented channel
oligomerization and reduced the surface expression of the channel
(Erler et al., 2006). Figure 2 shows a summary of the different
proteins/molecules involved in the regulation of the trafficking of
TRPM channels to the plasma membrane as were described in this
section of the review.

The TRPV subfamily of ion channels,
insights into their trafficking and
physiological significance

TRPV channels and their trafficking

Six subfamilies of TRP channels have been reported in mammals,
categorized according to the homology of their sequences. The
subfamily of TRPV1-6 (Vanilloid) plays a significant role in all
tissues. TRPV1- 4 are thermosensitive and non-selective cation
channels, while TRPV5 and TRPV6 are selective to the calcium
cation but not sensitive to temperature (Pumroy et al., 2020).

TRPV family has six ankyrin (Ank) repeat domains in the
N-terminal and TRP-box in the C-terminal region. The
trafficking of TRPV channels is a complex mechanism involving
several proteins that vary in the different types of TRPV channels.
Studies based on the membrane yeast two-hybrid approach have
demonstrated that different trafficking-related proteins interact with
TRPV channels, including SNAP-associated protein and
synaptotagmin 9, which interact with TRPV1 and TRPV2
(Doñate-Macián et al., 2019). Furthermore, TRPV2 interacts with
other proteins, such as lipid phosphatase SAC1,
phosphatidylinositide phosphatase, syndecan 3, and SHISHA
family member 6, while TRPV4 interacts with Annexin A2 and
cyclin-dependent kinase 16 (CDK16) (Doñate-Macián et al., 2019).

Although the traffickingmechanisms of TRPV channels are not yet
fully understood, several proteins that interact with these channels play
important roles in their trafficking. For example, CDK16 has been

FIGURE 2
TRPM channels and their trafficking regulators. Diagram showing the different regulators involved in the trafficking of TRPM channels. Embedded in
the plasmamembrane is a monomeric subunit representing the various domains and regions in TRPM channels. These include ANK (ankyrin repeats), CC
(coiled-coil), and TRP, which refers to the TRP box common to all TRP channels. Upward arrows represent regulators that promote channel trafficking to
the plasma membrane, whereas downward arrows represent regulators that lower the number of channels in the plasma membrane.
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found to interact with the coat protein complex II (COPII) complex,
allowing the trafficking of TRPV channels (Palmer et al., 2005). Table 3
summarizes some of the known TRPV trafficking-related interactions.

Pathologies associated with trafficking
of TRPV channels

TRPV1

Transient receptor potential vanilloid 1 (TRPV1), the first
identified member of the TRPV subfamily, is a tetramer that
contains an ATP-binding site and a CaM-binding site in an
ankyrin repeat (Sasase et al., 2022). The TRPV1 plays a key role
in the perception of peripheral thermal and inflammatory pain.

Yeast two-hybrid screening for identifying proteins that
associate with the N terminus of TRPV1 revealed two vesicular
proteins, Snapin and synaptotagmin IX (Syt IX). These proteins
were found to strongly interact with the TRPV1 N-terminal domain
both in vitro and in vivo, where TRPV1 co-localizes with Syt IX and
the vesicular protein synaptobrevin in vesicles. PKC activation leads
to a swift delivery of functional TRPV1 channels to the plasma
membrane, which suggests that PKC signaling promotes the
SNARE-dependent exocytosis of TRPV1 to the cell surface
(Morenilla-Palao et al., 2004).

The SNARE family of proteins plays a crucial role in
TRPV1 channel trafficking, whose main function is to mediate
fusion between membranes (Sudhof and Rothman, 2009). It has
been shown that TNFα induced surface trafficking of TRPV1 where
Munc18-1, SNAP-25, and VAMP1 are important for transporting
TRPV1 to the plasma membrane. During this process,
TRPV1 channels are packaged into calcitonin gene-related
peptide (CGRP)- and VAMP1-containing vesicles and delivered
to the plasma membrane involving the formation of SNARE
complexes composed of SNAP-25, syntaxin 1, and VAMP1, as
well as Munc18–1 (Meng et al., 2016).

Proinflammatory factors have also been studied for potentiating
TRPV1 membrane expression, and it was shown that the SNARE
complex mediates TRPV1 exocytosis. These findings suggest that
the SNARE complex could be a potential therapeutic target for
TRPV1-related disorders (Camprubi-Robles et al., 2009).

Studies have reported that TRPV1 interacts with γ-amino butyric
acid A-type (GABAA) receptor-associated protein (GABARAP) in
HEK293 cells and neurons. The presence of GABARAP selectively
enhances the interaction between tubulin and the C-terminal domain of
TRPV1. Moreover, nocodazole treatment reduces the capsaicin-evoked
current in cells expressing TRPV1 and GABARAP. This indicates that
GABARAP plays an important role in the TRPV1 trafficking and
clustering on the plasma membrane (Laínez et al., 2010). Another
protein recently described to regulate TRPV1 transport is the cyclin-
dependent kinase 5 (CDK5). CDK5 positively controls
TRPV1 membrane transport mediating kinesin family member
KIF13B-TRPV1 association without altering the total amount of
TRPV1. Co-immunoprecipitation experiments confirmed the
interaction between TRPV1 and potassium channel auxiliary subunit
Kvβ2, exerting a chaperone-like effect that increases the cell surface
expression of TRPV1. This increase in TRPV1 cell surface expression is
associated with an enhancement in capsaicin sensitivity assay in a

heterologous recombinant system in HEK293 cells (Ferrandiz-Huertas
et al., 2014b).

TRPV channels have been associated with various pathologies,
where many of them are related to the functionality and expression
of TRPV channels, including neuropathic pain, migraine, dry eye
disease (DED). It is worth mentioning that while
TRPV1 functionality may be compromised in these conditions,
while its trafficking remains unaffected (Sasase et al., 2022).

TRPV2

Studies on TRPV channels have revealed the significance of their
trafficking to the plasma membrane in various pathologies. Deletion
of the distal N-terminus of TRPV2 depletes the channel’s trafficking
to the plasma membrane (Donate-Macian et al., 2015).

The recombinase gene activator protein (RGA) has been
associated with TRPV2 trafficking. It acts as a chaperone-like
protein that controls the translocation of TRPV2 to the plasma
membrane in mast cells. RGA is localized to a vesicular sub
compartment of the ER/Golgi apparatus and functions as a
chaperone-like protein, promoting the membrane trafficking of
TRPV2 (Barnhill et al., 2004).

An elevation of cAMP leads to the translocation of TRPV2 to the
plasma membrane, indicating that any stimulus that increases this
secondary messenger could regulate TRPV2 trafficking (Kanzaki
et al., 1999). The rapid exocytotic response induced by insulin is
accompanied by membrane insertion of TRPV2 in a PI3K-
dependent manner (Aoyagi et al., 2010). Studies on
TRPV2 knockout mice have shown decreased systolic function
and impaired cardiac functional response to forced treadmill
exercise, but the trafficking of these channels in these pathologies
remains unclear (Sasase et al., 2022).

TRPV3

The TRPV3 ion channel is widely expressed in skin
keratinocytes, and its exact trafficking mechanism to/from the
plasma membrane is unknown. It has been reported that the
vesicular trafficking protein sorting nexin 11 (SNX11)
downregulates the TRPV3 plasma membrane protein level.
SNX11 interacts with TRPV3 and promotes the trafficking of
TRPV3 from the plasma membrane to lysosomes for degradation
via protein-protein interactions (Li et al., 2016).

TRPV3 plays an important regulatory role in temperature
perception, pain transduction, skin physiology, inflammation,
cancer, and other diseases, such as pruritic and atopic dermatitis,
psoriasis, rosacea, myocardial hypertrophy where the
overexpression of this channel is involved (Su et al., 2023).
However, there is currently no evidence suggesting that
TRPV3 trafficking is altered in these conditions.

TRPV4

The interaction between the N-terminus of TRPV4 and the
ubiquitously expressed ER-associated protein OS-9 prevents the
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channel from trafficking to the plasma membrane. This
interaction impedes the release of TRPV4 from the ER,
resulting in decreased protein levels at the plasma membrane.
Furthermore, OS-9 appears to bind preferentially to immature
variants and monomers of TRPV4 are located in the ER and
attenuate their polyubiquitination (Wang et al., 2007). Moreover,
it has also been reported that deleting the C-terminal region
causes retention in the ER (Becker et al., 2008). Taken together,
these findings suggest that the process of TRPV channel
trafficking is a complicated process that involves several
proteins, which may vary depending on the specific type of
TRPV channel involved. In the context of TRPV channel
mutations, TRPV4 serves as an example of a channel
associated with various channelopathies resulting from
mutations in different channel motifs, including both the C
and N terminal regions and the pore. Some of these mutations
have been shown to affect channel conductivity, while others may
interfere with proper channel trafficking due to their location in
the N- and C-terminal regions, which are essential for this
process (Verma et al., 2010). For instance, a mutation of Asn-
651 into Gln has been found to increase the constitutive
membrane trafficking of TRPV4 without affecting overall
channel expression. This mutation is situated in the consensus
N-linked glycosylation motif between S5 and S6, suggesting that
glycosylation of this residue could regulate channel trafficking
(Xu et al., 2006). Additionally, phosphorylation of two other
residues, S824 (Shin et al., 2012) and Y110 (Wegierski et al.,
2009), is important for their abundance in the plasma membrane
and proper trafficking of TRPV4. The atrophin-interacting
protein 4 (AIP-4) facilitates ubiquitination of TRPV4 and
renders the channel available for endocytosis (Wegierski et al.,
2006). The interaction of TRPV4 with PACSIN 3 isoform
regulates endocytosis enhancing the ratio of plasma membrane
associated to cytosolic TRPV4 (Cuajungco et al., 2006). In
HEK293 and vascular endothelial cells, depletion of
intracellular Ca2+ stores leads to the vesicular trafficking of
heteromeric TRPV4-C1 channels to the plasma membrane
(Ma et al., 2010).

In contrast, it has been observed that splicing variants of TRPV4,
which lack the ankyrin domain, do not oligomerize and are retained
in the ER (Arniges et al., 2006). Some of these variants have been
detected in two unrelated human respiratory tracts (CFT1-LCFSN
and HBE epithelial cell lines), highlighting the significance of these
channels in the respiratory tract and, therefore, potentially
associated pathologies.

TRPV5

Deleting the distal TRPV5 N-terminus is sufficient to deplete
the channel trafficking to the plasma membrane (Donate-Macian
et al., 2015). Moreover, the complexly glycosylated TRPV5 that
appears at the plasma membrane is enhanced by WNK3, a
member of the With No Lysine (K) family of protein serine/
threonine kinases. The microtubule inhibitor colchicine blocks
the effect of WNK3 on TRPV5, indicating that WNK3 positively
regulates the transcellular Ca2+ transport pathway by increasing
the exocytosis of TRPV5 (Zhang et al., 2008). Conversely,

TRPV5 internalization occurs through the clathrin protein
(van de Graaf et al., 2008).

Familial hypomagnesemia with hypercalciuria and
nephrocalcinosis (FHHNC) is a paracellular channelopathy
caused by mutations in the claudin-16 and claudin-19 genes. The
missense FHHNC mutation c.908C>G (p.T303R) in the claudin-16
gene disrupts the phosphorylation of the claudin-16 protein. The
phosphomimetic claudin-16 protein carrying the T303E mutation,
but not the wildtype claudin-16 or the T303R mutant protein,
increases the TRPV5 channel conductance and membrane
abundance in human kidney cells (Hou et al., 2019).

TRPV6

Annexin 2 also interacts with TRPV6 (Borthwick et al., 2008). Its
known functions include intracellular trafficking of vesicles,
maintenance and organization of cell membranes. Annexin
A2 was also identified on early endosomes participating in the
endocytic pathway of these channels (Gerke and Moss, 2002).

Pharmacological modulation of TRPV channels can treat certain
pathologies by affecting their functionality (Seebohm and Schreiber,
2021). Nevertheless, mutations in these channels can also affect their
trafficking, leading to various diseases, which will be
described below.

Mutations in the TRPV6 channel have been studied and
found to cause insufficient Ca2+ transport, resulting in
transient neonatal hyperparathyroidism (TNHP) characterized
by respiratory distress and under-mineralization of the skeleton.
Two mutations, I223T and G428R, were identified in TRPV6 that
affect its trafficking to the plasma membrane. The I223T
mutation is located in the fourth ankyrin repeat domain
(ANK4) and decreases the amount of TRPV6 channel in the
plasma membrane (Yamashita et al., 2019).

Similarly, the G428R mutation located in the S2 and
S3 transmembrane domains also affects trafficking to the plasma
membrane and interferes with TRPV6’s normal function. We thus
conclude that interference with placental maternal-fetal calcium
transport caused by TRPV6 loss-of-function mutations results in
fetal calcium deficiency, hyperparathyroidism, and metabolic bone
disease (Suzuki et al., 2018).

Figure 3 shows a summary of the different proteins/molecules
involved in the regulation of the trafficking of TRPV channels to the
plasma membrane.

TRPA1 in nociception: function,
membrane expression, and
sensitization mechanisms

TRPA1 was initially identified as a nociceptive channel that is
expressed in subpopulations of primary sensory neurons in the
DRG, vagal ganglia (VG), and trigeminal ganglia (TG), which is
activated by noxious compounds and low temperatures (Story et al.,
2003; Bautista et al., 2005). TRPA1 is predominantly expressed in
unmyelinated C-fibers and thinly myelinated Aδ-fibers, which
transmit pain signals from the periphery to the central nervous
system. TRPA1 expression in large, myelinated fibers is less
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frequent, and its function in these fibers is poorly understood (Story
et al., 2003). This selective expression pattern suggests that
TRPA1 plays a specific role in nociception, which is the
perception of pain and helps to ensure that noxious stimuli are
transmitted effectively to the central nervous system.

The expression of TRPA1 can vary between species, with some
species having a higher expression of TRPA1 in certain populations
of primary sensory neurons. At least 25% of TRPA1-expressing
neurons are peptidergic, which means they can release substance P
(SP) and CGRP. However, TRPA1 has also been found to colocalize
with non-peptidergic neuron markers, such as isolectin B4 (IB4), the
purinergic P2X3 receptor, and the NaV1.8 channel, which suggests
that TRPA1 plays a complex role in nociception and other
physiological processes (Kim et al., 2010; Kim et al., 2011;
Ryskamp et al., 2011).

TRPA1 is present in 30%–50% of TRPV1-expressing neurons
(Kobayashi et al., 2005). Evidence for a TRPV1-TRPA1
interaction suggests that the two proteins might form a
heteromeric channel, which could play a role in nociception
and other physiological processes (Fischer et al., 2014). These
two channels are thought to play a crucial role in transmitting
sensory signals during inflammation, as they were found on
vesicles containing CGRP and co-localized on nerve fibers and
sensory neuron cell bodies. Furthermore, TNFα was observed to
increase the surface presence of TRPV1 and TRPA1, indicating
upregulation or enhanced transport to the cell membrane (Meng
et al., 2016; Nugent et al., 2018). The proximity of TRPV1 and
TRPA1 suggests potential co-trafficking in response to TNFα.
Notably, Munc18–1 and VAMP1 were identified as essential for
TNFα-induced channel trafficking and CGRP release.

Additionally, Botulinum neurotoxins, particularly BoNT/
C1 or/A, effectively inhibited TNFα-induced channel delivery,
indicating their therapeutic potential in mitigating sensitization
during inflammation (Wu C. et al., 2016; Meng et al., 2016). The
trafficking of TRPA1 is regulated by interactions with several
proteins, as summarized in Table 4.

Inflammation can sensitize peripheral nociceptors and cause
symptoms such as allodynia and hyperalgesia. Bradykinin is one of
the key inflammatory mediators known to sensitize TRPA1 ion
channels. The sensitization of TRPA1 is dependent on PLC and PKA
activation, but not PKC activation. It diminishes the nociceptor
activation thresholds, which can result in symptoms of allodynia and
hyperalgesia (Wang et al., 2008).

The effect of PLC on sensitization may involve hydrolysis of
PIP2 (Dai et al., 2007; Karashima et al., 2008; Kim et al., 2008).
Both PKA and PLC activation increase the membrane expression
of TRPA1 in trigeminal neurons by increasing the trafficking of
the channel (Schmidt et al., 2009). PKA-mediated sensitization
of TRPA1 has been confirmed in some studies, with three
residues in the NH2-terminal domain (S86, S317, and S428)
and one residue in the COOH-terminal domain (S972) identified
as the main phosphorylation sites for PKA (Meents et al., 2017).
Other studies have also investigated the phosphorylation of
TRPA1 by cyclin-dependent kinase 5 (Cdk5), with sites S242,
T416, S449, T485, and T673 identified as susceptible
phosphorylation sites (Hynkova et al., 2016; Hall et al., 2018;
Sulak et al., 2018). During TRPA1 phosphorylation by both PKA
and PKC, the anchoring protein AKAP (A-Kinase Anchoring
Protein 79/150) is essential in anchoring these kinases to TRPA1
(Brackley et al., 2017). TRPA1 contains an N-terminal ankyrin

FIGURE 3
TRPV channels and their trafficking regulators. Embedded in the plasma membrane is a monomeric subunit representing the different domains and
regions in TRPV channels. These include ANK (ankyrin repeats), CC (coiled-coil), and TRP, which refers to the TRP box common to all TRP channels. The
diagram shows a summary of the different regulators involved in the trafficking of TRPV channels.
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repeat domain (ARD) with a total of 17 ankyrin repeats. This
domain is believed to be essential for plasma membrane
localization (Nilius et al., 2011; Hall et al., 2018).

TRPA1 phosphorylation may contribute to painful
pathologies associated with the channel, including
chemotherapy-induced peripheral neuropathy (CIPN).

TABLE 1 Summary of TRPC trafficking interactions.

Channel Interaction Effect References

TRPC1 HOMER Supports its transfer to the plasma membrane Yuan et al. (2003)

β-tubulin; phospholipase C
InsP3receptor; calmodulin

channel localization by remodeling of the cytoskeleton
by depending on the location of microtubules

Clark et al. (2008)

caveolin-1 prevents the targeting of TRPC1 to the plasma membrane lipid rafts Sundivakkam et al. (2009)

IP3R and RhoA increases the trafficking of TRPC1 by remodeling of the cytoskeleton Mehta et al. (2003)

D-amino acid peptide HYD1
(MTI-101)

induces trafficking of TRPC1 to the membrane by induces the formation of a
TRPC1/STIM1 complex

Gebhard et al. (2013)

TRPC3 caveolin-1 interrupt the actin cytoskeleton localization of
TRPC3 at the plasma membrane

Lockwich et al. (2001)

EGF elevation in peripheral TRPC3 localization Smyth et al. (2006)

RACK1 serves as a scaffold for localizing TRPC3 in the plasma membrane Bandyopadhyay et al. (2008)

Caveolin-1 cooperate with TRPC3 and interrupt the actine cytoskeleton localization of
TRPC3 at the plasma membrane

Ma et al. (2000)

Lockwich et al. (2001)

1,2bis (2-aminophenoxy) is necesary for the externalitation of TRPC3 Cayouette et al. (2004), Smyth
et al. (2006)

IP3 receptor secretion-like trafficking of channels to the plasma membrane Putney et al. (2004)

Gd3+ binds to TRPC3 channles at and exterior site, causing incapacity of bound channels
to be proprely internalizated

Smyth et al. (2006)

SNARE cytoskeleton disruption, generating effects on constitutive
trafficking of TRPC3 controlling translocation

Singh et al. (2004)

VAMP-2 involved in fusion of the vesicles to the plasma membrane and produce the insertion
of TRPC3 channels

Singh et al. (2004), Van Rossum
et al. (2000)

TRPC4/5 NHERF facilitates association of TRPC4 and TRPC5 with PLCβ and increase their surface
expression

Mery et al. (2002)

EGF activation of tirosine kinase and produce the phosporilatyon of TRPC4 and boots
the exocytic attachment into the plasma membrane

Mery et al. (2002)

Ezrin regulate the vesicular trafficking of TRPC4 Mery et al. (2002)

stathmin 2 trafficking to the growthone is facilitated Greka et al. (2003)

PI4,5P2 involved in the interaction with the membrane/targeting domain at the N-ter of
TRPC4/5 heteromes

Myeong et al. (2014)

EBP50 attached TRPC4 to the cytoskeleton and prevent its internatilzation Mery et al. (2002)

PI3-kinase (PI3K)
Rac1, PI4P-5 kinase

Integration of the channel into the plasma membrane Bezzerides et al. (2004)

E3KARP cell surface delivery and translocation of TRPC4-bearing vesicles Mery et al. (2002)

TRPC6 Munc13 family fusion of TRPC6-containing vesicles with the plasma membrane Xie et al. (2020)

Human myxovirus resistance
protein 1 (MxA)

increase the activity of TRPC6 Lussier et al. (2005)

caveolin 1/2 vesicular trafficking Cayouette et al. (2004)

PLC-γ1 increased expression in the cell surface Kanda et al. (2011)

nephrin protein binds directly to TRPC6 after phosphorylation of the Y284 residueand
suppresses its translocation by interfering with TRPC6–PLC-γ1 binding

Kanda et al. (2011)

TRPC7 Human myxovirus resistance
protein 1 (MxA)

enhances channel activity by regulating trafficking of these proteins to the plasma
membrane

Lussier et al. (2005)
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Sigma-1 receptor (Sigma-1R), an endoplasmic reticulum
chaperone, is known to modulate the function of various ion
channels and receptors (Hanner et al., 1996; Alonso et al., 2000;
Delprat et al., 2020). Sigma-1 receptor antagonist (S1RA) has been
shown to interact with TRPA1. Antagonizing Sigma-1R disrupted the
formation of the molecular complex between Sigma-1R and TRPA1,
affecting the trafficking of TRPA1 to the plasma membrane. Moreover,
S1RA significantly inhibited the plasma membrane expression and
function of human TRPA1 channels, reducing the excitability of
nociceptor neurons sensitized by oxaliplatin (Marcotti et al., 2023).

TRPA1 channels were also shown to sense moderate hypoxia in
astrocytes associated with the anterior inferior cerebellar artery (AICA)
in the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN)
region of the ventral medullary surface. TRPA1 prevents its
internalization through prolyl hydroxylases (PHD) and neural
precursor cell-expressed developmentally downregulated protein 4
(NEDD4-1)-mediated mechanisms, resulting in plasma membrane
retention. Hypoxia-induced TRPA1 channel activity leads to Ca2+

influx. It accelerates ATP release from pFRG/RTN astrocytes,
impacting neuronal circuits in the respiratory center and increasing
the amplitude of the inspiratory discharge rhythm. This study suggests a
connection between TRPA1 trafficking regulation and the cellular

response to hypoxia, highlighting the role of TRPA1 in astrocytic
sensing of acute hypoxia (Uchiyama et al., 2020).

Recently, IQ motif containing GTPase activating protein 1
(IQGAP1) was shown to interact with TRPA1, mainly in sensory
dorsal root ganglia neurons in mice. The expression of
IQGAP1 increases in chronic pain conditions, and TRPA1 undergoes
increased trafficking to the neuronal membrane, catalyzed by the small
GTPase Cdc42, which is associated with IQGAP1. Activation of PKA
can also induce TRPA1 trafficking and sensitization. Notably, the
absence of IQGAP1 prevents the responses, implying a mechanism
entirely dependent on the presence of IQGAP1. These findings suggest
the possibility of IQGAP1 in promoting chronic pain by facilitating the
trafficking and signaling mechanisms of TRPA1 channels (Khan et al.,
2023). Altogether, TRPA1 channels are crucial in pain perception and
potentially affect chronic pain conditions.

Concluding remarks

The TRP family of ion channels plays an essential role in many
physiological processes by regulating intracellular levels of various ions,
such as sodium, calcium, and magnesium. Indeed, the dysregulation of

TABLE 2 Summary of TRPM trafficking interactions.

Channel Interaction Effect References

TRPM1 glutamate receptor 6 (mGluR6) correct localization of TRPM1 Agosto et al. (2021), Xu et al. (2012)

nyctalopin forms complexes with TRPM1 and is necessary for the
correct localization of the channel

Cao et al. (2011)

LRIT3 scaffold for the formation of the complex nyctalopin/
mGluR6 for the correct localization

Hasan et al. (2019), Neuillé et al. (2015)

TRPM2 reactive oxygen species (ROS) increases of TRPM2 in the plasma membrane Ali et al. (2021), Kheradpezhouh et al. (2018)

TRPM3 exon 13 of the trpm3 gene regulates channel insertion in the plasma membrane Frühwald et al. (2012)

activating transcription factor 4 (ATF4) regulates KIF17 kinesin-mediated TRPM3 trafficking Xie et al. (2021)

TRPM4 14-3-3γ protein promotes membrane targeting of the channel Cho et al. (2014)

EB1 and EB2 proteins increase expression of the channel in the plasma
membrane and prevents retention in the ER

Blanco et al. (2019)

reactive oxygen species (ROS) lowers the channel density in mouse cortical collecting
duct cells

Wu et al. (2016a)

TRPM6 metformin drug increases/decreases TRPM6 expression in the plasma
membrane depending on exposure time

Bouras et al. (2020)

EGF receptor/src/Rac1 increase in TRPM6 trafficking to the plasma membrane Thebault et al. (2009)

TNFα regulate TRPM6 trafficking to the plasma membrane Furukawa et al. (2017)

TRPM7 necessary for the correct trafficking of TRPM6 to the
plasma membrane

Schmitz et al. (2005), Shari et al. (2010)

TRPM7 14-3-3θ chaperon protein regulates channel trafficking facilitating
autophosphorilation residues in the channel

Cai et al. (2018)

TRPM6 alters TRPM7 trafficking Brandao et al. (2014)

TRPM8 brefeldin A-resistance factor 1 (GBF1) regulates trafficking of TRPM8 along the cold sensitive
peripheral axons

Cornejo et al. (2020)

TRP channel–associated factors (TCAFs) promotes TRPM8 trafficking to the plasma membrane Gkika et al. (2015)

Vesicle-associated membrane protein 7 (VAMP7) promotes the trafficking of TRPM8 to the cell surface Ghosh et al. (2016)
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TABLE 3 Summary of TRPV trafficking interactions.

Channel Interaction Effect References

TRPV1 SNAP25 delivers to the plasma membrane involving the formation of SNARE
complexes

Meng et al. (2016)

VAMP1 TRPV1/TRPA1 channels are packaged into CGRP- and VAMP1-
containing vesicles and delivered to the plasma membrane

Meng et al. (2016)

Syt IX TRPV1 co-localizes with Syt IX and the vesicular protein
synaptobrevin in vesicles and delivered to the plasma membrane

Morenilla-Palao et al. (2004)

TRPV2 RGA acts as a chaperone-like protein that controls the translocation of
TRPV2 to the plasma membrane in mast cells

Barnhill et al. (2004)

TRPV3 SNX11 promotes the trafficking of TRPV3 from the plasma membrane to
lysosomes for degradation via protein-protein interactions

Li et al. (2016)

TRPV4 OS-9 impedes the release of TRPV4 from the ER, resulting in decreased
levels of the protein at the plasma membrane

Wang et al. (2007)

AIP-4 facilitates ubiquitination of TRPV4 and renders the channel available
for endocytosis

Wegierski et al. (2006)

PACSIN 3 regulates endocytosis enhancing the ratio of plasma membrane-
associated to cytosolic TRPV4

Cuajungco et al. (2006)

TRPV5 WNK3 complexly glycosylated TRPV5 that appears at the plasma membrane
is enhanced by WNK3

Zhang et al. (2008)

clathrin TRPV5 internalization Van de Graaf et al. (2008)

TRPV6 ANNEXIN A2 early endosomes participating in the endocytic pathway of these
channels

Gerke and Moss (2002)

TABLE 4 Summary of TRPA trafficking interactions.

Channel Interaction Effect References

TRPA1 TNFα increases the surface presence of TRPA1/TRPV1 complex Meng et al. (2016), Nugent et al. (2018)

BONT/C1 and A (Botulinum neurotoxin
C1 and A)

inhibits TNFα-induced channel trafficking to the membrane Meng et al. (2016), Wu et al. (2016b)

SNAP25 delivers to the plasma membrane involving the formation of
SNARE complexes

Meng et al. (2016)

VAMP1 TRPV1/TRPA1 channels are packaged into CGRP- and
VAMP1-containing vesicles and delivered to the plasma
membrane

Meng et al. (2016)

Munc18–1 TNFα induces co-trafficking of TRPV1/TRPA1 in VAMP1-
containing vesicles to the plasmalemma via Munc18–1/
syntaxin1/SNAP-25 mediated fusion

Meng et al. (2016)

IQGAP1 promotes chronic pain by interaction with TRPA1, increases
trafficking to the neuronal membrane, catalyzed by the small
GTPase Cdc42

Khan et al. (2023)

GTPase Cdc42 catalyzes interaction of IQGAP1 with TRPA1, promoting the
membrane trafficking

Khan et al. (2023)

AKAP (A-Kinase Anchoring Protein)
79/150

anchoring of PKA/PKC to TRPA1 in the plasma membrane
organizes post-translational receptor modifications

Brackley et al. (2017)

Sigma-1 receptor interacts with TRPA1, leading to chemotherapy-induced
painful peripheral neuropathy (CIPN)

Marcotti et al. (2022)

Sigma-1 receptor antagonist (S1RA) inhibits the plasma membrane expression and function of
human TRPA1 by disrupting the interaction between Sigma-
1R and TRPA1

Marcotti et al. (2022)

cyclin-dependent kinase 5 (Cdk5) phosphorylates various sites of TRPA1, leading to trafficking
to the plasma membrane

Hall et al. (2018), Hynkova et al. (2016), Sulak
et al. (2018)
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the activity of these channels can contribute to and/or lead to the
development of several pathological disorders, such as cancer, brain
diseases, and heart and kidney malfunction. Interestingly, one of the
primarymeans that cellsmust regulate the activity of TRP channels is the
modulation of the number of channels in the plasma membrane. In this
review, we have presented an in-depth exploration of the mechanisms
that have been described for the trafficking of the different members of
the TRP family of ion channels and the pathologies associated with the
dysregulation of these processes. In this context, although these channels
share a high homology in their amino acid sequence, we have found that
their trafficking mechanisms are widely different regarding interacting
proteins and signaling pathways involved, even amongst channels of the
same sub-family, which provides the intracellular targeting characteristic
of these channels.

Nevertheless, we can point to specific general mechanisms
shared amongst TRP channels necessary for correct trafficking
and localization. For example, post-translational modifications
such as glycosylation, phosphorylation, and SUMOylation are
involved in the trafficking of several TRP channels. On the other
hand, protein-protein interactions seem to be of great
importance for the trafficking of TRP channels, where proteins
such as PKA, PKC, and PLC are common regulators of the
localization of some members of this family. Additionally, the
subcellular microenvironment also appears to be an important
feature for the trafficking of several TRP channels.

As a final remark, we have also briefly described the wide variety of
processes and pathologies in which TRP channels are highly involved. In
recent years, several reports have appeared showing the therapeutical
potential that targeting these ion channels throughmodulators and other
mechanisms might have (Moran et al., 2011; Zsombok and Derbenev,
2016; Hong et al., 2020; Fallah et al., 2022; Koivisto et al., 2022). In
general, most of these studies have been dedicated to the identification of
novel pharmacological modulators addressed to the conductive activity
of these channels. However, ion channels can also have non-conductive
activities, serving as scaffolding proteins and signaling hubs in different
processes. Then, their specific trafficking and localization might regulate
these functions. Therefore, further studies dedicated to targeting the
trafficking and targeting of TRP channels might serve as potential
therapeutic strategies for different diseases.

In conclusion, the trafficking of TRP channels is characterized by its
intricate nature, the different mechanisms involved, such as vesicular
transport, anterograde, and retrograde pathways, and themany diseases
associated with this process’s dysregulation. The present overview
underscores the importance of expanding our understanding of the
mechanisms involved in the trafficking of TRP channels to provide
novel therapeutic targets and treatments for the increasing number of
pathologies associated with the TRP family of ion channels.
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