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Objective:Neuroinflammation is associated with brain injury and poor outcomes
after aneurysmal subarachnoid hemorrhage (SAH). In this study, we performed
single-cell RNA sequencing (scRNA-seq) to analyze monocytes and explore the
mechanisms of neuroinflammation after SAH.

Methods: We recruited two male patients with SAH and collected paired
cerebrospinal fluid (CSF) and peripheral blood (PB) samples from each patient.
Mononuclear cells from the CSF and PB samples were sequenced using 10x
Genomics scRNA-seq. Additionally, scRNA-seq data for CSF from eight healthy
individuals were obtained from the Gene Expression Omnibus database, serving
as healthy controls (HC). We employed various R packages to comprehensively
study the heterogeneity of transcriptome and phenotype of monocytes,
including monocyte subset identification, function pathways, development
and differentiation, and communication interaction.

Results: (1) A total of 17,242 cells were obtained in this study, including 7,224 cells
fromCSF and 10,018 cells fromPB,mainly identified asmonocytes, T cells, B cells,
and NK cells. (2) Monocytes were divided into three subsets based on the
expression of CD14 and CD16: classical monocytes (CM), intermediate
monocytes (IM), and nonclassical monocytes (NCM). Differentially expressed
gene modules regulated the differentiation and biological function in
monocyte subsets. (3) Compared with healthy controls, both the toll-like
receptor (TLR) and nod-like receptor (NLR) pathways were significantly
activated and upregulated in IM from CSF after SAH. The biological processes
related to neuroinflammation, such as leukocytemigration and immune response
regulation, were also enriched in IM. These findings revealed that IM may play a
key role in neuroinflammation bymediating the TLR and NLR pathways after SAH.

OPEN ACCESS

EDITED BY

Chih-Yang Wang,
Taipei Medical University, Taiwan

REVIEWED BY

Jiachen Liu,
Washington University in St. Louis, United States
Rocio Rojo,
Monterrey Institute of Technology and Higher
Education (ITESM), Mexico

*CORRESPONDENCE

Chao Qin,
qc2019100@163.com

Ying Liu,
lykfk200@163.com

†These authors have contributed equally to this
work

RECEIVED 27 March 2024
ACCEPTED 26 August 2024
PUBLISHED 10 September 2024

CITATION

Meng N, Su Y, Ye Z, Xie X, Liu Y and Qin C (2024)
Single-cell transcriptomic landscape reveals the
role of intermediate monocytes in aneurysmal
subarachnoid hemorrhage.
Front. Cell Dev. Biol. 12:1401573.
doi: 10.3389/fcell.2024.1401573

COPYRIGHT

© 2024 Meng, Su, Ye, Xie, Liu and Qin. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 10 September 2024
DOI 10.3389/fcell.2024.1401573

https://www.frontiersin.org/articles/10.3389/fcell.2024.1401573/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1401573/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1401573/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1401573/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1401573/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2024.1401573&domain=pdf&date_stamp=2024-09-10
mailto:qc2019100@163.com
mailto:qc2019100@163.com
mailto:lykfk200@163.com
mailto:lykfk200@163.com
https://doi.org/10.3389/fcell.2024.1401573
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2024.1401573


Interpretation: In conclusion, we establish a single-cell transcriptomic landscape
of immune cells and uncover the heterogeneity of monocyte subsets in SAH. These
findings offer new insights into the underlying mechanisms of neuroinflammation
and therapeutic targets for SAH.
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Introduction

Aneurysmal subarachnoid hemorrhage (SAH) is a devastating
stroke resulting from the rupture of intracranial aneurysm (Suarez
et al., 2006). Although SAH only accounts for about 5–10 percent of
all strokes, it is characterized by high disability and mortality (Rinkel
and Algra, 2011). About 20 percent of patients who receive timely
treatment and survive will develop significant neurological
dysfunction after SAH, leading to a dramatic decline in quality of
life (Nieuwkamp et al., 2009). It is important to note that the age of
patients with SAH is much younger than those with ischemic stroke,
which also imposes a significant health burden on society (Lawton
and Vates, 2017; Robba et al., 2024). Unfortunately, the mechanisms
responsible for the high mortality and morbidity are not yet
completely understood. Accumulating evidence suggests that
neurological complications, especially early brain injury, cerebral
vasospasm, and delayed cerebral ischemia (DCI) (Wu et al., 2022;
Dodd et al., 2021), are strongly associated with unfavorable
outcomes in SAH (Thilak et al., 2024). And neuroinflammation
has recently been identified as a crucial contributor to the
development of neurological complications (Zeyu et al., 2021;
Lucke-Wold et al., 2016). Hence, a better understanding of
neuroinflammation mechanisms allows health professionals to
develop strategies to reduce the risk of neurological complications.

Neuroinflammation plays a crucial role in brain injury related to
neurological complications, leading to a poor outcome after SAH. To
date, the mechanisms of neuroinflammation after SAH remain
unknown. Undoubtedly, the metabolites of red blood cells (RBC)
play a key role in the development of neuroinflammation (Bulters
et al., 2018; Pan et al., 2020). After SAH onset, the hematoma, mainly
comprised of RBC and its metabolites, deposits in the subarachnoid
space and the brain’s surface. The metabolites of RBC, such as
hemoglobin, free heme, and iron ions, act as danger-associated
molecular patterns (DAMPs) to activate immune cells and signaling
pathways, causing inflammatory cascade reaction (Khey et al., 2020;
Kwon et al., 2015; Coulibaly and Provencio, 2020). Previous studies
have described in detail how the resident (microglia and astrocytes) and
peripheral immune cells (monocytes and neutrophils) are involved in
brain injury in SAH (Coulibaly and Provencio, 2020). Still, these studies
cannot fully elucidate the mechanisms of neuroinflammation. The
priority is to find which kinds of immune cells are the critical
contributors to neuroinflammation. It is encouraging to see that
more and more studies have found monocytes may play an
indispensable role in the development of neuroinflammation after SAH.

Monocytes, produced primarily in the bone marrow, circulate in
the circulatory system as peripheral immune cells and eventually
migrate into tissue for innate immunity: phagocytosis, antigen
presentation, and cytokine production (Narasimhan et al., 2019).
Monocytes continue to increase for 6–8 days, and monocytosis is

associated with delayed cerebral ischemia and poor functional
outcomes after SAH (Gusdon et al., 2021). In addition, compared
with PB, the proportion of intermediate monocytes is higher in CSF in
SAH (Moraes et al., 2015). Monocytes migrate into the brain and
participate in neuroinflammation, leading to intracranial cerebral
vasospasm (Jackson et al., 2021). The monocytes from patients with
SAH express higher mRNA levels of CXCL10 than those from patients
with non-SAH, which shows its potential significance as a therapeutic
target (Sanchez et al., 2024). Nonclassical monocytes mediate
neuroinflammation driven by various chemokines in the brain, and
the monocyte activation profile is a potential target for
immunosuppressive therapy after SAH (Mohme et al., 2020). These
studies have demonstrated that monocytes play a significant role in the
development of neuroinflammation following SAH.

However, these studies mentioned above on monocytes are
mainly limited to the dynamic changes of cytology or
inflammatory factor profile, and little is known about the
heterogeneity of transcriptome and phenotype across monocyte
subsets. Thus, exploring the transcriptome characteristics and
biological functions of monocytes after SAH helps understand
the molecular mechanisms of neuroinflammation. In this study,
we used scRNA-seq to study the underlying mechanisms of
neuroinflammation following SAH at the genetic level.

Methods

Human subjects

Two male patients with SAH were enrolled in this study. Paired
CSF and PB samples were collected from each patient on day 7 after
onset through lumbar drainage. The inclusion criteria for patients with
SAH are as follows: (1) age ≥18 years old; (2) sudden headache
accompanied by epilepsy and other clinical manifestations; (3)
aneurysm subarachnoid hemorrhage was diagnosed through
computed tomography examination and digital subtraction
angiography on admission. The exclusion criteria were listed as
follows: (1) patients with systemic inflammatory diseases such as
intracranial infection, urinary tract infection, and other infectious
diseases; (2) subarachnoid hemorrhage caused by other diseases,
such as arteriovenous malformation, hemorrhagic stroke, and brain
trauma; (3) patients using immunosuppressive drugs. This study was
approved by the ethics committee of the First Affiliated Hospital of
Guangxi Medical University and was conducted in accordance with the
Declaration ofHelsinki. Informed consentwas obtained from the legally
authorized representative. In addition, scRNA-seq data for CSF from
eight healthy individuals were downloaded from the Gene Expression
Omnibus database (GSE134578), which served as healthy control (HC)
(Gate et al., 2020). The baseline demographic and clinical data for the
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healthy controls and patients with SAH were shown in Supplementary
Tables S1 and S2.

Isolation of mononuclear cells (MC)

CSF and PB samples were processed within half an hour after
collection. MC was isolated from CSF and PB samples by using Ficoll-
Paque PLUS (Solarbio Biotech, China). Briefly, samples diluted with
phosphate-buffered saline (PBS) (Solarbio Biotech, China) were layered
onto the Ficoll-Paque PLUS, followed by centrifugation and isolation of
the buffy coat. The MC suspensions isolated from the buffy coat and
mixed with cryoprotectant were frozen for 24 h in an ultralow
temperature freezer and then transferred to liquid nitrogen for
storage. The MC suspensions were thawed and quality-controlled
prior to scRNA-seq.

Single-cell RNA sequencing (10x genomics)

ScRNA-seq was performed on MC suspensions through the 10x
Genomics Chromium platform according to the manufacturer’s
instructions. In this study, eligible MC suspensions were loaded
on a 10× Chromium microfluidics system to generate single-cell
nanoliter-scale gel beads in emulsions (GEMs). Next, mRNA
released from MC was reverse-transcribed into cDNA in every
GEM. Finally, the cDNA from different GEMs were pooled and
amplified by PCR to generate a cDNA library, which was sequenced
using an Illumina NovaSeq 6,000.

ScRNA-seq data processing and cell
clustering

Cell ranger (10XGenomics) was performed to process rawdata into
gene expression matrices. Subsequently, Seurat was used for data
filtering, normalization, dimensionality reduction, cell clustering
(Butler et al., 2018). Low-quality cells were removed using the
following criteria: (1) gene numbers <200 or >4,500; (2) total UMI
counts <1,000 or >20,000; and (3) percentage of mitochondrial
genes >10. Differentially expressed genes (DEGs) across clusters
were explored using the Seurat function “FindAllMarkers” with
parameters: min. pct = 0.25, logfc. threshold = 0.25. T-SNE
(T-distributed Neighbor Embedding) was used to classify and
visualize cell subsets (Kobak and Berens, 2019).

Cell type identification

SingleR is an R package for automated cell type annotation in
scRNA-seq data (Aran et al., 2019). In this study, SingleR and
marker genes were used together to identify cell type identification.
First, SingleR was performed to display a preliminary cell type
annotation, which was subject to further manual identification
based on the expression of marker genes and the following
reference datasets: CellMarkrer, PanglaoDB, and Human Cell
Atlas. Briefly, it is well known that the marker genes CD14 and
CD16 are used for monocyte identification (Ziegler-Heitbrock et al.,

2010; Ma et al., 2022; Villani et al., 2017; Wu et al., 2023; Shi et al.,
2021). In scRNA-seq studies, CD3D and CD79A/CD79B have been
recognized as reliable gene markers widely used for T (Menon et al.,
2023; Wang et al., 2021; Zernecke et al., 2023; Zhu et al., 2020) and
B cells (Tkachenko et al., 2023; Xu et al., 2023a) identification,
respectively. In addition, NKG7 and GZMA are the markers for
natural killer cells (NK) identification (Yao et al., 2023; Chen X.
et al., 2023) and pro-platelet basic protein (PPBP) for platelet
identification (Lee et al., 2023).

Pseudotime trajectory analysis

Pseudotime trajectory analysis was performed to explore cell
differentiation and development through the R software Monocle
(Qiu et al., 2017). Monocytes with different colors were ordered on
the pseudotime trajectory based on the differentially expressed
genes. Monocle was used to construct monocyte lineage
differentiation trajectory and identify differentially expressed gene
modules that regulated the differentiation process.

Enrichment analysis of function and
signaling pathways

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis were performed to study the
heterogeneity of signaling pathways and biological functions across
monocyte subsets. TheGO annotation includes three categories: cellular
component (CC), molecular function (MF), and biological process
(BP). KEGG is a database resource for exploring high-level
biological functions and signaling pathways. Gene set variation
analysis (GSVA) was performed to study the activation of signaling
pathways among monocyte subsets in an unsupervised way, showing
the enrichment degree of target pathways across groups.

Transcription factors and cell-cell
communication interaction

Transcription factors are a class of proteins that regulate the
transcription of the target gene. DoRothEA was used to evaluate the
activation of transcriptional factors in different cell subsets (Garcia-
Alonso et al., 2019). Cell-cell communication interaction can coordinate
cell differentiation, immune regulation, and other life activities. Cellchat
was used to explore cell-cell communication based on the expression of
ligands, receptors, and their cofactors (Jin et al., 2021). The
communication interaction networks between monocyte subsets and
other immune cell types were observed through Cellchat.

Results

Single-cell transcriptomic landscape of
immune cells after SAH

In this study, 4 samples were obtained from two male patients
with SAH, including 2 CSF and 2 PB samples. Each sample was
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FIGURE 1
Single-cell transcriptomic landscape of immune cells after aneurysmal subarachnoid hemorrhage (SAH). (A)Overview of the experiment design and
data analysis process. ScRNA-seq (10x Genomics) was performed on immune cells from CSF and PB samples corrected from SAH patients. (B) T-SNE
visualization of 17,242 cells fromCSF and PB. These cells were divided into 19 clusters (0–18). (C) The 19 cell clusters were further identified as 5 cell types:
monocytes, T cells, B cells, natural killer cells, and platelets. (D) Violin plot showing the expression of the marker genes in each immune cell type. (E)
The feature plot displaying the relative distribution of marker genes in each immune cell type, with low expression in gray and high expression in red. (F)
The total number and percentage of each immune cell type from PB and CSF.
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sequenced individually using 10x Genomics scRNA-seq
(Figure 1A), and the gene expression matrices were pooled for
downstream biological analysis. Finally, after the quality control,
a total of 17,242 cells were obtained, including 7,224 cells from
CSF and 10,018 cells from PB (Supplementary Figure S1). These
17,242 cells were divided into 19 (0–18) clusters by using T-SNE
(Figure 1B). And then 19 cell clusters were further identified as
four immune cell types and platelet, including monocytes
(clusters 0, 1, 3, 11, 12, 15 and 16) with marker genes
CD14 and CD16 (FCGR3A) (Ziegler-Heitbrock et al., 2010;
Ma et al., 2022; Villani et al., 2017; Wu et al., 2023; Shi et al.,
2021), T cells (clusters 2, 5, 6, 7, 10, 13 and 17) with marker gene
CD3D (Menon et al., 2023; Wang et al., 2021; Zernecke et al.,
2023; Zhu et al., 2020), B cells (clusters 8 and 9) with marker gene
CD79A (Tkachenko et al., 2023; Xu et al., 2023a) and natural
killer (NK) cells (clusters 4 and 18) with marker gene NKG7
(Figure 1C) (Yao et al., 2023; Chen X. et al., 2023). In addition,
cluster 14 was defined as platelet (Lee et al., 2023), which was
excluded from the subsequent analysis. The violin plot showed
that each marker gene was specifically highly expressed in
corresponding cell clusters (Figure 1D). The Feature plot
displayed the relative distribution of marker genes across all
clusters (Figure 1E). The histogram showed the total number and
percentage of each immune cell type from PB and CSF
(Figure 1F). Briefly, the 17,242 cells were identified as

monocytes, T cells, B cells, NK cells, and platelets. Only
monocytes were extracted for downstream analysis to explore
the heterogeneity of transcriptome and phenotype across
monocyte subsets after SAH.

Identification of monocyte subsets

Monocytes have multiple subtypes that differ in biological
function, morphology, and transcriptional profile (Williams
et al., 2023). To study monocyte heterogeneity, we further re-
clustered monocytes. In this study, 2091 and 5,868 monocytes
were obtained from CSF and PB samples, respectively
(Figure 2A). Based on the expression levels of CD14 and
CD16, these monocytes were traditionally divided into three
subsets: classical monocytes (CM), intermediate monocytes
(IM) and nonclassical monocytes (NCM) (Figure 2B). CM
(CD14++ CD16−) highly expressed CD14 but no CD16, IM
(CD4++CD16+) represented high expression of CD14 and low
expression of CD16 while NCM (CD14+CD16++) showed high
expression of CD16 together with low CD14 (Ziegler-Heitbrock
et al., 2010). The violin plot showed the expression of marker
genes CD14 and CD16 in each cell cluster (Figure 2C). The
histogram showed the total number and percentage of monocyte
subsets from PB and CSF (Figure 2D).

FIGURE 2
Identification of monocyte subsets. (A, B)Monocytes were divided into three subsets, including classical monocytes (CM), intermediate monocytes
(IM), and nonclassical monocytes (NCM). (C) Violin plot showing the expression of marker genes across monocyte subsets. (D) The total number and
percentage of monocyte subsets from PB and CSF.
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FIGURE 3
Gene regulationmechanism ofmonocyte differentiation. (A) Pseudotime trajectory of monocyte differentiation. Monocytes gradually differentiated
from right to left, with a minor branch at the bottom right. (B) Monocyte subsets with different colors were mapped onto the trajectory, representing a
lineage differentiation fromCM to IM and NCM. (C) The heatmap showed that two genemodules, one and two, were significantly differentially expressed
along the monocyte differentiation, and their representative GO biological processes were listed on the right. (D) The differentiation trajectory had
two branches: themajor (red Arrow) and theminor (black Arrow). (E)Genemodule one exhibited high expression along theminor branch, whereas Gene
module two displayed high expression along the major branch. Their respective representative GO biological processes were shown on the right.
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FIGURE 4
IM may play a key role in neuroinflammation after SAH. (A) Compared with PB, many signaling pathways were highly activated in IM from CSF,
especially the TLR and NLR (red Arrow). The one above the line represents the monocyte subsets (CM, IM, and NCM), and the one below represents
sample types (CSF and PB). (B) Compared to PB, the TLR and NLR pathways showed significant upregulation in IM from CSF (red arrow). The blue bars
represent upregulated pathways, and the green bars represent downregulated pathways. (C, D) TLR and NLR pathways were significantly activated
and upregulated in IM from CSF after SAH compared with HC (red Arrow). (E) Compared with HC, the activation of transcription factors was also
considerably upregulated in IM from SAH. (F) GO biological processes related to neuroinflammation were enriched in IM from CSF after SAH.
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Lineage differentiation trajectory of
monocyte subsets

Monocle was performed to map the differentiation trajectory of
monocyte subsets and study the differentially expressed gene
modules to explore the mechanisms of monocyte differentiation.
Monocyte differentiation began on the right of the trajectory and
progressed gradually to the left, with a minor branch at the bottom
right. (Figure 3A). Monocyte subsets with different colors were
mapped onto the trajectory, representing a gradual lineage
differentiation transition from CM to IM and NCM (Figure 3B).

The heatmap showed that two key gene modules were
significantly differentially expressed along the differentiation
process of monocyte subsets (Figure 3C). Gene module one,
containing the S100 gene family, showed high expression in CM
but low expression in IM and NCM. GO enrichment analysis found
that gene module one was related to the regulation of inflammatory
response, the production of interleukin, and other biological
processes (Figure 3C). Conversely, gene module two, including
the CXCL gene family, was gradually highly expressed in IM and
NCM along with differentiation, associated with immune cell
migration and leukocyte chemotaxis (Figure 3C).

The differentiation trajectory had two branches, including the
major branch (red Arrow) and the minor branch (black Arrow)
(Figure 3D). Most of IM and NCM were mapped onto the major
branch, while CMwasmapped onto theminor branch. The heatmap
revealed two differentially expressed gene modules along the
differentiation trajectory (Figure 3E). Gene module one was
highly expressed in monocytes differentiated towards the minor
branch, which was related to regulation of inflammatory response
and positive regulation of defense response (Figure 3E). However,
Gene module two was significantly upregulated in monocytes
differentiated towards the major branch, which was associated
with immune cell chemotaxis and response to chemokine,
etc (Figure 3E).

These monocyte subsets showed different gene expression
patterns along the differentiation process, displaying significant
transcriptome profile and phenotype heterogeneity. Together,
these results suggested the differentially expressed gene modules
may play a key role in the differentiation and biological functions of
monocyte subsets.

Monocytes mediated neuroinflammation
after SAH

GSVA was performed to study how the monocytes mediated
neuroinflammation. First, the findings indicated that Toll-like
receptor (TLR), Nod-like receptor (NLR), and other
inflammation-related signaling pathways were more highly
activated in IM from CSF compared with PB (Figure 4A, Arrow).
Additionally, further comparative analysis demonstrated that these
signaling pathways are significantly upregulated in IM from CSF
(Figure 4B, Arrow). To explore whether these pathways were
involved in neuroinflammation after SAH, we downloaded
scRNA-seq data regarding CSF from eight healthy individuals to
serve as healthy controls (HC). The frequency and percentage of
monocyte subsets from CSF in both HC and SAH groups were

shown in Supplementary Figure S2. Similarly, compared with HC,
these pathways were significantly activated (Figure 4C, Arrow) and
upregulated (Figure 4D, Arrow) in IM from CSF after SAH. In
particular, the TLR and NLR pathways exhibited the highest
activation and upregulation among these signaling pathways,
which have been proven to be involved in neuroinflammation
after SAH (Peng et al., 2024; Peng et al., 2023; Lai et al., 2023;
Wang W. et al., 2023). In addition, the activation of transcription
factors in IM increased after SAH (Figure 4E). To explore the
changes in gene expression in IM, we conducted a comparative
analysis of differentially expressed genes (DEGs) in HC and SAH.
We found that many inflammation-related genes, especially those
from the CCL and CXCL gene families, were significantly
upregulated in SAH compared to HC (Supplement DEGs). GO
enrichment analysis based on the DEGs showed that various critical
biological processes related to neuroinflammation were enriched in
IM after SAH (Figure 4F). To conclude, these findings suggest that
IM may play a key role in regulating neuroinflammation by
mediating the TLR and NLR pathways after SAH.

Communication interaction was enhanced
among monocyte subsets

Immune cells maintain immune system homeostasis through
cell communication interaction. Cellchat was performed to study the
cell communication network between various immune cell types.
There was abundant cell communication interaction between the
immune cells in CSF, especially monocyte subsets (Figure 5A).
Likewise, communication interaction among various immune cell
types was also complex and abundant in PB (Figure 5B). Compared
with PB, the number and strength of communication interaction
between monocyte subsets were significantly increased in CSF
(Figure 5C). Notably, the communication interaction patterns of
ligand-receptor pairs among these immune cell types in CSF and PB
were different (Figure 5D, E). The macrophage migration inhibitory
factor (MIF)- (CD74+CXCR4) and MIF- (CD74+CD44) pairs were
highly activated among various immune cell types in both CSF and
PB (Figure 5D, E, red box). In short, the communication interactions
of monocyte subsets exhibited significant differences in CSF and PB,
possibly due to varying immune microenvironments in SAH.

Discussion

This study depicted the single-cell transcriptomic landscape of
immune cells and explored the heterogeneity of transcriptome and
phenotype across monocyte subsets in SAH through scRNA-Seq.
Monocytes were divided into three subsets: CM, IM, and NCM, with
a significant difference in their transcriptome profile, activation
status, and biological functions. The differentially expressed gene
modules could be the key factors in regulating the differentiation of
monocyte subsets. The differentiation of monocyte subsets was a
relatively stable development process, with a lineage starting from
CM to IM and then NCM. Compared with HC, the TLR and NLR
pathways were significantly activated and upregulated in IM from
CSF after SAH. The biological processes related to
neuroinflammation, such as leukocyte migration and immune
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response regulation, were also enriched in IM from CSF. This study
highlighted that IM may play a key role in neuroinflammation by
mediating the TLR and NLR pathways after SAH.

The breakdown products of RBC in subarachnoid space cause
robust neuroinflammation immediately after SAH. Until now, the
mechanisms of neuroinflammation after SAH are still unclear,
which is the crucial reason why clinical interventions fail to have a
good clinical outcome. Neuroinflammation following SAH is
characterized by an imbalance in the immune microenvironments,
such as the overactivation of immune cells, dysfunction of signaling
pathways, and overproduction of inflammatory factors. The resident
and peripheral immune cells, such as microglia, astrocytes, monocytes,
and neutrophils, are highly activated and mediate neuroinflammation
after SAH (Coulibaly and Provencio, 2020; Romoli et al., 2023). A wide
range of inflammatory pathways are overactivated during the
inflammatory response following SAH, particularly the TLR and
NLR pathways (Lauzier et al., 2023; Jin J. et al., 2022; Hu et al.,
2021). Dysregulated pathways lead to overactivation of immune
cells, causing excessive production of inflammatory cytokines,
interleukins, and tumor necrosis factors (He et al., 2024; Devlin
et al., 2022; Chai et al., 2023). The crosstalk between monocyte
overactivation and dysfunction of inflammatory pathways is a key
contributor to the complexity of SAH pathophysiology. Among these
activated pathways, the TLR and NLR are the most investigated
pathways and have been proven to be involved in the development
of neuroinflammation (Wang et al., 2022; Jin L. et al., 2022; Xu et al.,
2021). However, few studies have been conducted on monocytes
regarding the role of TLR and NLR pathways in SAH. In our study,
both the TLR and NLR pathways were significantly activated and

upregulated in IM from CSF compared to HC. Although many
signaling pathways were also activated, the TLR and NLR pathways
showed the highest level of activation and enrichment, indicating their
key roles in inflammatory response after SAH. Similarly, a scRNA-seq
study also indicates thatmonocytes play a significant role in brain injury
following SAH (Wang X. et al., 2023). However, what is different from
ours is that their study shows that the STAT3/Bcl-2 pathway, but not
the TLR and NLR pathways, is the main cause of meningeal lymphatic
vessel dysfunction. The discrepancy in conclusions between the two
studies may be attributed to differences in samples and research
methodologies. Consistent with our findings, another study
demonstrates that the NLR pathway in monocytes is significantly
upregulated, potentially leading to systemic inflammation and a
poor clinical outcome (Díaz-García et al., 2023). Additionally,
monocytes expressing high levels of CXCL10 play crucial roles in
the inflammatory response, indicating it is a potential treatment
target for future studies (Sanchez et al., 2024). Interestingly, our
study also found that monocytes expressed a high level of CXCL
gene family (Supplement DEGs), supporting the potential role of
monocytes in leukocyte recruitment and migration in SAH.
Monocytes may infiltrate the brain to help the recovery of
neurological function (Chen H. et al., 2023), which is contrary to
most previous studies. These studies highlight the significant roles of
monocytes in neuroinflammation, although the mechanism by which
they contribute remains unclear. In our study, we further demonstrated
many transcription factors, such as STAT3 and NF-kB, were highly
activated in IM from CSF, which had been proven to be involved in
neuroinflammation (Liu et al., 2023; Samraj et al., 2014). Besides these,
IM from CSF also played an essential role in leukocyte migration and

FIGURE 5
The communication interaction between different cell types. (A) The number and strength of communication interactions among various immune
cell types in CSF. The line color matches the cell type, and the thickness indicates the intensity of communication interaction. (B) The number and
strength of communication interactions among immune cell types in PB. (C) Compared with PB, the number and strength of communication interaction
amongmonocyte subsets were significantly increased inCSF. The red line indicates upregulation, while the blue line indicates downregulation. (D, E)
The communication probability of ligand-receptor pairs was different between CSF and PB. The MIF- (CD74+CXCR4) andMIF- (CD74+CD44) pairs were
highly activated in both CSF and PB (red box).
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immune response regulation after SAH. Collectively, our findings
highlighted that IM may play a key role in neuroinflammation by
mediating the TLR and NLR pathways, which could be a therapeutic
target for SAH. Although our study is the first time to describe how IM
regulates neuroinflammation at the gene level, much is still unknown
about their biological functions in SAH. For now, further exploration is
needed to determine whether IM eventually performs the roles of anti-
inflammation or pro-inflammation, or whether they have some
unknown biological characteristics in SAH.

Monocyte subsets show remarkable heterogeneity in transcriptomic
profile and biological functions. CM is mainly responsible for
phagocytosis and migration, IM is associated with antigen
processing and presentation, while NCM is related to the
surveillance of vasculature and anti-viral response (Gren et al., 2015;
Kapellos et al., 2019). Our study found that genemodule one was highly
expressed in CMwhile genemodule twowas gradually expressed in IM/
NCM along with differentiation trajectory. CM mainly showed high
expression of the S100 family (S100A4, S100A8, S100A9, and S100A12),
which was associated with the inflammatory response, production of
interleukin, and interferon response. IM/NCM expressed high levels of
the CXCL family (CXCL1, CXCL2, CXCL3, and CXCL8) and HLA-
DRA was responsible for leukocyte migration and chemotaxis.
Although these monocyte subsets display different pro-inflammatory
statuses after SAH, the strength of communication interaction between
monocyte subsets in CSF was significantly enhanced, suggesting that
they depended on each other for biological functions. Consistent with
our findings, a study reveals that CM highly express S100A8, S100A9,
and S100A12, IM express HLA-DQA1 and HLA-DPA1 and NCM
mainly express CD16, demonstrating a distinct transcriptome across
monocyte subsets in Kawasaki disease (Geng et al., 2021). Similarly, in
diabetic macular edema, intermediate monocytes express a high level of
HLA-related genes, indicating a primary biological function of antigen
processing and presentation (Ma et al., 2021). A study on gout
demonstrates that CM and IM show similar differentially expressed
genes (DEGs) while NCM primarily express the heat shock protein
(HSP) family, which supports that CM and IM contribute to the
immune response during gout flares (Yu et al., 2024). Another study
also reveals that HLA-DRlowS100Ahigh monocytes are related to late
sepsis and show significant immunosuppressive function in immune
response (Yao et al., 2023). These scRNA-seq studies demonstrate that
monocyte subsets perform various roles in inflammation response with
their characteristics.

Monocytes originate from bone marrow, then are released into
the circulation system, and eventually undergo a series of
differentiation into distinct subsets (Wolf et al., 2019). Monocytes
are traditionally divided into three subsets based on the expression
of marker genes (CD14 and CD16): CM, IM, and NCM (Ziegler-
Heitbrock et al., 2010). Similarly, we defined monocytes as three
subsets in SAH at a single cell level: CM, IM, and NCM.
Furthermore, we found that monocyte subset differentiation was
a gradual development process, namely, a lineage from CM by IM to
NCM. Consistent with our findings, monocytes from patients with
gout are also identified as CM, IM, and NCM (Yu et al., 2024).
Monocytes from infants form three subsets with distinct pro-
inflammatory gene signatures and biological functions. (Geng
et al., 2021). Another study defines monocytes as CM, IM, and
NCM in Prader-Willi syndrome (Xu et al., 2023b). These results
suggest that scRNA-seq has advantages in studying cell clustering

and differentiation development. Before the advent of scRNA-seq, it
may be difficult to accurately describe the boundaries between these
monocyte subsets using traditional experimental techniques.

There are some limitations in this study. First, these findings
may need more representativeness due to the small sample size. In
addition, considering thousands of monocytes in the circulatory
system and CSF, the captured monocytes in our study may not be
sufficient to reflect their roles in neuroinflammation. Finally, our
results only represented the immune microenvironment at one
point but not a dynamic inflammation process. Therefore, a
study with a larger sample size is needed to confirm these findings.

In conclusion, we established a single-cell transcriptomic
landscape of immune cells from CSF and PB in SAH and
systematically analyzed monocyte heterogeneity in transcriptomic
and phenotype. These findings highlighted that IM may play a key
role in neuroinflammation after SAH by mediating the TLR and
NLR pathways, thereby offering us new insight into the molecular
mechanism of neuroinflammation and therapeutic targets for SAH.
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