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The mortality of hepatocellular carcinoma (HCC) is on the rise globally,
particularly in the Western world, with etiology gradually shifting from virus-
related liver diseases to metabolic disorders such as non-alcoholic fatty liver
disease. Early detection of HCC is challenging, and effective prognostic indicators
are currently lacking, urgently necessitating reliable markers to assist in treatment
planning and clinical management. Here, we introduce hepatocellular carcinoma
senescence genes (HSG) to assess cellular senescence in HCC and devise a
hepatocellular carcinoma senescence score (HSS) for prognostic prediction.
Higher HSS levels signify poorer prognosis and increased tumor proliferation
activity. Additionally, we observe alterations in the tumor immune
microenvironment with higher HSS levels, such as increased infiltration of
Treg, potentially providing a basis for immunotherapy. Furthermore, we
identify key genes, such as PTTG1, within the senescence gene set and
demonstrate their regulatory roles in HCC cells and Treg through
experimentation. In summary, we establish a scoring system based on
hepatocellular carcinoma senescence genes for prognostic prediction in HCC,
potentially offering guidance for clinical treatment planning.
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors
worldwide. Following the GLOBOCAN 2020 database, primary liver cancer is the sixth
most commonly diagnosed cancer and the third leading cause of cancer death
worldwide in 2020, with approximately 906,000 new cases and 830,000 deaths
(Sung et al., 2021). China is one of the most high-risk HCC areas with about
393,000 new cases of liver cancer and up to 369,000 deaths per year, accounting for
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more than 50% of the global liver cancer (European Association
for the Study of the LiverEuropean Association for the Study of
the Liver, 2018). Although hepatectomy and liver
transplantation are the most effective treatments for HCC,
tumors often recur and metastasize via the bloodstream
following surgery. From sorafenib, the first molecularly-
targeted drug approved by the FDA for the treatment of
advanced HCC in 2007, to regorafenib and Lenvatinib, the
median survival in the treatment group was only prolonged
by 3–4.3 months. Overall survival (OS) and 5-year survival in
HCC patients remain disappointing, with efficacy lagging behind
that of most other oncological diseases (Agarwal et al., 2017;
Allemani et al., 2018; Kudo et al., 2018; Cao et al., 2020).
Therefore, it is imperative to identify new therapeutic
biomarkers to understand and overcome HCC.

Cellular senescence refers to a physiological status of cell
cycle arrest in response to endogenous and exogenous stress,
characterized by persistently ceased proliferation but retained
metabolic activity, so tissues with renewable properties have
been reported to be more vulnerable (Jeyapalan et al., 2007;
Calcinotto et al., 2019). Moreover, chronic inflammation has
been strongly linked to cell senescence (Chung et al., 2019). In
China, the key risk factors of HCC are chronic HBV infection,
aflatoxin exposure, or both, which means hepatocellular
carcinoma is often accompanied by chronic liver
inflammation and cirrhosis (Sung et al., 2021; Zhang et al.,
2023). A growing number of research has shed light on the
dichotomous role of cellular senescence in HCC progression.
Cellular senescence can activate immunosurveillance to
eliminate or kill HCC cells in various ways at early stages
(Campisi, 2001; Wang et al., 2022). However, persistent
senescent cells tend to modify the tumor microenvironment
through the senescence-associated secretory phenotype (SASP),
thus activating immunosuppression, boosting cell proliferation,
driving tumor vascularization, and favoring tumor progression
(Calcinotto et al., 2019; Lau and David, 2019; Prieto and Baker,
2019; Xiong et al., 2023). Therefore, the senescence-related genes
may be a potential index for predicting the prognosis of
patients with HCC.

Compared to other tissues and cancer models, the role of
senescence in liver cells and its implications in hepatocellular
carcinogenesis have been less explored. However, the
development of high-throughput detection techniques and big
data resources provides a method for the connection between
senescence-related genes and prognosis of HCC. In this study,
we proposed a hepatocellular carcinoma senescence score (HSS)
composed of multiple hepatocellular carcinoma senescence
genes (HSG) and constructed a risk model to predict the
prognosis of (HCC) patients. Additionally, we further
classified the immune status, immune function, and cancer
cell mutation spectrum of the high HSS group and low HSS
group, dissecting the reasons for the poor prognosis of the high
HSS group. Furthermore, focusing on the key gene PTTG1 in
HSG, we investigated its functions in hepatocellular carcinoma
cells and Treg. These findings elucidate the complex interaction
between hepatocellular carcinoma and cellular aging, providing
a basis for the future development of therapeutic strategies
targeting cellular aging in hepatocellular carcinoma.

2 Materials and methods

2.1 Collection of bulk RNA
expression datasets

The hepatocellular carcinoma bulk RNA sequencing datasets
analyzed in this study were retrieved from the HCCDB v2.0 (http://
lifeome.net/database/hccdb2) database and consisted of 756 patients
from 4 separate datasets. Of these, the Cancer Genome Atlas
(TCGA) dataset comprised 347 patients, the International Cancer
Genome Consortium (ICGC) dataset had 203 patients, the
expression profile of OEP000321 had 158 patients, and
48 patients from the Gene Expression Omnibus (GEO) database
(GSE148355). Log2 transformation was applied to normalized read
counts from those bulk RNA sequencing datasets and some patients
with missing data on survival status or gene expression data were
excluded. In Integrated dataset cohorts, we used the
limmaremoveBatchEffect package to correct batch effects from
different datasets. The basic information of these datasets is
shown in Table 1.

2.2 Single-cell data source and
preprocessing

The single-cell RNA sequencing (scRNA-seq) data of
hepatocellular carcinoma in GSE149614 and GSE156625 were
obtained from the NCBI (Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/). Gene expression data for individual
samples were analyzed using Read10×() in the Seurat [25867923]
package (v5.0.1) of R software (v4.3.1). We processed the dataset
GSE149614 using the Seurat R package, low-quality cells
with ≤200 detected genes or ≥20% mitochondrial genes were
removed. The dataset GSE149614 using the Seurat R package,
low-quality cells with ≤200 detected genes or ≥5% mitochondrial
genes were removed. Merge datasets GSE149614 and GSE156625,
excluding samples with fewer than 1,000 cells and normalized by
NormalizeData, and the top 4,000 highly variable genes were
subsequently identified by FindVariableFeatures (). Principal
Component Analysis (PCA) was performed using the RunPCA
function is used for data dimensionality reduction. Batch effects
were removed from all samples using the Harmony package (v1.2.0)
(Korsunsky et al., 2019). K-nearest neighbors were calculated using
Harmony-corrected data, followed by the creation of a shared
nearest neighbor (SNN) plot. Additionally, the first 50 principal
components (PCs) were selected for downstream analysis and
clustered the cells using the FindClusters function, setting the
Resolution parameter to 1. Using the -distributed Stochastic
Neighbor Embedding (tSNE) dimensionality reduction technique,
the identified clusters were visualized on a 2D map.

2.3 Construction of a prognostic
senescence signature

We consulted the CellAge database (https://genomics.
senescence.info/cells/cellAge.zip), which comprises 949 cellular
senescence genes. Additionally, we retrieved pathways related to
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Cellular_senescence from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) databases, obtaining
two additional gene sets. Upon merging with the CellAge data, we
obtained a total of 996 genes related to cellular senescence
(Supplementary Table S1).

To identify differentially expressed genes (DEGs) between
tumor and adjacent normal tissues, we conducted differential
analysis on dataset samples utilizing the limma package (version
3.58.1). The established thresholds were set at p-value <0.05 and
|logFC|>1. Univariate Cox approach using the survival package to
identify the gene set for cellular senescence associated with
prognosis. p < 0.05 and HR > 1 in the univariable Cox
regression analysis were considered statistically significant.
Principal Component Analysis (PCA) is used to demonstrate
batch effects among the data. We then utilized the glmnet R
package to perform the least absolute shrinkage and selection
operator (LASSO) regression of the prognostic genes. Then, four
genes were identified and used to create a risk score using the GSVA
R package (Hanzelmann et al., 2013). The survival curves were
created by Kaplan–Meier (KM) analysis and the log rank test using
the survival R package to assess the accuracy of the prediction (Sun
et al., 2024), and ROC curves for the risk scores were constructed
using the timeROC R package.

2.4 Immune infiltration analysis

The CIBERSORT algorithm was utilized to analyze transcriptome
data and obtain the expression levels of 22 types of immune cells in each
sample (Chen et al., 2018). The quanTIseq algorithm was utilized to
analyze transcriptome data and obtain the expression levels of 11 types of
immune cells in each sample (Finotello et al., 2019). The ESTIMATE
package was used to analyze the composition of the tumor
microenvironment (Yoshihara et al., 2013). We also calculated the
Immunophenoscore (IPS) for each sample to assess four different
immunophenotypes separately (Charoentong et al., 2017). Scoring of
four types of relevant molecules, Including MHC molecules (MHC);
Checkpoints| lmmunomodulators (CP); Effector cells molecules (EC);
Suppressor cells molecules (SC). AZ, the sum of scores for four types;
Immunophenoscore (IPS), was calculated on an arbitrary 0–10 scale
based on the sum of the weighted averaged Z score of the four categories.

2.5 Gene set enrichment analysis

In order to shed further light on the biological processes (BP),
cellular components (CC), molecular functions (MF), and pathways
involved with DEGs. The R ClusterProfiler tool analyzed DEGs

TABLE 1 Clinical information table.

Characteristic Total [756] GSE148355 [48 (6.3%)] ICGC [203 (27%)] OEP000321 [158 (21%)] TCGA [347 (46%)]

Gender

Female 194 (26%) 7 (15%) 50 (25%) 30 (19%) 112 (32%)

Male 557 (74%) 41 (85%) 153 (75%) 128 (81%) 235 (68%)

Age

Mean (SD) 60 (13) 55 (10) 67 (10) 54 (11) 60 (13)

Median (IQR) 61 (52, 69) 55 (49, 60) 69 (62, 74) 54 (46, 62) 61 (52, 69)

Range 17, 90 36, 78 31, 86 20, 81 17, 90

Stage

Other 24 (3.2%) 0 (0%) 0 (0%) 0 (0%) 24 (6.9%)

Stage I 301 (40%) 15 (31%) 33 (16%) 90 (57%) 163 (47%)

Stage II 209 (28%) 21 (44%) 96 (47%) 14 (8.9%) 78 (22%)

Stage III 199 (26%) 9 (19%) 59 (29%) 52 (33%) 79 (23%)

Stage IV 23 (3.0%) 3 (6.3%) 15 (7.4%) 2 (1.3%) 3 (0.9%)

Status

Alive 531 (70%) 42 (88%) 168 (83%) 102 (65%) 219 (63%)

Dead 225 (30%) 6 (13%) 35 (17%) 56 (35%) 128 (37%)

Virus

HBV 180 (24%) 36 (75%) 53 (26%) 0 (0%) 91 (26%)

HBV,HCV 11 (1.5%) 0 (0%) 4 (2.0%) 0 (0%) 7 (2.1%)

HCV 168 (22%) 5 (10%) 117 (58%) 0 (0%) 46 (13%)

Other 397 (52%) 7 (15%) 29 (14%) 158 (100%) 203 (58%)

HBV, hepatitis B virus; HCV, hepatitis C virus.
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using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Yu et al., 2012). The Gene Set Enrichment
Analysis (GSEA) (Subramanian et al., 2005) method is also used to
explore the biological functions of DEGs. We also calculated the
pathway activities of tumor samples using the GSVA R package. The
gene-signatures included for analysis were downloaded from
Hallmark gene sets and C2 curated gene sets (MSigDB database
v7.5.1) (Liberzon et al., 2011). Hallmark pathway enrichment
analysis is implemented using the enricher tool.

2.6 Somatic mutation analysis

The somatic mutation data (TCGALIHC) were downloaded
from Genomic Data Commons using the TCGAmutations R
package. The Maftools R package was applied to analyze the
mutation annotation format (MAF) from TCGA and was used to
identify mutant genes and calculate TMB level (Mayakonda
et al., 2018).

2.7 Identification of marker genes for
cell clusters

To identify the marker genes for each one of those 40 cell
clusters, we contrasted cells from a cluster to all the other cells of that
cluster using the FindMarkers function of Seurat, which identifies
differentially expressed genes between two groups of cells using a
Wilcoxon rank-sum test. Classical cell-specific marker genes also
were used to identify cell types.

2.8 Assessment of cell states

The score of each cell’s senescence prognosis genes in single-cell
transcriptome data is calculated using Aucell. AUCell is an R-package to
analyze the state of gene sets in single-cell RNA-seq data. We gathered a
classic cell proliferation gene set (Supplementary Table S2) and evaluated
the proliferative capacity of cells using Aucell. Additionally, we utilized
the CytoTRACE (Gulati et al., 2020) R package (version 0.3.3) to aid in
predicting the direction of cell differentiation. Calculations were
performed with default parameters using the R package infercnv
(v1.19.1) with annotated T cells as a reference, and clusters were
reassigned to malignant cells via the CNV matrix in Hepatocyte. The
CNV score is calculated by multiplying the mean of the normalized
CNV matrix in each cell by 100. Furthermore, we calculated the
correlation between the CNV matrix of each cell and the CNV score
of the top 10% ranked cells using the Pearson coefficient.

2.9 Metabolic analysis

scMetabolism (v0.2.1) is an R package suitable for quantification
of cellular metabolic activity at single-cell resolution (Wu et al.,
2022). scMetabolism was applied to analyze the activation of KEGG
metabolic pathways in hepatocytes. The metabolic pathway activity
of 3 cell types in Hepatocyte was represented by the average activity
score of metabolic pathways.

2.10 SCENIC analysis

SCENIC was used to identify the shared regulatory networks by
utilizing the putative regulatory binding sites found in promoter
regions (Van de Sande et al., 2020). To investigate the transcription
factor (TF) activity in single cells, SCENIC analysis was run using
the SCENIC packages in R software (v4.3.1) and pySCENIC in
Python (v 3.6.6). The activity of these regulons is quantified via an
enrichment score for the regulon’s target genes (AUCell). The
philentropy R package utilizes Jensen-Shannon divergence to
compute dissimilarity, while ggplot is used to visualize the
specificity activation scores of each regulon in 3 cell types of
Hepatocyte. Finally, the protein-protein interaction (PPI)
network was constructed using the STRING (https://string-db.
org/) database with target genes and transcription factors (TFs).

2.11 Cell-cell communication analysis

We utilized CellChat, a tool that quantitatively infers
intercellular communication networks from scRNA-seq data (Jin
et al., 2021). Based on a database of human ligand-receptor
interactions and pattern recognition techniques, CellChat can
detect intercellular communication at the pathway level and
calculate the communication network of aggregated cells. Use
default settings for all parameters.

2.12 Cell culture

The Huh7 human hepatocellular carcinoma cell line was
purchased from American. Type Culture Collection. The cells
were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin.

The extraction and cultivation of human Treg cells were
performed following previously reported methods (Gu et al.,
2022). In brief, peripheral blood cells from volunteers at Nanjing
Medical University were extracted, and naïve T cells were obtained
through magnetic bead selection. Subsequently, these cells were
induced into iTreg in vitro using IL-2 and TGF-β.

2.13 Lentivirus transfection

The generated lentivirus was used to knock down PTTG1 in
both Huh7 and iTreg. In Huh7 cells, on the second day of
subculture, 100 μL of lentiviral supernatant was added to 2 mL of
complete medium. After infecting the cells with the lentivirus for
10 h, the supernatant was removed and replaced with 2 mL of fresh
complete medium. The infection efficiency was observed 48 h later.
After confirming the successful transfection of the lentivirus into
Huh7 cells, cells were selected with a complete medium containing
0.2 μg/mL puromycin for 7 days. After 7 days of selection, cells were
returned to a puromycin-free complete medium for further
cultivation. In iTreg, iTreg induction was conducted in 6-well
plates. 16 h after the induction of iTreg, lentiviral supernatant
was added to the cells. The cells were then centrifuged at 200 g
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for 90 min and cultured at 37°C for 72 h, followed by flow cytometry
sorting to obtain successfully transfected cells.

2.14 EdU assay

Following the manufacturer’s instructions, an EdU assay was
conducted utilizing an EdU Cell Proliferation Kit (Biosharp, China).
Briefly, cells were cultured in a 6-well plate at a density of 3 ×
10̂6 cells per well and treated with 10 μM EdU per well.
Subsequently, the cells were fixed with 4% paraformaldehyde and
stained using 1× click reaction buffer and 1× DAPI solution. Lastly,
cell counting was performed under a Zeiss fluorescence
photomicroscope.

2.15 Colony formation assay

Transfected Huh7 cells were plated into 6-well plates at a density
of 1,000 cells per well and incubated for 2 weeks. Subsequently, the
cells were fixed and stained in a dye solution comprising 0.1% crystal
violet (Beyotime, China) and 100% methanol.

2.16 Immunohistochemical (IHC) staining

We first deparaffinized and rehydrated tissue sections (4 µm).
Subsequently, endogenous peroxidase activity was blocked using 3%
hydrogen peroxide. The sections were then subjected to antigen
retrieval in EDTA buffer (pH 9.0) at 96°C for 20 min. Following
antigen retrieval, the sections were incubated with a PTTG1 primary
antibody (Affinity, af0354) overnight at 4°C. They were subsequently
incubated with secondary antibodies for 30 min at 37°C and stained
with 3,3-diaminobenzidine. All procedures were carried out in
accordance with the manufacturer’s instructions.

2.17 RNA extraction and quantitative
polymerase chain reaction (qPCR)

Total RNA was extracted from cells with an RNA-Qucik
Purification Kit (Yishan, Shanghai, China). Reverse transcription
was performed with the HiScript II 1st Strand cDNA Synthesis Kit
(Vazyme, Nanjing, China) according to the manufacturer’s
instructions. qPCR was used to detect gene expression with AceQ
universal SYBR qPCR Master Mix (Vazyme, Nanjing, China).
Results were normalized against Gapdh expression respectively.
The expression levels were calculated by the 2→ΔΔCT method.
The primers used for the amplification were shown in
Supplementary Table S4.

2.18 Statistical analysis

All statistical analyses were calculated using R (v4.1.0) and Python (v
3.6.6). Based on the recommended methods, the statistical analyses of
different datasets were performed using different packages. A
significance threshold of p < 0.05 was applied to determine statistical

significance. The Spearman correlation coefficient was used to
characterize the correlation, and a p-value less than 0.05 was
considered statistically significant. Asterisks are used to indicate
statistical significance (*, p < 0.05; **, p < 0.01; ***, p < 0.001); ns,
there was no statistical significance (p > 0.05).

3 Results

3.1 Identification of Prognosis-Associated
Genes Related to hepatocellular carcinoma
senescence

To investigate the role of aging gene sets in the progression of HCC,
we utilized four independent datasets from HCCDB v2.0. Differential
expression analysis between tumor and adjacent non-tumor tissues
yielded four sets of differentially expressed gene sets (Supplementary
Figure S1A). The intersection of these upregulated genes in tumor tissues
with a previously collected cellular senescence set identified
37 differentially expressed genes associated with cellular senescence
(Figure 1A). Subsequently, to further elucidate the relationship
between the cellular senescence set and prognosis of HCC patients,
we combined patient survival data with expression profile data and
employed univariate COX regression analysis to screen for genes
significantly correlated with prognosis across the four datasets
(Figures 1B, C; Supplementary Figure S1B-D), resulting in a total of
27 genes associated with prognosis. While incorporating as many genes
as possible enhances the accuracy of constructing a prognostic risk
model, our aim was to select a subset of stable genes. The four datasets
prior to batch correction exhibited noticeable batch effects
(Supplementary Figure S1E), which were effectively mitigated using
the “Batch_limma” package (Figure 1D). Lasso regression was then
applied to optimize the aforementioned gene sets in the integrated data
to improve the efficiency of the prognostic risk model (Figures 1E, F),
ultimately yielding four stable genes (PTTG1, ANLN, KIF2C, TPX2) for
establishing the prognostic risk model. Employing the “GSVA” scoring
method, hepatocellular carcinoma patients were stratified into high HSS
and low HSS groups based on the median score, revealing significant
differences in gene expression between the two groups (Figure 1G).
Principal component analysis (PCA) results also demonstrated that the
two patient groups did not belong to the same category (Supplementary
Figure S1F). Combining patient survival data, Kaplan-Meier curve
analysis revealed a significantly poorer prognosis in the high HSS
group (Figure 1H). Finally, we assessed the predictive ability of the
risk model, and time-dependent ROC analysis demonstrated the strong
predictive capability of the constructed risk model at 1 year
(Supplementary Figure S1G). In summary, we found that HSG
(PTTG1, ANLN, KIF2C, TPX2) was significantly upregulated in
hepatocellular carcinoma and that the constructed prognostic risk
model can reliably predict the prognosis of hepatocellular
carcinoma patients.

3.2 Analysis of Immune Status and Function
in High and Low HSS groups

To further assess the differences in the immune
microenvironment between the high and low HSS groups in
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HCC, we evaluated the levels of immune cell infiltration in the
integrated dataset using gene expression levels of immune cells.
Initially, we employed the CIBERSORT algorithm to determine
the relative abundance of 22 immune cell types, revealing
significant differences between the two patient groups
associated with nine immune cell types, including Treg and
macrophages (Figure 2A). Additionally, we assessed the
correlation between HSG and the infiltration levels of
22 immune cells, finding that the infiltration level of each cell
type was associated with at least one gene, except for M1 and
M2 macrophages (Figure 2B). Due to potential differences in
immune cell types and genes across different databases, we also
utilized the quanTIseq algorithm to assess the immune
infiltration levels of different cell types. We found higher
infiltration levels of Treg in the high HSS group, and all four
genes of HSG were positively correlated with Treg infiltration
levels (Figures 2C, D), consistent with the results from the
CIBERSORT algorithm. Furthermore, we employed the
ESTIMATE algorithm to quantify the overall immune
infiltration level (immune score) of immune cells, while also

calculating the stromal score and tumor purity of the samples
(Figure 2E). The results indicated slightly higher tumor purity in
the high HSS group compared to the low HSS group. In addition
to immune cells, we focused on the expression of relevant
immune factors in the tumor immune microenvironment,
combining the immunophenoscore (IPS) algorithm to assess
the immune phenotype of tumor samples, including Antigen
Processing-related immune factors, Effector Cells-related
immune factors, Suppressor Cells-related immune factors,
and Checkpoints-related immune factors. Significant
differences were observed between the high and low HSS
groups in four relevant immune factors, with the low HSS
group showing higher expression of Antigen Processing-
related molecules and a higher IPS (Supplementary Figure S2 A).

Differential expression analysis of the high/low HSS groups
revealed significant upregulation of genes such as PTTG1
(Figure 2F). Subsequently, we performed KEGG and GO
enrichment analyses on the upregulated gene set, revealing
significant enrichment of pathways related to cell cycle and
cellular senescence in the KEGG results (Figure 2G).

FIGURE 1
Identification of Prognosis-Associated Genes Related to Hepatocellular Carcinoma Senescence. (A) The Venn diagram shows the overlap between
differential genes in Tumor versus adjacent normal tissues and Senescence markers. (B) Univariate Cox regression of differential genes for the screening
of prognosis-related genes in TCGA-LIHC cohort. (C) The Venn diagram shows the overlap results of Univariate Cox regression analysis of the 4 separate
datasets (genes with HR > 1, p < 0.05). (D) Principal component analysis (PCA) of the 4 separate datasets with Batch_limma. (E–F) Least absolute
shrinkage and selection operator (LASSO)further screens for genes associated with prognosis. (G) Gene expression of High HSS group and Low HSS
group. (H) Kaplan–Meier curves based on the High/Low HSS group in the Integrated dataset-OS.
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FIGURE 2
Analysis of Immune Status and Function in High and Low HSS Groups. (A) The subpopulation of infiltrating immune cells by CIBERSORT. (B) The
correlation between gene expression and infiltration levels of 22 types of immune cells. (C) The subpopulation of infiltrating immune cells by quanTIseq.
(D) The correlation between gene expression and infiltration levels of 11 types of immune cells. (E) Tumor purity, ESTIMATE, immune and stromal score of
two groups in the Integrated dataset. (F) Differential expression analysis of High HSS group and Low HSS Group in the Integrated dataset. (p-value<
0.05 and log2FC > 1) (G) KEGG enrichment analysis of the up signature genes in the High HSS group. (H) Gene set enrichment analysis (GSEA) of the up
signature genes in the High HSS group. (*p < 0.05; **p < 0.01; ***p < 0.001).
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Similarly, GSEA analysis also yielded similar results (Figure 2H),
but also identified pathways related to nucleotide metabolism,
consistent with the significant enrichment of DNA and
chromosome-related biological activities in the GO
enrichment results (Supplementary Figure S2 B). Finally, we
utilized the classic HALLMARK pathways of tumors to score the
high/low HSS groups, revealing minor overall differences but

showing higher activity in cell proliferation-related pathways in
the high HSS group, such as the HALLMARK_E2F pathway
(Supplementary Figure S2C). In conclusion, significant
differences exist in the tumor microenvironment of high/low
HSS groups in hepatocellular carcinoma, with the high HSS
group exhibiting increased activity in cell proliferation-
related pathways.

FIGURE 3
Study of Hepatocellular Carcinoma Mutation Spectrum. (A) Mutation map showing the frequency of alterations in the top 30 genes across TCGA-
HSS-high samples. (B) Mutation map showing the frequency of alterations in the top 30 genes across TCGA-HSS-low samples. (C, D) The statistical
results of Transitions_vs._Transversions for SNPs. (E)Mutation map of HS genes in the TCGA samples. (F) Kaplan–Meier curves based on High/Low HSS
group and TP53 mutations in the TCGA-dataset-OS.
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3.3 Study of Hepatocellular Carcinoma
Mutation Spectrum

Based on the content of the above results, differences were found in
the IPS_IPS scores between the high and low HSS groups. Relevant
literature suggests that a higher immune phenotype score corresponds to
a better response to immune checkpoint inhibitors. Additionally, there
are reports indicating that tumor mutation burden (TMB) is also an
important factor influencing immune checkpoint inhibition. Therefore,
we downloaded mutation expression profiles of TCGA data and
combined them with previously analyzed transcriptome expression
profiles, resulting in a total of 336 patients with retained mutation
and expression data. We conducted separate analyses for the high and
low HSS groups.

In the high HSS group, 94.5% of patients had gene mutations, with
TP53 having the highest mutation frequency at 44% (Figure 3A). On the
other hand, in the lowHSS group, 89.6% of patients hadmutations, with
CTNNB1 having the highest mutation frequency. The mutation
frequency of TP53 was only 14% (Figure 3B). Apart from these
differences, we also found some commonalities; both high and low
HSS groups were predominantly characterized by Missense_Mutation,
and the results of single-nucleotide polymorphisms (SNPs) mostly
involved variations between similar nucleotides (Figures 3C, D).

In terms of somatic mutation interactivity, we examined co-
occurring or exclusive results between mutated genes. In the high
HSS group, there was a significant co-mutation trend between
TP53 and DOCK2 genes, while CTNNB1 showed a strong exclusive
mutation tendency with AXIN1 (Supplementary Figure S3A). In the low
HSS group, CTNNB1 showed co-mutation trends with several genes,
including ARID2 and APOB, while TP53 also showed co-mutation
trends with multiple genes (Supplementary Figure S3B). However,
overall, both TP53 and CTNNB1 exhibited a tendency toward
exclusive mutations in both datasets.

We also specifically examined the mutation status and tumor
mutation burden of the four genes, but mutations in these four genes
were not present in the majority of samples (Figure 3E). The results of
tumor mutation burden showed that the low HSS group had a higher
mutation burden (Supplementary Figure S3C, D). Finally, Finally, we
reclassified the TCGA samples based on HSS grouping and
TP53 mutations. we re-categorized the samples into four
groups,TP53_Mut_High_HSS, TP53_Wt_High_HSS, TP53_Mut_
Low_HSS, and TP53_Wt_Low_HSS.We supplemented our analysis
by distinguishing between TP53 mutations and wild-type status
within the High_HSS and Low_HSS groups. Survival analysis of
these groups revealed that the TP53_Mut_High_HSS group exhibited
the poorest survival outcomes (Figure 3F). This indicates that patients
with both TP53 mutations and high HSS levels may face a particularly
unfavorable prognosis. It underscores the limitation of relying solely on a
transcriptional score model to predict prognosis accurately for all patient
subtypes. Hence, considering the mutation status of patient genes in
subsequent research is imperative and cannot be overlooked.

3.4 The connection between HSS and cells
at the single-cell level

Next, we aimed to elucidate the relationship between HSS and
cells at the single-cell level. We obtained two sets of single-cell

transcriptome data from hepatocellular carcinoma from the GEO
database, namely, GSE149614 and GSE156625. Subsequently,
rigorous quality control procedures were conducted, resulting in
the acquisition of transcriptome data from 124,322 individual cells.
We employed the Harmony algorithm to remove batch effects
between samples and utilized an unsupervised clustering method
based on shared nearest neighbors (SNN), identifying a total of
40 cell clusters (Supplementary Figure S4A-D). Cell clusters were
annotated using canonical marker genes, followed by dimensionality
reduction clustering and annotation into 11 major cell clusters,
including T_Cell, Treg, NK_Cell, Monocyte, DC, Macrophage, B_
Cell, and Plasma cells, Hepatocyte, Endothelial, and Fibroblast
(Figure 4A-C; Supplementary Figure S4E). We observed an
increased abundance of Hepatocyte, Fibroblast, and Treg
populations in tumor tissues compared to adjacent normal
tissues (Figure 4D, E; Supplementary Figure S4F). To further
analyze the contribution of HSG to various cell types, we
depicted the expression patterns of four genes across different
cell types (Figure 4F). The results revealed significantly elevated
expression of PTTG1 in Treg and Hepatocyte populations, with the
expression of the other three genes also slightly higher in
Hepatocytes compared to other cell types. Additionally, HSS
demonstrated higher composite scores in Treg and select
Hepatocyte populations (Figures 4G, H). In summary, leveraging
single-cell transcriptome data, we found that HSS predominantly
exhibited higher scores in Treg and Hepatocyte populations,
emphasizing the association between HSG and Treg as well as
Hepatocyte populations.

3.5 Transcriptome Analysis of Malignant
Hepatocytes Based on HSS

To further analyze the relationship between hepatocytes and
HSG, we separately extracted Hepatocytes and performed
dimensionality reduction clustering of cell clusters, resulting in a
total of 14 cell clusters (Supplementary Figure S5A). Subsequently,
we considered cell clusters where tumor tissue comprised more than
50% of the cells as malignant hepatocytes. Accordingly, the 10th and
11th clusters were identified as normal hepatocytes (Figure 5A;
Supplementary Figure S5B). Among the remaining cell clusters,
analysis combined with HSS scores revealed that the third cluster
had significantly higher scores compared to other cell clusters
(Figure 5B; Supplementary Figure S5C). Finally, we categorized
hepatocytes into three types, namely, Normal, HSS_high
Hepatocyte, and HSS_low Hepatocyte (Figure 5C).

To ensure accurate identification of malignant tumors based on
tissue origin, we utilized inferCNV to calculate the CNV scores of
each cell. Additionally, we computed the correlation between CNV
matrices of each cell and the top 10% of CNV matrices, revealing
that HSS_high Hepatocyte had the highest CNV_scores and CNV_
cor, followed by HSS_low Hepatocyte and Normal (Figure 5D).
Scatter plots drawn based on the threshold defined by the second
quartile also indicated that HSS_high Hepatocyte and Normal cells
were mostly located in the first and third quadrants
(Supplementary Figure S5D).

Malignant cells exhibited significant heterogeneity. We
conducted differential expression analysis between HSS_high
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Hepatocyte and HSS_low Hepatocyte and found that genes
upregulated in HSS_high Hepatocyte were enriched in pathways
related to cell proliferation, such as the E2F pathway in
HALLMARK analysis and cell cycle and cell senescence pathways
in KEGG analysis. GO analysis also revealed enrichment in activities
associated with cell division, corroborating results from bulk
analysis (Figure 5E; Supplementary Figure S5E, F). Additionally,

scoring using classic cell proliferation-related gene sets showed
significantly higher scores in HSS_high Hepatocyte. Analysis of
cell metabolism using scMetabolism also revealed increased activity
of oxidative phosphorylation related to tumor proliferation in HSS_
high Hepatocytes.

In addition to proliferative capacity, we predicted the
differentiation potential of malignant cells using CytoTRACE,

FIGURE 4
The Connection between HSS and Cells at the Single-Cell Level. (A) tSNE analysis identified 11major cell types in hepatocellular carcinoma samples.
(B)Dotplot showing the percentage of expressed cells and average expression levels of canonical marker genes ofmajor cell types in cell clusters. (C) The
tSNE plots showing the expression levels of signature genes of eight major cell types, colored by gene expression. (D) Sankey Diagram showing the
percentages of 11 major cell types in Tissue sample. (E) Gittered scatter plot showing the percentages of cell types in each sample (F) Dotplot
showing the percentage of expressed cells and average expression levels of HS marker genes in major cell types (G) Violin plot demonstrating HSS in
11 major cell types. (H) The tSNE plots showing the HSS of all cell types, colored by score levels.
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FIGURE 5
Transcriptome Analysis of Malignant Hepatocytes Based on HSS. (A) tSNE analysis shows the tissue distribution of Hepatocytes. (B) Violin plot
demonstrating HSS in 14 clusters. (C) tSNE analysis identified 3 cell types in Hepatocyte. (D) Boxplot showing the HSS of 3 cell types in Hepatocyte. (E) Bar
graph demonstrating the results of enrichment analysis of HALLMARK. (F) Boxplot demonstrating Proliferation score of 3 cell types in Hepatocyte. (G)
scMetabolism-related cellular metabolic pathways. (H) CytoTRACE predicts the cell differentiation potential of 3 cell types in Hepatocyte. (I)
Regulon analysis of pyscenic results. (J) Violin plot demonstrating HSG expression in 3 cell types of Hepatocyte.
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which suggested that HSS_high Hepatocytes may have higher
differentiation potential (Figure 5H). Finally, using pyscenic, we
inferred the transcription factors driving the stronger proliferative
capacity and differentiation potential of HSS_high Hepatocyte.
Results showed that the three groups of Hepatocytes exhibited
different levels of activation for transcription factors.
Interestingly, among the top 20 significantly activated
transcription factors in HSS_high Hepatocyte, three (E2F1,
EZH2, MYC) were found to potentially regulate PTTG1, which
also exhibited higher gene expression levels in HSS_high Hepatocyte
(Figure 5I; Supplementary Figure S5G). The activation scores and
gene expression levels of transcription factors (E2F1, EZH2, MYC)
were significantly higher in HSS_high Hepatocytes (Supplementary
Figure S5H-I). Integration of transcription factors and PTTG1 in the
STRING database also revealed significant associations among these
proteins (Supplementary Figure S5K). In summary, analysis of
hepatocellular carcinoma revealed that HSS_high Hepatocytes
exhibited stronger proliferative capacity and differentiation
potential, regulated by multiple transcription factors to
upregulate PTTG1 expression.

3.6 Revealing the Impact of Key Gene
PTTG1 on HCC Cell Phenotype and
Treg Function

Next, We employed immunohistochemistry to detect the
expression of PTTG1 in both cancerous and adjacent non-
cancerous tissues of HCC patients, revealing a significant
upregulation of PTTG1 expression within the cancerous tissues
(Supplementary Figure S6A). Additionally, through the HPA
database, we identified Treg as the immune cells exhibiting the
highest expression of PTTG1, consistent with our research findings
(Supplementary Figure S6B). Given the enhanced proliferative
capacity and differentiation potential observed in HSS_high
Hepatocyte, along with the significant differential expression of
PTTG1 within this population, we identified PTTG1 as a pivotal
gene for investigation. To explore the effects of PTTG1 on HCC
cells, we utilized lentiviral knockdown of PTTG1 in the human
hepatocellular carcinoma cell line Huh7 and assessed its cellular
proliferative capacity. The results demonstrated a significant
decrease in cell proliferation and colony formation ability in the
shRNA-PTTG1 group compared to the shRNA-NC group (Figures
6A, B), suggesting an important role of PTTG1 in tumor
proliferation.

Treg are crucial immune regulatory cells in the tumor
microenvironment, playing a key role in maintaining an
immune-suppressive environment within tumors (Li et al., 2020).
Consistent with previous analyses, we found that besides its
significant expression in hepatocytes, PTTG1 was also
prominently expressed in Treg. Therefore, we conducted an
analysis focusing on the role of PTTG1 in Treg. Treg was
isolated for separate analysis, and in line with previous results,
Treg exhibited a significant increase in quantity within tumor tissues
(Figure 6C), with Treg in tumor tissues showing higher HSS scores
(Figure 6D). Upon isolating Treg and performing dimensionality
reduction clustering, a total of 6 cell clusters were identified
(Figure 6E), and the distribution of HSG within each cluster was

analyzed. The results revealed that among the four genes, only
PTTG1 was extensively expressed in Treg (Figure 6F). To further
investigate the impact of PTTG1 on Treg function, we knocked
down PTTG1 in Treg using lentivirus. Compared to the shRNA-NC
group, the shRNA-PTTG1 group exhibited a significant decrease in
FOXP3 expression (Figure 6G). Additionally, crucial functional
molecules PD-1 and CTLA4 also showed significant
downregulation (Figure 6H). Subsequently, we endeavored to
investigate the mechanisms by which PTTG1 influences Treg
function. We classified Treg into PTTG1high Treg and PTTG1low

Treg using single-cell data and conducted differential gene
expression analysis and functional enrichment between these
2 cell populations (Supplementary Figure S6C-E). Our analysis
revealed that compared to PTTG1low Treg, PTTG1high Treg
exhibited elevated expression of FOXP3, consistent with our
experimental results (Supplementary Figure S6F). Furthermore,
we observed significant enrichment of the IL2_STAT5_
SIGNALING in PTTG1high Treg, a pathway closely associated
with Treg function and stability (Supplementary Figure S6G)
(Arenas-Ramirez et al., 2015). Among these, IL2RA and
TNFRSF9 have been previously established as functional markers
for tumor-infiltrating Treg (Cho et al., 2021; Permanyer et al., 2021).
Subsequently, we assessed the expression levels of IL2RA and
TNFRSF9 mRNA in the shRNA-PTTG1 group. Consistent with
the analysis results, a significant reduction in the expression levels of
IL2RA and TNFRSF9 in Treg following PTTG1 knockdown
(Figure 6I). These findings indicate the significant role of
PTTG1 in maintaining Treg function and establishing an
immune-suppressive microenvironment within tumors.

3.7 Cell-cell interaction analysis

We performed CellChat analysis to identify key cell
subpopulations and receptor-ligand pairs involved in
interactions with Malignant_HSS_high cells in tumor and
normal tissue. Initially, we explored the communication
patterns among all cell subpopulations (Figure 7A). Our
research findings indicate that fibroblasts are the most active
communicating cell subtype in tumor tissues, and they also
exhibit the highest interaction weights and number of
interactions with Malignant_HSS_high cells among all cell
types (Figures 7A, B). In contrast, macrophages in normal
tissues demonstrate more active cell communication
(Figure 7A; Supplementary Figure S7A). In our specific
ligand-receptor interaction analysis, we primarily focused on
fibroblasts. However, due to the significant expression of
PTTG1 in both Malignant_HSS_high cells and Treg, we also
considered Treg. When Malignant_HSS_high cells as ligands,
the interactions with fibroblasts involve MDK-SDC2/NCL, while
interactions with Treg involve MIF-CD44/CXCR4/CD74
(Figure 7C). The Malignant_HSS_high cells as receptors,
significantly different ligand-receptor pairs include FN1-
ITGAV/ITGB1ITGA5 and CD99−CD99 (Supplementary
Figure S7B, C).

These findings are also validated in the analysis of active
communication pathways. For example, the MK pathway not
only ranks ahead of many pathways but also contributes most
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FIGURE 6
Revealing the Impact of Key Gene PTTG1 on HCC Cell Phenotype and Treg Function. (A) Representative images and counts of EdU+ cell in group of
shRNA-NC and shRNA-PTTG1. (B) Examination of colony formation capabilities in group of shRNA-NC and shRNA-PTTG1. (C) tSNE analysis shows the
tissue distribution of Treg. (D) Violin plot demonstrating HSS in Treg. (E) tSNE analysis identified 6 clusters in Treg. (F) The tSNE plots showing the
expression levels of HSG in Treg, colored by gene expression. (G) Representative plots of the percentages of FOXP3+ cells in group of shRNA-NC and
shRNA-PTTG1. (H) Representative plots of CTLA-4 and PD-1 expression in group of shRNA-NC and shRNA-PTTG1. (I) qPCR detection of IL2RA and
TNFRSF9 in treated Treg; n = 3 per group. (*p < 0.05, **p < 0.01, ****p < 0.0001).
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FIGURE 7
Cell-cell interaction analysis. (A) The interaction weights among all cell subpopulations in tumor and normal tissue. (B) The number of interactions
among all cell subpopulations in tumor tissue. (C) Receptor ligand pairs of Malignant_HSS_high cells interacting with Fibroblasts and Treg. (D, E) The
contribution values of outgoing or incoming signaling pathways for all cell groups indicate that the signaling pathway on the left side contributes the
most. (F) The contribution of theMK signaling pathway to the interaction betweenMalignant_HSS_high cells and fibroblasts. (G) Violin plots showing
the expression of genes associated with ligand-receptor pairs (**p < 0.01).
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significantly to the interactions between malignant cells and
fibroblasts (Figures 7D–F). Lastly, we corroborated the
interactions by examining the expression levels of the genes
involved in these ligand-receptor pairs (Figure 7G).

4 Discussion

The aging process is a continuous and unavoidable occurrence
in the human body, participating in various physiological and
pathological processes (Campisi, 2013). Several diseases have
been linked to cellular senescence in previous research, including
atherosclerosis (Gardner et al., 2015), diabetes (Palmer et al., 2019),
NAFLD (Ogrodnik et al., 2017), and others. The relationship
between senescence and tumors is complex. On one hand, aging
serves as one of the body’s protective mechanisms against tumor
development. For example, the activation of oncogenes can induce
cellular senescence, limiting tumor growth and preventing benign
tumors from progressing to malignancy (Courtois-Cox et al., 2008).
At the same time, senescence of tumor cells can induce a senescence-
associated secretory phenotype (SASP), leading to the secretion of
pro-inflammatory cytokines such as IL-1, IL-6, IL-8, which triggers
an immune response and promotes the clearance of tumor cells
(Chibaya et al., 2022). However, from another perspective, the
accumulation of senescent cells with age creates a
microenvironment conducive to tumor development. This
includes the decline in immune function due to the aging of
immune cells, as well as the senescence-associated secretory
phenotype (SASP) resulting from fibroblast senescence, which
contains factors such as MMP3 and VEGF that can promote
tumor growth (Krtolica et al., 2001; Liu and Hornsby, 2007). Not
only age-related factors, but tumors themselves can also promote
their growth by inducing senescence in surrounding cells.
Additionally, chemotherapy-induced cellular senescence is
increasingly recognized as one of the reasons for the rapid
emergence of drug resistance in malignant tumors (Xu et al.,
2019). Understanding the role of aging in tumors and identifying
the distribution and changes in the expression of aging-related genes
in the tumor environment is crucial for effectively utilizing cellular
senescence in the treatment of cancer.

In this study, we conducted a comprehensive analysis of four
independent datasets from HCCDB v2.0 and constructed a
prognostic risk model containing four stable HSG, scoring the
risk accordingly. We found that the high HSS group exhibited
significantly worse prognosis, along with higher tumor purity,
more active cell proliferation, and increased infiltration of
immunosuppressive Treg. This result confirms the relevance of
HSG to HCC and underscores the credibility of predicting HCC
prognosis through HSG.

Subsequently, using single-cell data, we further elucidated the
relationship between HSS and HCC. We found that HSS had the
highest scores in Treg and Hepatocyte, with HSS_high Hepatocyte
exhibiting stronger proliferative capacity and differentiation
potential. Interestingly, among the four HSG, PTTG1 showed the
most significant role, manifested not only in widespread high
expression but also in the upregulation of its associated
transcription factors. PTTG1 is involved in DNA damage repair
regulation as well as organ development and metabolism. Its high

expression in various endocrine-related tumors is associated with
the process of tumor metastasis (Vlotides et al., 2007). In HCC,
PTTG1 has been shown to promote tumorigenesis by influencing
asparagine metabolism, and our experiments have confirmed that
PTTG1 can enhance tumor cell proliferation (Zhou et al., 2023).
Specifically, we found that PTTG1 is associated with the function of
Treg. Knocking down PTTG1 reduces the induction of Foxp3+ Treg
and decreases the expression of functional molecules CTLA-4 and
PD-1. This aligns with the increased Treg infiltration observed in the
high HSS group. Here, we have conducted an initial exploration into
the mechanism by which PTTG1 influences Treg function. Our
findings suggest that PTTG1may be involved in the regulation of the
IL2-STAT5 signaling pathway in Treg. This pathway plays a crucial
role in maintaining the stability of Treg function. However, the role
and specific mechanisms of PTTG1 in Treg still need to be further
explored, which may help in developing personalized treatment
plans for HCC patients based on HSS.

At last, through intercellular communication analysis, we found
that fibroblasts are the most active cell subtype in tumor tissue
communication, and they have various receptors with HSS_high
cells, indicating their potential relevance to the appearance of HSS_
high cells and playing an important role, which requires further
investigation.

5 Conclusion

Our study comprehensively reveals the significant role of
HSG in the development of HCC, as well as its intricate
relationships with the immune microenvironment, mutational
burden, and single-cell level cells. In particular, the role of
PTTG1 in Treg and HCC cells is highlighted. These findings
provide important clues for a deeper understanding of the
molecular mechanisms underlying HCC and the development
of prognostic prediction models.
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