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Mitochondria are key organelles for the optimal function of the cell. Among their
many functions, they maintain protein homeostasis through their own
proteostatic machinery, which involves proteases and chaperones that
regulate protein import and folding inside mitochondria. In the early 2000s,
the mitochondrial unfolded protein response (UPRmt) was first described in
mammalian cells. This stress response is activated by the accumulation of
unfolded/misfolded proteins within the mitochondrial matrix, which results in
the transmission of a signal to the nucleus to increase the expression of proteases
and chaperones to address the abnormal mitochondrial protein load. After its
discovery, this retrograde signaling pathway has also been described in other
organisms of different complexities, suggesting that it is a conserved stress
response. Although there are some specific differences among organisms, the
mechanism of this stress response is mostly similar and involves the transmission
of a signal from mitochondria to the nucleus that induces chromatin remodeling
to allow the binding of specific transcription factors to the promoters of
chaperones and proteases. In the last decade, proteins and signaling pathways
that could be involved in the regulation of the UPRmt, including the Wnt signaling
pathway, have been described. This minireview aims to summarize what is known
about themechanismof the UPRmt and its regulation, specifically inmammals and
C. elegans.
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1 Introduction

Mitochondria are organelles with many functions, such as providing energy in the
form of ATP and regulating calcium homeostasis, redox balance, and apoptosis
(Harrington et al., 2023), being essential for maintaining cellular homeostasis.
Interestingly, mitochondria contain nuclear-encoded and mitochondrial-encoded
proteins that are assembled inside the organelle to form functional complexes within
the mitochondrial matrix and the inner mitochondrial membrane (Annesley and Fisher,
2019). Thus, mitochondria have a proteostatic network composed of chaperones and
proteases that ensure correct protein import and folding within them (Voos, 2009). In
2002, the mitochondrial unfolded protein response (UPRmt) was described for the first
time as a specific stress response in the mitochondria of mammalian cells triggered by the
accumulation of unfolded/misfolded proteins within the mitochondrial matrix (Zhao
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et al., 2002); this type of response had been previously described
only in the endoplasmic reticulum, known as the endoplasmic
reticulum unfolded protein response (UPRER).

The UPRmt involves retrograde signaling between mitochondria
and the nucleus, which leads to the upregulation of several
mitochondrial proteins, including antioxidant enzymes,
mitochondrial import proteins, and mitochondrial chaperones
and proteases, to decrease the unfolded/misfolded load (Zhao
et al., 2002; Anderson and Haynes, 2020; Tran and Van Aken,
2020). The mechanism of the UPRmt in mammals has recently been
described; however, it is still not fully understood. There are
different axes of the UPRmt, with the canonical axis being the
most studied (Munch, 2018); this axis involves the activation of
the integrated stress response (ISR), which decreases the global
translation rate, favoring the translation of specific stress-
responsive proteins (Fiorese et al., 2016; Quiros et al., 2017;
Anderson and Haynes, 2020). In the years after the UPRmt was
first described in mammalian cells, this stress response was also

described in the nematode C. elegans (C. elegans) (Yoneda et al.,
2004), in yeast (Schleit et al., 2013) and in Drosophila melanogaster
(Pareek and Pallanck, 2018); this suggests that the UPRmt is a
conserved signaling pathway among eukaryotic organisms,
including highly complex organisms such as humans and other
mammals, and less complex organisms such as C. elegans and yeast.
The mechanism of this stress response in C. elegans has been widely
reported, more than the same response in mammals, mainly due to
the ease of generating loss- or gain-of-function mutations in specific
proteins in C. elegans (Haynes et al., 2007; Nargund et al., 2012);
however, the mechanisms by which this stress response is regulated
have not yet been fully described.

In this minireview, we will describe the mechanism of the UPRmt

both in mammals and in C. elegans, as well as the similarities and
differences among these species, and the different regulatory
mechanisms described in recent years to provide a global view of
what is known about the UPRmt today, providing a reference for
future studies on the potential of this stress response as a new

FIGURE 1
The mitochondrial unfolded protein response in mammals. The figure shows the mechanism of the UPRmt in mammals described thus far. The
scheme shows the different axes of the mitochondrial-nuclear retrograde signaling pathway and the proteins involved. In the canonical UPRmt, the
accumulation of abnormal proteins within the mitochondrial matrix activates the protease Oma1, which cleaves L-DELE1 into short fragments (S-DELE1)
that are released into the cytosol. Once in the cytosol, S-DELE1 interacts with and activates the kinase HRI, activating the ISR and allowing the
translation of ATF4, CHOP, and ATF5. The latter is translocated to the nucleus, where it binds to the promoters of UPRmt-related genes following
chromatin remodeling by KDM6B and PHF8. CBP/p300 is also involved in epigenetic modification and the expression of UPRmt-related genes. In the
translational axis, unfolded proteins reduce the mitochondrial translation rate locally without generating a global response. In the SIRT3 axis, unfolded
proteins activate SIRT3, which induces the nuclear localization of the transcription factor FOXO3a to upregulate antioxidant enzyme expression. Finally,
the UPRIMS/ERα is activated by misfolded protein accumulation in the IMS, leading to an increase in ROS levels, which in turn activates Akt kinase to
phosphorylate and activate ERα. Undescribed proteins and mechanisms are shown with a question mark (?).

Frontiers in Cell and Developmental Biology frontiersin.org02

Torres et al. 10.3389/fcell.2024.1405393

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1405393


therapeutic target. The PubMed database was searched using the
main keyword “mitochondrial unfolded protein response”, and
articles describing the mechanism of the UPRmt and reporting
more recent findings regarding the regulation of the UPRmt and
its effect on diseases were selected.

2 The UPRmt in mammals

Regarding studies on the UPRmt in mammals, Zhao et al. (2002)
showed that the transfection of COS-7 cells with a mutant misfolded
form of ornithine trans-carbamylase (ΔOTC), a mitochondrial matrix
protein involved in the urea cycle, results in the accumulation of this
protein, inducing the upregulation of nuclear-encoded mitochondrial
chaperones and proteases (Zhao et al., 2002). This work described for
the first time the transcriptional UPRmt, a stress response triggered by
the accumulation of misfolded proteins within the matrix that is
currently known as the canonical UPRmt (Figure 1). In this stress
response, stress signal transmission to the cytosol is thought to be driven
through the processing of DAP3 binding cell death enhancer 1 (DELE1)
by the protease Oma1 (Fessler et al., 2020; Guo et al., 2020).
Oma1 constitutively cleaves the fusion dynamin-like GTPase
L-OPA1 into small fragments, and this activity is increased under
stress (Baker et al., 2014). Although the mechanism underlying stress-
induced Oma1 activation is still not well characterized, it has been
reported that stress signals are sensed through positively charged amino
acids in the N-terminal region and that the transition to an active
complex is associated with conformational changes involving the
conserved C-terminal region (Baker et al., 2014). DELE1 is a 56 kDa
protein that contains a mitochondrial targeting sequence (MTS) that
allows it to be localized to the mitochondrial matrix in the absence of
stress, where it has a short half-life due to its degradation by the protease
Lonp1. However, during mitochondrial stress, DELE1 senses
mitochondrial import deficiency since newly synthesized full-length
DELE1 is cleaved by Oma1 in the N-terminal MTS, which produces
short fragments (S-DELE1) that accumulate in the cytosol (Fessler et al.,
2020; Guo et al., 2020). These fragments interact with and activate the
kinase heme-regulated inhibitor (HRI), leading to the phosphorylation
of eukaryotic translation initiation factor 2A (eIF2α), activating the ISR
and increasing the expression of the transcription factors activating
transcription factor 5 (ATF5), activating transcription factor 4 (ATF4)
and C/EBP homologous protein (CHOP) (Fiorese et al., 2016; Fessler
et al., 2020; Guo et al., 2020).

Although the order in which these transcription factors act is still
unknown, ATF5 has been described as fundamental for UPRmt

activation. ATF5 has an MTS and a nuclear localization signal
(NLS) (Fiorese et al., 2016). Under normal conditions, ATF5 is
imported into mitochondria for degradation, presumably by the
protease Lonp1. Nevertheless, under stress conditions, the import of
ATF5 is inhibited by an unknown mechanism, leading to its
cytoplasmic accumulation and consequent nuclear translocation,
where it binds to a specific UPRmt element to induce the expression
of certain genes, including the mitochondrial chaperones Hsp60,
Hsp10, and mtHsp70 and the proteases Lonp1 and ClpP (Nargund
et al., 2015; Fiorese et al., 2016). Additionally, UPRmt-related genes
contain CHOP-binding regions in their promoters, indicating the
importance of CHOP in the expression of these genes (Zhao et al.,
2002). CHOP induces ATF5 expression in the UPRER to induce

apoptosis (Teske et al., 2013), and it has been reported that in
HepG2 cells but not in other cells exposed to arsenite,
ATF5 increases CHOP expression (Yamazaki et al., 2010),
suggesting that these two transcription factors can regulate each
other in a context-dependent manner. However, specifically in the
UPRmt, themechanism bywhich this process is regulated remains to be
elucidated. Moreover, the precise role of ATF4 in this process is still
unclear; however, it was identified as a regulatory factor that induces
the expression of cytoprotective genes in response to mitochondrial
stress, and it has also been proposed as a link between the UPRER and
UPRmt (Quiros et al., 2017; Jiang et al., 2020). Moreover, a previous
study demonstrated that heat shock transcription factor 1 (HSF1) is an
important player in the UPRmt since under stress, HSF1 enters the
nucleus and binds to the promoter of the chaperones Hsp60, Hsp10,
and mtHsp70 but not to the promoter of the protease Lonp1 (Katiyar
et al., 2020). However, how HSF-1 interacts with the canonical
transcription factors ATF5, ATF4, and CHOP is still unknown.

It has been suggested that the UPRmt involves epigenetic
modifications caused by the histone demethylases PHF8 and
KDM6B since there is a positive correlation between the
expression of these proteins and UPRmt gene expression.
Furthermore, removal of lysine 27 trimethylation in histone 3
(H3K27me3) increases the expression of mitochondrial
chaperones and proteases (Merkwirth et al., 2016). Moreover, the
transcriptional coactivator CBP/p300 induces the acetylation of
lysine 18 and 27 in histone 3 (H3K18Ac and H3K27Ac),
probably after KDM6B and PHF8 exert their effect, and is
indispensable for UPRmt-related gene expression (Li et al., 2021).

Along with the canonical UPRmt, different axes of the UPRmt

have been described. There is a translational axis that decreases the
mitochondrial translation rate locally to reduce the protein folding
load and allow the handling of existing misfolded proteins (Munch
and Harper, 2016). This translational axis is a local response and
does not generate a cellular response since it is activated only when a
few mitochondria are damaged (Munch, 2018). Moreover, the
misfolded protein load in the mitochondrial matrix activates an
antioxidant UPRmt axis driven by sirtuin 3 (SIRT3) (Papa and
Germain, 2014; Munch, 2018). SIRT3 increases the nuclear
localization of the transcription factor FOXO3a through its
deacetylation, which increases the transcription of antioxidant
enzymes such as superoxide dismutase 2 (SOD2) and catalase
(Papa and Germain, 2014). Although it has been reported that
Hsp10 and Lonp1 are substrates of SIRT3 deacetylation (Gibellini
et al., 2014; Lu et al., 2015), there are contradictory findings
regarding how the SIRT3 axis is related to canonical UPRmt-
related gene expression (Gibellini et al., 2014; Papa and Germain,
2014; Lu et al., 2015; Chen et al., 2021; Wu et al., 2023). In addition,
mitochondria have different compartments, and when misfolded
protein accumulation occurs in the intermembrane space (IMS),
another UPR, called the UPRIMS/ERα, is activated. This signaling
pathway seems to be independent of the canonical UPRmt; however,
these responses can act in parallel or complement each other.
Protein aggregates in the IMS activate estrogen receptor alpha
(ERα) in a ligand-independent manner through its
phosphorylation at serine 167 (Papa and Germain, 2011). An
increase in reactive oxygen species (ROS) production leads to the
activation of the kinase AKT, which ultimately induces the
activation of ERα and the transcription of nuclear respiratory
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factor 1 (NRF1) and the IMS protease Omi (Papa and Germain,
2011). Altogether, these UPRmt axes cope with the misfolded/
unfolded load within mitochondria to maintain proper
mitochondrial function.

3 The UPRmt in Caenorhabditis elegans

Shortly after the UPRmt was described in mammalian cells, it
was reported that the perturbation of protein handling in
mitochondria resulting from an RNAi against a mitochondrial
protease induces the expression of mitochondrial chaperones

(Yoneda et al., 2004). The mechanism of the UPRmt in C.
elegans has been largely described and, in general, is quite
similar to that in mammals (Figure 2). Indeed, the signal
produced by misfolded/unfolded accumulation in the matrix is
transmitted to the cytosol by the release of short fragments, as in
mammals; however, C. elegans does not have an Oma1 homolog
(Kirstein-Miles and Morimoto, 2010). In C. elegans, the protease
ClpP cleaves the abnormal proteins within the mitochondrial
matrix into small fragments of approximately 20 residues that
are released into the IMS through homodimers of the transporter
HAF-1 in the inner mitochondrial membrane (IMM) (Haynes
et al., 2010). The release of these peptides inhibits, by an unknown

FIGURE 2
The mitochondrial unfolded protein response in C. elegans. The figure shows the mechanism of the UPRmt in C. elegans described thus far. The
scheme shows the mitochondrial-nuclear retrograde signaling pathway and the proteins involved. The protease ClpP cleaves abnormal proteins inside
the mitochondria into small fragments of less than 20 amino acids, which enter the cytosol through the HAF-1 transporter. The release of these peptides
inhibits themitochondrial import of the transcription factor ATFS-1 by an unknownmechanism and induces its nuclear translocation. In the nucleus,
ATFS-1 forms a complex with UBL-5 and DVE-1 after chromatin remodeling by the methyl transferases JMJD3.1 and JMJD1.2. Additionally, CBP-1 acts
upstream of these two methyltransferases but downstream of ATFS-1 to induce the expression of UPRmt-related genes. Undescribed proteins and
mechanisms are shown with a question mark (?).
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mechanism, the mitochondrial import of activating transcription
factor associated with stress 1 (ATFS-1), an ATF5 homolog that is
also the main transcription factor associated with the UPRmt in C.
elegans. Like ATF5, ATFS-1 contains a weak MTS and an NLS
(Haynes et al., 2010); when mitochondria are not perturbed, the
MTS prevails, and ATFS-1 is imported into the mitochondria for
degradation by the protease LON. However, under mitochondrial
stress, the weak MTS allows the sensing of few changes, which
leads to inhibition of its mitochondrial import and consequent
accumulation in the nucleus, where it can bind to the promoters of
UPRmt-associated genes (Nargund et al., 2012). Additionally, a
nuclear complex formed by the homeobox domain transcription
factor DVE-1 and ubiquitin-like protein UBL-5 binds to the
promoters of mitochondrial chaperones and protease to
facilitate the subsequent binding of ATFS-1 (Haynes et al.,
2007). The binding of these proteins to promoters requires
chromatin remodeling, as in mammals. The accumulation of
abnormal proteins activates the histone methyltransferase MET-
2 and the nuclear localization of the cofactor LIN-65 (Tian et al.,
2016). MET-2 mono- or dimethylates H3K9 (H3K9me1/2), which
results in general chromatin remodeling, leaving specific regions
exposed, where DVE-1 and ATFS-1 can bind (Tian et al., 2016).
Along with these proteins, the histone deacetylase HAD-1 and the
two histone demethylases JMJD-3.1 and JMJD-1.2 are
fundamental for UPRmt-related gene expression (Merkwirth
et al., 2016; Shao et al., 2020), indicating the importance of
chromatin changes and epigenetics in the UPRmt. Furthermore,
as in mammals, the CBP/p300 homolog CBP-1 is necessary for
UPRmt-related gene expression (Li et al., 2021). This coactivator is
suggested to exert its effect between chromatin remodeling by
JMJD-3.1 and JMJD-1.2 and the binding of ATFS-1 (Li
et al., 2021).

Just like UPRmt activation requires a decrease in global
translation by the HRI-dependent activation of ISR in mammals,
in C. elegans is also required a decrease in translation caused by
phosphorylation of eIF2α, but in this case, by the kinase GCN2,
which favors a better folding environment (Baker et al., 2012). These
data support the idea that the UPRmt and its mechanism are
conserved between mammals and C. elegans.

4 The UPRmt in disease

It has been reported that the UPRmt is activated in different
diseases in which mitochondrial dysfunction seems to be a key
player, such as cardiac disease (Smyrnias et al., 2019), kidney
disease (Liu et al., 2023), mitochondrial disease (Suarez-Rivero
et al., 2022b), cancer (Inigo and Chandra, 2022) and
neurodegenerative diseases (Beck et al., 2016; Cooper et al.,
2017). For instance, in Alzheimer’s disease (AD), the two main
toxic proteins that accumulate in AD, amyloid-β (Aβ) peptide and
tau protein, impair mitochondrial function in the early stages of
the disease (Torres et al., 2021; Bartman et al., 2024). Additionally,
mitochondrial diseases are caused either by pathological mutations
in mitochondrial DNA (mtDNA) or nuclear DNA affecting
OXPHOS complexes, which are inherited maternally or in an
autosomal recessive way, respectively (Gropman et al., 2024). In
both cases, the UPRmt is activated to compensate for mitochondrial

dysfunction; however, at some points, this response is no longer
enough to decrease mitochondrial damage (Suarez-Rivero
et al., 2022a).

The activation of the UPRmt has beneficial effects on increasing
longevity (Xin et al., 2022) and improving mitochondrial function
since it maintains ATP production, reduces ROS levels, and
decreases apoptosis (Svagusa et al., 2020; Lu et al., 2022). Thus, it
has been proposed that the activation of the UPRmt could be a
promising therapeutic approach for various diseases, although it
seems paradoxical that inducing mitochondrial stress in the
presence of mitochondrial dysfunction could be beneficial
(Suarez-Rivero et al., 2022a). Antibiotics, mainly doxycycline,
activate the UPRmt; however, the chronic use of antibiotics is still
controversial (Suarez-Rivero et al., 2021). Therefore, recent studies
have shown that different compounds could be safer therapeutic
agents for several diseases (Table 1). Despite favorable outcomes,
contradictory evidence indicates that overactivation or prolonged
activation of the UPRmt could be detrimental (Lu et al., 2022),
indicating the importance of proper balance in the activation of
the UPRmt.

The activation of the UPRmt is related to cancer progression
(Keerthiga et al., 2021). ATF5, Hsp60, mtHsp70, Lonp1, and Clpp
are upregulated in cancer, favoring tumor growth (Deng and
Haynes, 2017; Inigo and Chandra, 2022). ATF5 induces the
upregulation of antiapoptotic proteins such as Bcl-2 and MCL1,
promoting tumor cell growth, and the upregulation of integrin-α2
and integrin-β1, which favors cancer cell invasion (Nukuda et al.,
2016; Wang et al., 2022). Hsp60 is involved in preventing apoptosis
by inhibiting mitochondrial permeability transition pore opening
and stabilizing the protein survivin (Ghosh et al., 2010; Kim et al.,
2019). mtHsp70 reduces p53 activity, promoting tumor cell survival,
and regulates PI3K/AKT signaling to induce epithelial-
mesenchymal transition of tumor cells (Wadhwa et al., 2002; Na
et al., 2016). Lonp1 induces tumor metabolic reprogramming and
promotes inflammatory cytokine production generating an
immunosuppressive tumor environment (Quiros et al., 2014; Kuo
et al., 2020). Finally, ClpP stabilizes OXPHOS complexes,
maintaining ATP production, and regulates Src/PI3K/AKT
signaling, favoring proliferation and invasion (Seo et al., 2016;
Luo et al., 2020). Indeed, research on therapeutic approaches
related to the UPRmt in cancer have focused on the inhibition of
the UPRmt, specifically on targeting individual UPRmt-associated
proteins (Table 1) (Inigo et al., 2021).

5 UPRmt regulation

Although the mechanism by which the UPRmt is regulated is
still not fully understood, some reports suggest that different
proteins and signaling pathways could be involved in this
process. In C. elegans, the SUMO protease ubiquitin-like
protease 4 (ULP-4) regulates DVE-1 and ATFS-1 when the
UPRmt is induced. ULP-4 deSUMOylates DVE-1 to allow its
accumulation in the nucleus, and deSUMOylates ATFS-1 to
stabilize it and increases its transcriptional activity (Gao et al.,
2019). These data suggest the posttranslational regulation of
UPRmt-related transcription factors, which could also occur in
mammals since, for example, ATF5 can also be SUMOylated and
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acetylated in other contexts (Liu et al., 2011; Yuan et al., 2018).
However, this phenomenon has not yet been studied in mammals.
In mammals, the protein GrpEL1, a nucleotide exchanger that
controls the conversion of mtHsp70-ADP to mtHsp70-ATP, is
also a regulator of the UPRmt. When this stress response is
activated, GrpEL1 forms a complex with mtHsp70 to promote
its function and reduce the aggregation of proteins in
mitochondria (Ma et al., 2022). Additionally, a recent study
suggested that the UPRmt is linked to and dependent on
mitophagy, with FUN14 domain-containing protein 1
(FUNDC1) acting upstream of its activation, inducing this
stress response by decreasing the mtDNA content (Ji et al.,
2022), which increases the misfolded protein load. Moreover,
recently, it was shown that the activation of the UPRmt, in
addition to the release of short DELE1 fragments, requires the
release of mitochondrial ROS (mtROS) as signaling molecules into
the cytosol (Sutandy et al., 2023). Once in the cytosol, mtROS
oxidize the chaperone HSP40 (DNAJA1), which increases its
interaction with cytosolic HSP70 to drive the translocation of
HSF-1 to the nucleus to activate the transcription of
mitochondrial chaperones and proteases (Sutandy et al., 2023).

Interestingly, in yeast, mitochondria trigger a UPRmt-like
response before the UPRmt is activated in response to
mitochondrial precursor protein accumulation, which is an
immediate response (Poveda-Huertes et al., 2020). This early
response is mediated by the nuclear HMG-box domain-
containing transcription factor Rox1, which translocates to
mitochondria, maintaining mitochondrial import, the

membrane potential, and translation (Poveda-Huertes et al.,
2020). However, whether this early UPRmt-like response
occurs in mammals or C. elegans is not known.

Regarding signaling pathways, there are some reports in C.
elegans showing non-autonomous regulation through different
pathways. One of these pathways is the follicle-stimulating
hormone G protein-coupled receptor (FSHR1)/sphingosine kinase
(SPHK-1) pathway, in which FSHR activates this stress response in
neurons and promotes the stress-induced association of SPHK-1
with intestinal mitochondria (Kim and Sieburth, 2020).
Additionally, ROS produced in GABAergic neurons act as
signaling molecules by oxidizing the GABAA receptor UNC-49
(Pohl et al., 2023). This oxidation of UNC-49 increases its
channel activity in muscle cells, which induces the activation of
the UPRmt in intestinal cells via an unknown mechanism, suggesting
that other tissues may be involved in the neuronal-intestinal
regulation of the UPRmt (Pohl et al., 2023). Moreover, it has been
proposed that the Wnt signaling pathway may also be involved in
the regulation of this stress response. Wnt signaling is a key pathway
during development but is also important for proper adult neuronal
function (Inestrosa et al., 2021). There are two pathways of Wnt
signaling, the β-catenin-independent or non-canonical signaling
and β-catenin-dependent or canonical signaling pathway, which
regulate the expression of Wnt target genes (Inestrosa and Arenas,
2010; Inestrosa et al., 2021). Preliminary results from our laboratory
indicate that mitochondrial chaperones and proteases involved in
the UPRmt have Wnt-responsive elements in their promoters
(Torres et al., 2022a; b), and the modulation of Wnt signaling,

TABLE 1 The UPRmt in diseases.

Disease UPRmt

state
Therapeutic approach Beneficial effect References

Mitochondrial disease Active Activation of the UPRmt by - doxycycline - pterostilbene ❖ Restoration of normal
mitochondrial protein expression
patterns

Suarez-Rivero et al. (2022b),
Suarez-Rivero et al. (2022)

❖ Increase in complex I and IV
activity

❖ Stabilization of mutated proteins
to allow them to exert their function

Neurodegenerative
diseases

Active Activation of the UPRmt by - nicotinamide riboside -
ginseng

❖ Reduction in Aβ levels and
improvement of memory

Sorrentino et al. (2017), Liu
et al. (2023), Zhou et al. (2020)

❖ Increase in lifespan

❖ Increase in neurogenesis

❖ Rescue of neuronal loss

Cardiac disease Active Activation of the UPRmt by - nicotinamide riboside -
tetrahydrocurcumin (THC)

❖ Reduction in cardiomyocyte
death

Smyrnias et al. (2019), Zhang
et al. (2020)

❖ Attenuation of contractile
dysfunction

❖ Attenuation of fibrosis

Cancer Active Inhibition of individual UPRmt components: dominant-
negative ATF5 peptide - DCEM1 for Hsp60 - MKT077 for

mtHsp70 - CDDO for Lonp1 - A2-32-01 for ClpP

❖ Decrease in the expression or
activity of UPRmt-related proteins

Sun et al. (2020), Inigo et al.
(2021), Kumar et al. (2022)

❖ Reduction in cancer cell survival

❖ Reduction in cancer progression
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both in C. elegans and in primary hippocampal neuronal culture,
regulates the expression of UPRmt-associated proteins (Torres et al.,
2022a; b; Torres et al., 2023). These data suggest that Wnt signaling
may have a direct effect on the expression of UPRmt genes, which
could be Wnt target genes.

6 Conclusion

The UPRmt, which is involved in the mitochondrial stress
response, is a key signaling pathway for maintaining the
protective function of mitochondria upon protein accumulation.
This stress response has been described in yeast, nematodes, and
mammals, suggesting that it is an essential protective mechanism
for survival among eukaryotic organisms. Indeed, it has been
described as a compensatory response that reduces
mitochondrial damage in several diseases; however, at some
point, the degree of mitochondrial dysfunction reaches a critical
level, and endogenous activation of the UPRmt is insufficient for
countering it. Although the mechanism underlying the UPRmt has
been described over the years, the regulation of this stress response
has been less studied. Thus, more information about how to safely
modulate the UPRmt while avoiding the detrimental effects that
could result from its long-term activation is needed. This
information is essential for the development of new drug-based
therapeutic approaches for chronic diseases such as mitochondrial
diseases, cancer, and AD.
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