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Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for
numerous clinical applications due to their unique properties including self-
renewal, immunomodulation, paracrine actions and multilineage differentiation.
However, the translation of MSC-based Advanced Therapy Medicinal Products
(ATMPs) into the clinic has frequentlymet with inconsistent outcomes. One of the
suspected reasons for this issue is the inherent and extensive variability that exists
among such ATMPs, which makes the interpretation of their clinical efficacy
difficult to assess, as well as to compare the results of various studies. This
variability stems from numerous reasons including differences in tissue sources,
donor attributes, variances in manufacturing protocols, as well as modes of
administration. MSCs can be isolated from various tissues including bone
marrow, umbilical cord, adipose tissue and others, each with its unique
phenotypic and functional characteristics. While MSCs from different sources
do share common features, they also exhibit distinct gene expression profiles and
functional properites. Donor-specific factors such as age, sex, body mass index,
and underlying health conditions can influence MSC phenotype, morphology,
differentiation potential and function. Moreover, variations in preparation of MSC
products introduces additional heterogeneity as a result of cell culture media
composition, presence or absence of added growth factors, use of different
serum supplements and culturing techniques. Once MSC products are
formulated, storage protocols play a pivotal role in its efficacy. Factors that
affect cell viability include cell concentration, delivery solution and
importantly, post-thawing protocols where applicable. Ensuing, differences in
administration protocols can critically affect the distribution and functionallity of
administered cells. As MSC-based therapies continue to advance through
numerous clinical trials, implication of strategies to reduce product
heterogeneity is imperative. Central to addressing these challenges is the
need for precise prediction of clinical responses, which require well-defined
MSC populations and harmonized assessment of their specific functions. By
addressing these issues by meaningful approaches, such as, e.g., MSC pooling,
the field can overcome barriers to advance towardsmore consistent and effective
MSC-based therapies.
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1 Introduction

Mesenchymal stromal cells (MSCs) are a heterogeneous population
of somatic stem cells with a capacity for self-renewal, multilineage
differentiation, and immunomodulation (Figure 1). They are
considered a promising therapeutic tool to control aberrant
inflammatory responses and assist in regenerative medicine
applications as Advanced Therapy Medicinal Products (ATMPs)
(Cheung et al., 2020; Maldonado et al., 2023). Very briefly,
according to EU legislation and classification, ATMPs are defined as
medicines for human use that are based on genes, tissues or cells. The
have been classified into three main types, namely, gene therapy
medicinces, somatic-cell therapy medicines and tissue-engineered
medicines. According to this classification, MSC-based ATMPs are
somatic-cell therapy medicines, and their therapeutic use has been
studied for a broad range of diseases. Some of the conditions proposed
to benefit from MSC treatment are graft-versus-host-disease (GvHD)
(Kelly and Rasko, 2021; Kadri et al., 2023), Crohn’s disease (Wang et al.,
2023), critical limb ischemia (Lozano Navarro et al., 2022),
osteoarthritis (Thoene et al., 2023), type 1 diabetes (Koehler et al.,
2022), type 2 diabetes (Gao et al., 2022), endometrial injury (Cen et al.,
2022), multiple sclerosis (Liu et al., 2022), lupus (Li et al., 2013),

cardiovascular diseases (Mabotuwana et al., 2022), liver disorders
(Han et al., 2022), respiratory disorders (Raza and Khan, 2022),
spinal cord injury (Montoto-Meijide et al., 2023), kidney failure
(Morello et al., 2022), skin diseases (Chang et al., 2021; Lwin et al.,
2021), Alzheimer’s disease (Regmi et al., 2022), and Parkinson’s disease
(Kouchakian et al., 2021). Administration ofMSCs continuously proves
to be safe with very little evidence of serious adverse events such as
infusion-related toxicity, infection, malignancy and development of
thrombotic or thrombo-embolic events (Thompson et al., 2020; Wang
Y. et al., 2021), athough exceptions have been observed (Veceric-Haler
et al., 2022).

A plethora of investigations involvingMSC products shows their
preclinical and early clinical efficacy can be inconsistent and remains
frequently unconfirmed in late-phase trials. It can also be
challenging to anticipate, as most of the in vitro assays have
failed to reproducibly and reliably predict the clinical potency of
transplanted MSCs (Krampera and Le Blanc, 2021). At least in part,
the inconsistencies of these outcomes could be attributed to the
heterogeneity of transplanted MSC batches. The first important step
toward greater harmonization was made in 2006, when basic criteria
for MSC characterization have been proposed by the International
Society for Cell and Gene Therapy (ISCT), and are as follows:

FIGURE 1
Immunomodulatory mechanisms of MSCs. The modulation of immune responses by MSCs is exerted via numerous secreted factors and entities,
such as cytokines, growth factors, extracellular vesicles and others. ATP–adenosine triphosphate; BMP–bone morphogenetic protein; CCL–chemokine
(C-C motif) ligand; CX3CL–chemokine (C-X3-C motif) ligand; CXCL–chemokine (C-X-C motif) ligand; EGF–epidermal growth factor; FGF–fibroblast
growth factor; HGF–hepatocyte growth factor; IL–interleukin; LIF–leukemia inhibitory factor; M1–type one macrophages; M2–type two
macrophages; MIF–macrophage migration inhibitory factor; PDGF–platelet derived growth factor; TGF–transforming growth factor; VEGF–vascular
endothelial growth factor.
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• adherence to plastic in standard culture conditions,
• specific surface antigen expression (≥95% of the MSC
population must express CD105, CD73 and CD90, and lack
expression (≤2% positive) of CD45, CD34, CD14 or CD11b,
CD79a or CD19 and HLA class II as measured by
flow cytometry),

• multipotent differentiation potential–they must be able to
differentiate into osteoblasts, adipocytes and chondroblasts
under standard in vitro differentiating conditions. (Dominici
et al., 2006).

However, a scoping review by Renesme et al. reports that only 18%
of randomly analyzed studies involving MSC explicitly referred to the
ISCT criteria. More precisely, only 36% of the studies reported plastic
adherence, 40% reported any kind of in vitro differentiation assay and
53% of the studies performed analysis of cell markers (Renesme et al.,
2022). Since MSC-based products are regarded as medicinal products
according to EU legislation, it is of further importance particularly for
future studies, that uniformity of their characteristics and efficacy is
comprehensible and unambigous to the greatest possible extent. In this
review, we take a closer look at the origins of MSC variability, their
impact on clinical and preclinical studies, and propose potential
solutions to address these issues.

2 Origins of MSC heterogeneity

ISCT acknowledges that MSCs encompass a heterogeneous
population pool, which includes fibroblasts, myofibroblasts, and

a small proportion of stem/progenitor cells, while lacking
hematopoietic or endothelial cells (Viswanathan et al., 2019).
Single-cell RNA sequencing (scRNA-seq) of MSCs has identified
several candidate subpopulations with different functional
characteristics - some exhibit greater proliferation ability while
others show higher osteogenic, chondrogenic or adipogenic
differentiation potency and maintenance of stemness (Sun
et al., 2020; Wang et al., 2021b; Hou et al., 2021; Chen et al.,
2022; Xie et al., 2022). It has been shown that extracellular matrix
highly contributes to the heterogeneity of MSC populations in a
tissue-type-dependent pattern (Wang et al., 2021c). The
secretory and immunomodulatory functions linked to clinical
benefits in MSC-based therapies are believed to arise from the
bulk, heterogeneous stromal cell fraction (Viswanathan et al.,
2019). However, others argue that different MSC populations
should be separated immediately after isolation, individually
expanded in vitro and selected according to their
characteristics to treat different diseases (Wang et al., 2017;
Zhang S. et al., 2021). Still, research shows that even colonies
originating from a single cell will in time become functionally
heterogeneous (Rennerfeldt et al., 2019).

Due to the variations in multiple factors across studies,
pinpointing key aspects that influence clinical outcomes can be
challenging. However, they can be broadly categorized into three
groups (Figure 2):

• Differences arising from the tissue source,
• Donor attributes,
• Preparation and administration protocols.

FIGURE 2
The heterogeneity of MSC-based ATMPs can be broadly categorized into three groups: differences among donors, variations arising from the tissue
source, and differences introduced by preparation and administration protocols.
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2.1 Heterogeneity arising from tissue source

Throughout the years, the acronymMSC has accumulated quite
a bit of controversy, starting with Caplan, who in 1991 coined the
term adult “mesenchymal stem cells”, referring to a small number of
cells involved in repair and turnover of skeletal tissues (Caplan,
1991). Later, similar cells have been found in most anatomical
locations and researchers called for a name change from
mesenchymal stem cells to mesenchymal stromal cells, reflecting
their stromal residence (Dominici et al., 2006). However, disputes
continue, as some would change the term to multipotent stromal
cells, while others go as far as to argue for complete abolition of the
acronymMSC (Sipp et al., 2018; Soliman et al., 2021). Currently, the
official position of the International Society for Cell and Gene
Therapy (ISCT) Mesenchymal Stromal Cell committee is that the
acronym “MSC” should remain in use, however, information about
the tissue source should always be provided (Viswanathan
et al., 2019).

MSCs reside and can be isolated from various tissues, including
bone marrow (BM-MSCs) (Li et al., 2016), umbilical cord blood
(CB-MSCs) (Um et al., 2020), umbilical cord tissue (UC-MSCs),
Wharton’s jelly (WJ-MSC) and fetal placenta (Beeravolu et al.,
2017), adipose tissue (AD-MSCs) (Ong et al., 2021), dental tissue
and dental pulp (DT-MSCs and DP-MSCs) (Li et al., 2023), fetal
liver (Gridelli et al., 2012), endometrial tissue and menstrual blood
(Meng et al., 2007; Allickson et al., 2011; Schüring et al., 2011;
Bozorgmehr et al., 2020). Although the majority of research focuses
on BM-MSCs, AD-MSCs and UC-MSCs (as well as WJ-MSCs),
MSCs from other tissues have noticeable therapeutic benefits. For
instance, DP-MSCs also possess the capacity to differentiate into
different cell types and are quite extensively used in regenerative
medicine, although mainly in preclinical research. Thus, they have
been used for tissue repair in context of periodontal diseases, tooth
reconstruction, dental pulp regeneration, as well as for distant
anatomical tissues, e.g., for regeneration of neuronal and skeletal
tissue damage (Graziano et al., 2008; Ledesma-Martinez et al., 2016).
Nevertheless, the most commonly used sources are bone marrow,
followed by umbilical cord and adipose tissue (Naji et al., 2019).

MSCs isolated from different sources share many common
characteristics, but they also show particular phenotypic and
functional differences (Patel et al., 2016; Wu et al., 2018; Rady
et al., 2020a; Shin et al., 2021; Li Y. et al., 2022; Li S. et al., 2022;
Laloze et al., 2023). Comparison of scRNA-seq of BM-MSC and UC-
MSC has revealed more differences in gene expression between
tissue sources than between individual donors (Medrano-Trochez
et al., 2021). Moreover, a massive parallel multiplexing scRNA-seq
performed across multiple tissues and donors has revealed a tissue-
type-dependent pattern of MSC subpopulations, indicating that
MSCs from different tissues have prominent transcriptomic
heterogeneity (Wang et al., 2021c). This also gave rise to the
rationale that patients burdened with certain pathologies could
benefit from MSCs sourced from a specific tissue, which could be
functionally relevant for their clinical efficacy.

Still, MSC capabilities (and identity) from different tissues are
not fully characterized, leading to contradictory results. For
example, under the same culturing conditions, AD-MSCs
displayed the highest immunosuppressive potency, followed by
BM-MSCs and UC-MSCs (Calcat-i-Cervera et al., 2023). Others

report BM-MSCs to have the lowest immunosuppressive abilities
compared to AD- and UC-MSCs (Ketterl et al., 2015a). On the other
hand, BM-MSCs showed a superior capacity to support angiogenesis
and induce endothelial cell migration in comparison to AD-MSCs or
UC-MSCs (Calcat-i-Cervera et al., 2023). Similarly, comparing gene
expressions of BM-MSCs and AD-MSCs from the same pool of
donors has revealed distinct transcriptomic profiles that directly
translate into MSC capacity to interact with immune cells (Ménard
et al., 2019). For example, the study showed that BM-MSCs were
better at suppressing NK cell proliferation, while AD-MSCs were
better at suppressing T cell proliferation.

2.2 Donor heterogeneity

Another factor contributing to the difficulties in standardization
of MSC products is the high variability between donors, which
includes a multitude of factors, such as donor age, sex, BMI, as well
as systemic and autoimmune diseases (Sun et al., 2007; Siegel et al.,
2013; Patel et al., 2016; Rady et al., 2020b). Such variabilities can
manifest as differences in MSC phenotype, morphology, doubling
time, immunosuppressive potential, gene expression, proliferation,
differentiation, and colony-forming capacity (CFU) (Siegel et al.,
2013; Ganguly et al., 2019; Li S. et al., 2022). For instance, AD-MSCs
from older donors have shown increased cellular senescence,
reduced viability and proliferation, as well as reduced
differentiation potential in comparison to younger donors
(Choudhery et al., 2014). Similarly, BM-MSCs from infant
donors doubled more quickly, differentiated into bone and fat
cells more efficiently and formed more and denser CFUs. They
were also better at suppressing T cell proliferation at lower
concentrations than BM-MSCs from adult donors (Myneni et al.,
2019). Furthermore, single-cell multiomic analysis profiling the
transcriptome and epigenome of BM-MSCs from four healthy
donors allowed for classification of cells into four clusters,
indicating that BM-MSCs from different donors possess distinct
chromatin accessible regulatory elements, which was reflected as
variations in their differentiation potential into osteoblasts (Chen
et al., 2023). Interestingly, it has been shown that MSCs’
immunomodulatory and angiogenic fitness are inversely
correlated and can predict inter-donor differences in
proangiogenic versus anti-inflammatory/immune suppressive
activities in cell-based assays (Robb et al., 2022a; Lee et al., 2023).

It would be rational to assume that deriving MSCs from
umbilical cords would eliminate certain heterogeneity originating
from donors’ age, lifestyle, and pathophysiological conditions.
Remarkably, an opposing trend has been observed. A study
examining the cellular heterogeneity in single-cell transcriptomes
of MSCs discovered higher inter-donor variability in WJ-MSC
samples compared to BM-MSC samples (Zhang C. et al., 2022).
In another scRNA-seq study, UC-MSCs exhibited significantly
higher heterogeneity in their subpopulations across different
donors when compared to MSCs from adult donors (Wang
et al., 2021d).

Moreover, in a study comparing MSCs derived from umbilical
cords of 12 donors, doubling time and population doubling varied
by a factor of two between donors (Mebarki et al., 2021). A
comparison of UC-MSCs from 32 donors revealed a substantial
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variability in both their proliferation rates and immunomodulatory
properties (Zhang C. et al., 2021). Interestingly, while no correlation
was found between their proliferation rates and immunosuppressive
capacity, the latter exhibited a close alignment with their therapeutic
effects observed in a mouse spinal cord injury model (Zhang C. et al.,
2021; Zhu et al., 2022). In a study aimed at standardizing isolation
and expansion methods, MSCs derived from umbilical cords of
90 donors were examined. Interestingly, lower gestational age was
associated with a shorter time to P0 harvest, suggesting that even
minor variables, such as time of delivery, could potentially exert a
significant influence on MSC characteristics (Todtenhaupt
et al., 2023).

A comparison of CB-MSCs from seven donors identified two
distinct groups based on angiogenic capacity under hypoxic
conditions: one with low and another with high angiogenic
potential. These distinctions correlated with the differential
expression of four specific genes—ANGPTL4, ADM, CDON, and
GLUT3—which were chosen based on prior research highlighting
their roles in angiogenesis and sensitivity to hypoxic conditions
(Kang et al., 2018a).

The discussed donor variability stands as a significant barrier in
the development of consistent protocols and cellular medicinal
products. Despite efforts to control for variables with substantial
impacts on the clinical quality of MSCs by using more primitive
MSCs, such as UC- and less often CB-MSCs, heterogeneity between
batches clearly persists. Exploring strategies like, e.g., pooling cells
from different donors might perhaps mitigate these effects and
ensure more comparable products, leading to more
consistent results.

2.3 Heterogeneity introduced by variations
in preparation and administration protocols

Clinical efficacy of MSC products can vary considerably,
depending not only on tissue source and donor characteristics
but also on preparation and administration protocols. Given the
regularly irreproducible effectiveness of MSCs in clinical trials, the
optimization of cell manufacturing protocols is still a work in
progress. However, this pursuit also holds the potential to further
introduce heterogeneity into preparation conditions. Despite
advancements towards standardization of the production
procedures and accurate characterization of the MSC products,
variabilities among manufacturing centers are very much present
(Bieback et al., 2019). Understanding these differences and their
impact on product quality would allow for a better comparison of
the clinical outcomes across various institutions.

2.3.1 Media supplements
Efficient MSC expansion in culture requires basal medium

supplemented with growth factors, proteins, and enzymes to
support attachment, growth, and proliferation. The most
commonly used supplement in cell culture media in general is
fetal bovine serum (FBS), due to its rich supply of growth
factors, cytokines, and chemokines (Bieback, 2013).

However, the utilization of FBS in cell culture poses scientific,
economic and moral issues (Subbiahanadar Chelladurai et al., 2021).
The most critical concern in using FBS for clinical applications is its

potential contamination with xenogeneic elements, including prion
proteins, endotoxins, various types of microbes, immunoglobulins,
and viruses. Another issue pertains to the uncertainty surrounding
the precise composition of FBS and its batch-to-batch variability,
both of which can impact the biological properties of cultured cells.
Thirdly, the growing demand and limited production capacity can
result in unpredictable shortages and higher prices of FBS. Last but
not least, the increasing number of fetuses slaughtered specifically
for FBS production and the potential fetal distress during blood
collection give rise to significant ethical concerns regarding animal
welfare (Subbiahanadar Chelladurai et al., 2021).

To address these issues, alternatives to FBS are being developed
and integrated into MSCmanufacturing protocols. Among the most
widely adopted alternatives are human platelet lysate (Cañas-
Arboleda et al., 2020), pooled human AB-serum (Savelli et al.,
2018), human umbilical cord serum (Afzal et al., 2023), and
serum-free media (Caneparo et al., 2022). Nevertheless, similar to
FBS, these alternatives struggle with certain challenges. For example,
platelet lysate-plasma contains fibrinogen and other coagulation
factors. To prevent gelation, commercially available platelet lysate
usually contains animally-sourced heparin, making it no longer
xeno-free (Altrock et al., 2023). Supplements derived from human
blood also share some concerns with FBS, particularly regarding the
potential transmission of infectious agents and the variability in
their composition (Bieback, 2013).

Culturing MSCs in variously supplemented media can lead to
alterations in their fundamental characteristics, including changes in
proliferation rate, morphology, gene expression patterns,
senescence, immunomodulatory properties, and differentiation
capacity (Dam et al., 2021; Takao et al., 2021; Jakl et al., 2023). It
has been shown that growing MSCs in serum-free media leads to
smaller cells with increased proliferation rate that are better at
forming colonies than those grown in FBS-supplemented media
(Aussel et al., 2022; Caneparo et al., 2022). However, they exhibited
lower osteogenic and chondrogenic differentiation capacity
(Caneparo et al., 2022).

Similarly, BM-MSCs grown in medium with human platelet
lysate showed faster proliferation rates and lower differentiation
capacity compared to those in FBS-supplemented medium
(Anerillas et al., 2023). Additionally, BM-MSCs expanded in
medium with human AB-serum exhibited round cell
enrichment, better adhesion, and faster proliferation rates
compared to those in medium with human platelet lysate
(Savelli et al., 2018). In a study comparing human platelet
lysate, fetal bovine serum, and human AB-serum, platelet
lysate emerged as the superior choice for supporting AD-MSC
proliferation, differentiation, and growth in 3D cultures (Kirsch
et al., 2021).

Considering the collective body of research, determining the
ideal supplement for MSC manufacturing remains a challenging
task. However, although MSCs cultured in media supplemented
with platelet lysate exhibit notably accelerated proliferation and
marked variations in cellular morphology compared to those
cultured in FBS, no discernible alterations in DNA-methylation
patterns have been observed, and only modest differences in gene
expression profiles were detected. Moreover, the changes in
proliferation and morphology proved to be reversible
(Fernandez-Rebollo et al., 2017).
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2.3.2 Culturing techniques
While one of the defining criteria for MSCs has been in vitro

plastic adherence, conventional methods of their extensive 2D
in vitro expansion are not representative of the in vivo
environment. Instead, MSCs exist within their niches as a part of
heterogeneous cell population, where they tightly adhere to each
other and exhibit complex cell-cell and cell-extracellular matrix
interactions (Yen et al., 2023).

Conventional MSC manufacturing techniques, selected for their
convenience and low cost of implementation, are aimed at
generating a clinically relevant number of cells. However, they
can negatively impact MSC characteristics and functions, which
could be responsible for their limited therapeutic efficacy. In an
effort to preserve or enhance MSC phenotypes and consequently
improve their in vivo performance, 3D culturing techniques have
been developed (Kouroupis and Correa, 2021). When grown
suspended in culture, MSCs spontaneously coalesce and form
spherical multicellular aggregates, termed spheroids (Fuentes
et al., 2022). These are thought to better recapitulate in vivo
interactions, promote secretion of paracrine factors, improve cell
survival, increase MSC differentiation potential, and delay their
replicative senescence (Cesarz and Tamama, 2016; Yen et al., 2023).

The methods used to generate MSC spheroids can be generally
classified as scaffold-free and scaffold-based culture platforms
(Kouroupis and Correa, 2021). Scaffold-free methods can be
further divided into static and dynamic approaches. The most
trivial static technique is growing cells in a non- or low-adherent
environment that allows self-organization of cells into suspended
spheroids (Redondo-Castro et al., 2018). More complex methods
encompass hanging-drop method (Bartosh and Ylostalo, 2014; Au -
Ylostalo et al., 2017), forced aggregation (Rettinger et al., 2014) and
magnetic levitation (Lewis et al., 2017; Gaitán-Salvatella et al., 2023).
Among the most investigated dynamic approaches are spinner flask
culture and rotating wall vessel techniques (Marques et al., 2023).
Additionally, various scaffold-based MSC spheroid generation
methods have been proposed using both natural and synthetic
biomaterials. Biomaterial selection should be based on the
therapeutic application in mind, as physical-chemical
characteristics of scaffolds such as porosity and biodegradation
can dramatically affect MSC stemness and differentiation
capacities (Kouroupis and Correa, 2021).

Studies show that mild hypoxia present within the inner zones of
MSC spheroids may positively affect MSC survival and secretory
capacity. 3D culture conditions significantly increase the relative
expression of stemness-related transcriptional factors in MSCs and
promote their anti-inflammatory profile (Bartosh et al., 2010a;
Rybkowska et al., 2023). RNA-seq data obtained from human
amnion-derived MSCs following 3D culture revealed increased
expression of pleiotropic factors important in tissue regeneration,
such as CXCL12, LIF, VEGF-A, HGF, BDNF, IL6, EGF, PGE2,
CCL20, BMP2, TGFB1, CXCL1, CCL2, GDF15, IL11, and CCL7
(Gallo et al., 2022). Growing MSCs under hypoxic conditions does
not change their specific surface antigen expression (Kang et al.,
2018a; Tomecka et al., 2021). Nevertheless, they exhibit improved
abilities for multi-lineage differentiation, survival, migration and
proliferation, better support of angiogenesis and increased
expression of stemness-related genes (Kang et al., 2018b; Meng
et al., 2018; Wang et al., 2022). They were also shown to

spontaneously generate 3D niche-like structures of
undifferentiated, small, round Oct4 and HIF-2a positive fast
growing cells (Drela et al., 2014).

As of today, no clinical trials have been conducted to evaluate the
therapeutic potential of MSC spheroids. Consequently, there are no
specific criteria in place to define conditions where MSC spheroids
might be preferred over MSCs expanded in a monolayer. Still, it has
become more and more evident that conventional culturing
methods cannot ensure the preservation of MSC characteristics
and their associated functionality to the same extent. The
adoption of reproducible, high-throughput methods that meet
regulatory requirements for MSC spheroid production could
facilitate their clinical use and potentially lead to MSC products
with improved therapeutic efficacy.

2.3.3 Expansion level
MSC-based therapies require a substantial number of cells, as

individual doses are measured in millions of cells per kilogram of
body mass, particularly for systemic treatments like in GvHD (Kelly
and Rasko, 2021). Consequently, to obtain the necessary cell
quantity for clinical applications, extensive MSC expansion is
inevitable. Unfortunately, such expansion can significantly alter
MSC characteristics and has been proposed as a possible cause
for poor performance in certain clinical trials (Galipeau, 2013; Hoch
and Leach, 2014). These changes can impact phenotypic,
morphological, genetic and functional attributes of MSCs, along
with their regenerative and immunomodulatory secretome profile
(Yang et al., 2018; Miclau et al., 2023).

Indeed, population doubling has been reported to inversely
correlate with MSC potency, with early-passage cells being more
potent than batches of extensively expanded cells, possibly due to
cell senescence (von Bahr et al., 2012). Conversely, there is a theory
that rapidly dividing clones with less favorable characteristics may
outcompete slower proliferating cells during each passage, gradually
increasing the ratio of poorly performing cells. An interesting study
by Selich et al. has demonstrated, that when MSCs are first
introduced into culture, they constitute a heterogeneous cell
population. However, with successive passaging, this initial
diversity diminishes, leading to the selection of a limited number
of clones in later passages (Selich et al., 2016).

It appears as though expansion ofMSCs with optimal function is
limited to a few passages, increasing the cost and reducing the
feasibility of mass production for MSC therapeutics. Nevertheless,
some argue that a brief period of culturing in a 3D format prior to
administration could induce extensively expanded MSCs to express
and secrete anti-inflammatory and immunomodulatory factors,
thereby enhancing their ability to generate a larger cell
population (Bartosh et al., 2010b). Further research is required to
fully confirm this hypothesis.

2.3.4 Administration protocols
MSCs can be introduced through either systemic or local

delivery methods. However, following intravenous infusion, most
MSCs get entrapped in pulmonary vasculature, where they form
emboli. In about 24h, the vast majority of cells are cleared from the
lungs and only a minor fraction home to different organs such as
heart, brain, liver and kidney (Lee et al., 2009; Eggenhofer et al.,
2014; Luk et al., 2016). To prevent their entrapment in the lungs,
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MSCs can be administered directly to the site of the lesion or
inflammation (Moon et al., 2019; Lamo-Espinosa et al., 2020;
Czarnecka et al., 2021; Ouboter et al., 2023). Nevertheless, local
administration can be invasive, more complex, and requires
additional training for medical practitioners. Moreover, in certain
conditions such as GvHD and solid organ transplantation, MSCs
cannot be administered locally and instead require systemic delivery
(Franquesa et al., 2013; Podesta et al., 2020).

Multiple factors can affect viability and key functional
characteristics of MSCs at the time of administration, including
cell concentration, the choice of solution in which the cells are
delivered and post-thawing protocols (Zhang et al., 2017; Aabling
et al., 2023). A droplet-based scRNA-seq comparing pre-freeze and
post-freeze BM-MSC samples has identified numerous differentially
expressed genes associated with a wide range of cellular functions,
such as cytokine signaling, cell proliferation, cell adhesion,
cholesterol/steroid biosynthesis, and regulation of apoptosis
(Medrano-Trochez et al., 2021). Indeed, in the first 24 h after
thawing, cryopreservation reduces cell viability, increases
apoptosis level and impairs MSC metabolic activity,
immunosuppressive potency and adhesion potential (Ketterl
et al., 2015b; Bahsoun et al., 2020; Giri and Galipeau, 2020).

Prior to infusion, cells are usually formulated with a saline
solution, human albumin solution or even administered directly
in their cryopreservant solution (Trento et al., 2018). It is worth
noting that only a limited number of clinical trials specify the
handling of MSC products, from dose preparation to cell
administration (Wiese et al., 2022).

3 Strategies for MSC standardization

Given the numerous ongoing clinical trials involving MSCs and
the growing need for large-scale manufacturing protocols, it is
imperative to establish consensus assays for MSC processing and
the release of MSC products. Reference materials and validated,
uniformly applied tests for quality control of MSC products are
required (Robb et al., 2019). However, some stakeholders in the
MSC field advocate for caution when establishing definitive cell
standards, since there are still gaps in our current understanding of
MSC biology that could potentially distort or inhibit the adoption of
MSC-based therapies (Wilson et al., 2023). Central to this challenge
is the need for precise clinical response prediction, which requires
well-definedMSC populations and, contingent upon the therapeutic
goal, an assessment of their desired specific activities such as
differentiation potential, proliferation rate, secretory profile, and
angiogenesis capacity.

3.1 Defining MSC subpopulations via
specifically expressed surface antigens

It has been shown that ISCT criteria for phenotypic MSC
identification can be insufficient for distinction between MSCs
and certain other cell types, such as fibroblasts (Denu et al.,
2016; Brinkhof et al., 2020; Budeus et al., 2023a). In fact, MSCs
are morphologically indistinguishable from fibroblasts
(Soundararajan and Kannan, 2018). What is more, Denu and

colleagues have demonstrated that none of the ISCT criteria can
reliably discern MSCs from fibroblasts, even arguing that they could
represent the same cell type (Denu et al., 2016). Some suggest that
fibroblasts could in certain instances be used as a more practical
alternative to MSCs, while others maintain that they have
complementary roles, especially in cell homeostasis and tissue
development and injury (Ichim et al., 2018; Janja et al., 2021).
Soundararajan and Kannan propose that the resemblance in
characteristics between fibroblasts and aged MSCs, such as
diminished differentiation potential, proliferation,
immunomodulatory capacity, and specific cell surface markers,
could mean that MSCs are in fact immature fibroblasts
(Soundararajan and Kannan, 2018). Indeed, single-cell
transcriptome sequencing has revealed that MSCs could
constitute a subclass of fibroblasts (Fan et al., 2022).

On the other hand, gene expression and epigenetic studies have
been successful in discerning MSC and fibroblast populations based
on molecular signatures of homeobox genes and transcriptional
factors (Taskiran and Karaosmanoglu, 2019; Budeus et al., 2023b).
Likewise, comparative microarray transcriptome profiling of three
fibroblast populations and MSCs from five different sources
demonstrated a marked distinction between the “fibroblast” and
“MSC” group, particularly in transcripts associated with
structuration of the tissue skeleton (Haydont et al., 2020). Wiese
and Braid propose a panel of 24 signature genes to support
standardized and accessible MSC characterization, including five
that have been shown to be upregulated in MSCs versus fibroblasts
(Wiese and Braid, 2020).

So while RNA sequencing and microarrays could possibly
discern between MSCs and fibroblasts, protocols for clinical
application should be as straightforward and affordable as
possible. Therefore the use of cell surface antigens would be
preferable, however, to this date, they have proven insufficient to
indisputably identify MSCs. Brinkhof et al. propose CD166 as a
marker to differentiate MSCs from fibroblasts, as it is the only
marker they have found to be upregulated in MSCs compared to
fibroblasts. Notably, its expression levels positively correlated with
those of CD105, although CD166 exhibited greater specificity for
MSCs (Brinkhof et al., 2020). Nevertheless, Sober et al. did not detect
significant difference in CD166 expression between MSCs derived
from various tissues and fibroblasts. However, they put forward a
panel of markers that could distinguish between MSCs originating
from a specific tissue and fibroblasts; for instance, CD79a, CD105,
CD106, CD146, and CD271 could be used to differentiate AD-MSCs
from fibroblasts (Sober et al., 2023).

Adding to the complexity, a study on changes in MSC-related
surface antigen expression during in vitro culture revealed that after
7 days, synovial fibroblasts began displayingMSC characteristics, further
blurring the distinction between the 2 cell types (Isono et al., 2022).

Moreover, due to a multitude of discouraging clinical outcomes,
there is a growing demand to identify additional surface markers
capable of defining MSCs while capturing their biological and
manufacturing variability, as well as clinical performance
(Camilleri et al., 2016; Samsonraj et al., 2017). Consequently,
various markers have been proposed to better define distinct
subpopulations within MSCs (Smolinska et al., 2023).

Lately, CD146 has been frequently mentioned as a surface
antigen that could serve as a marker for MSC potency evaluation
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(Bowles et al., 2020; Ma et al., 2021a). It is a transmembrane
glycoprotein involved in adhesion, cellular signaling and
numerous other physiological and pathological processes (Wang
et al., 2020). It is expressed in MSCs derived from a wide range of
tissue sources, both fetal and adult (Barilani et al., 2018).
CD146 positive MSCs exhibit stronger proliferation,
differentiation, migration and immunomodulatory abilities,
however, prolonged passaging can result in progressive loss of
CD146 on the cell surface (Yang et al., 2018; Al Bahrawy, 2021;
Ma et al., 2021b; Zhang L. et al., 2022). Indeed, MSCs expressing
high levels of CD146 display a more pronounced therapeutic effect
compared toMSCs with low levels of CD146, as evident by increased
survival rate in a mouse GvHD model (Bikorimana et al., 2022).

Another surface antigen implicated in MSC function is CD271,
present on MSCs derived from adult but not fetal tissues. The
reported abundance of CD271 varies widely, ranging from 4% to
nearly 100%. Nevertheless, the majority of studies converge on an
approximate 20% fraction of CD271+ positive cells within the bulk
MSC population (Quirici et al., 2010; Watson et al., 2013;
Beckenkamp et al., 2018; Smith et al., 2021). MSCs positive for
CD271 display enhanced capacity for differentiation, proliferation,
and colony formation when compared to their CD271−
counterparts or mixed-population. However, the CD271 antigen
diminishes rapidly with cell passaging, highlighting the importance
of using cells subjected to minimal expansion procedures for
therapeutic applications (Smith et al., 2021).

Moreover, CD271-depleted BM-MSCs have altered
morphology, poor proliferation capacity, increased expression of
hematopoietic markers, nearly no multi-lineage potential and are
unable to form colonies, therefore failing to meet ISCT criteria for
MSCs (Kuci et al., 2010; Petters et al., 2018). Notably, RNA
sequencing analysis has revealed that there is a larger difference
in gene expression between CD271+ and CD271− populations in
AD-MSCs than between donors. Among genes with altered
expression levels are those associated with inflammation and
angiogenesis (Smith et al., 2021). MSC that are CD271 positive
show superior promotion of cartilage repair to MSCs consisting of
heterogeneous populations (Kohli et al., 2019). Nevertheless, when
seeded on 3D osteoconductive biomaterial scaffold for bone
regeneration, CD271+ MSCs proved inferior to heterogeneous
MSCs, underscoring the need for caution when transferring
results from monolayer to 3D cultures (Muller et al., 2019).

Several other surface antigens have been proposed as markers
for MSCs and their specific subpopulations, such as STRO-1 as a
marker for dental/gingival MSCs (Yu et al., 2010; Perczel-Kovách
et al., 2021). Through advancements in methodologies, novel
antigens are continually unveiled, prompting further
investigations into their distribution and potential as phenotype
markers. For example, based on single-cell RNA sequencing data,
CD167b, CD91, CD130, and CD118 were proposed as novel surface
markers for BM-MSC enrichment or purification. However, further
molecular validations are needed (Wang et al., 2021b).

3.2 Functional assays

Contributing to the challenges in predicting clinical outcomes
following MSC administration are the uncertainties surrounding

mechanisms through which they drive tissue regeneration and exert
immunoregulatory functions. Regulatory authorities require the
development of tests to measure potency as part of release
criteria of advanced clinical trials designed to support marketing
approval and registration. Still, they allow for a considerable
flexibility in determining the appropriate measurements of
potency for each product and the adequacy of these tests is
evaluated on a case-by-case basis (Galipeau et al., 2016). Ideally,
the potency assay should reflect the in vivo mechanisms of action.
However, since MSCs act through a complex range of mechanisms
with unknown key steps, there are currently no definitive and
unambiguous tests available that could accurately measure their
clinical efficacy (Galipeau et al., 2016; Hematti, 2016; Robb
et al., 2019).

Consequently, ISCT suggests an alternative approach. Rather
than relying on a single potency assay, a collection of
complementary assays should be conducted to evaluate relevant
biological and therapeutic properties of the cells including
quantitative analysis of mRNA expression, measurement of
functionally relevant surface markers by flow cytometry, and
protein-based assays to detect secreted factors (Galipeau et al., 2016).

3.2.1 Differentiation potential of MSCs
One of the most intriguing and therapeutically promising MSC

characteristics is their differentiation potential. Under both in vivo
and in vitro stimulation, they can differentiate into several
mesodermal-derived lineages, in particular chondrogenic,
osteogenic, and adipogenic cells. Various studies suggest that they
can also differentiate into non-mesodermal lineages like
hepatocytes, neurons and pancreatic cells (Shibu et al., 2023). It
is therefore important to distinguish MSC “potency” in a
manufacturing context from their capacity to differentiate toward
multiple cell lineages.

While tri-lineage differentiation potential is not typically
assessed in MSC potency assays, it is still considered a key
criterion for routine MSC characterization (Dominici et al., 2006;
Montesinos et al., 2009). Therefore it is somewhat surprising, that
most of the time researchers omit these assays, especially when
conducting clinical studies (Wilson et al., 2021; Renesme et al.,
2022). Furthermore, despite decades of undertaking MSC
differentiation assays, there is still lack of consensus regarding
the optimal media composition, detection reagents, and
quantification methods to determine the extent of in vitro
differentiation (Kakkar et al., 2020; Mollentze et al., 2021).
Additionally, recent trends indicate a growing reliance on
commercially available differentiation media, which are often
elusive regarding their composition, thus exacerbating the
heterogeneity among protocols (Eggerschwiler et al., 2019;
Labedz-Maslowska et al., 2021; Bajetto et al., 2023).

When characterizing MSCs through tri-lineage differentiation
in clinical and preclinical trials, researchers commonly present
representative images of differentiated MSCs, confirmed through
specific staining reagents (Aghayan et al., 2022; Shimizu et al., 2022;
Krakenes et al., 2023). Following adipogenic differentiation, staining
with Oil Red O or Nile Red is used to visualize intracellular lipid
vacuoles. Osteogenic differentiation is confirmed by the detection of
calcium deposits in the extracellular matrix via Von Kossa or
Alizarin Red S staining. Chondrogenic differentiation is
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confirmed through the staining of cartilage deposits by Safranin-O/
Fast Green or Alcian Blue (Ciuffreda et al., 2016).

However, when aiming to determine the extent of
differentiation, colorimetric methods offer only semi-quantitative
analysis options. Specifically, osteogenic differentiation can be
evaluated by assessing extracellular calcium deposits through
Alizarin Red S staining or by quantification of alkaline
phosphatase activity (Widholz et al., 2019). Adipogenic
differentiation can be estimated by staining intracellular lipid
droplets with Oil Red O and chondrogenic differentiation by
staining glycosaminoglycans, proteoglycans and collagen content
with Safranin O. The extent of differentiation is then evaluated by
semi-quantitative measurement of absorbance levels (Du
et al., 2023).

Therefore, most of the studies that set to quantify the extent of
MSC differentiation, have to analyze gene expression profile specific
for the desired differentiation through real-time polymerase chain
reaction (RT-PCR). Briefly, RNA extracted from cells that are
undergoing chondrogenic, osteogenic, or adipogenic
differentiation, is reversely transcribed, resulting in the generation
of first-strand complementary DNA. This cDNA then serves as a
template for amplification by RT-PCR using sequence-specific
primers, followed by relative quantitation of gene expression
(Kim et al., 2023). Certain changes in gene expression following
MSC differentiation are well established, while others are still being
discovered and could potentially serve as basis for quantification of
differentiated MSCs (Hou et al., 2021; Stefanska et al., 2023).

In recent years, new methods for quantification of MSC
differentiation are emerging. One of more compelling approaches
is digital image analysis of histological staining. It aims to simplify
the laboratory procedures to objectively quantify and classify the
degree of differentiation as well as the differentiation potential
among different MSC cell lines or cell subpopulations (Avercenc-
Leger et al., 2017; Eggerschwiler et al., 2019). Another recently
proposed strategy for determining the extent of osteogenic
differentiation utilizes 18F. This radioactive tracer binds with a
high affinity to newly synthesized hydroxyapatite and can then be
evaluated by 18F μ-positron emission tomography scanning and
activimeter analysis (Grossner et al., 2020). All in all, methods are
continually being developed, in an effort to simplify and refine
quantification of MSC differentiation and by extension, their
therapeutic efficacy.

3.2.2 Lymphocyte proliferation assay
While MSC ability to suppress lymphocyte proliferation is well

documented, assays to quantify this process lack standardization
and vary between groups and methodologies (Juhl et al., 2022). Still,
in vitro inhibition of lymphocyte proliferation is considered a gold
standard in predicting MSC functionality (Galipeau et al., 2016;
Nicotra et al., 2020). Lymphocyte proliferation can be induced either
by unspecific mitogens such as phytohaemagglutinin (PHA) and
Staphylococcal enterotoxin B or by specific antibody-mediated
activation of CD3 associated with the T cell receptor and
CD28 for co-stimulatory signaling (Chinnadurai et al., 2018;
Hammink et al., 2021). Alternatively, in mixed lymphocyte
reactions (MLR) proliferation of T cells is activated by
allorecognition, in which T cells are directly activated by
allogeneic antigen-presenting cells (DeWolf et al., 2016).

Lymphocyte proliferation can be quantified by several methods.
Firstly, the amount of newly synthesized DNA can be measured by
incorporation of thymidine analogs such as bromodeoxyuridine or
3H-thymidine (Svajger et al., 2021; Piede et al., 2023). Alternatively,
total DNA content can be assessed by fluorescent dye binding using
Hoechst or CyQUANT® NF reagents (Suzdaltseva et al., 2022). One
of the most widely accepted methods is tracking generations of cell
division by dilution of covalently binding proliferation dyes such as
CFSE (carboxyfluorescein succinimidyl ester) or CellTrace Violet
(Kashef et al., 2022; Lemieszek et al., 2022).

However, these dyes can be toxic to a certain extent, prompting
an exploration of alternative approaches. One such alternative is the
assessment of cell proliferation by measuring the rate of metabolic
activity. This can be achieved by utilizing colorimetric assays with
tetrazolium salts or by quantifying the ATP levels with
bioluminescent reagents that detect increases in healthy
proliferating cells (Herzig et al., 2021; Herzig et al., 2023).
Additionally, some researchers assess cell proliferation by
measuring accumulation of cell cycle-associated proteins such as
intracellular Ki67 or simply by counting cells, using, for example,
CountBright Absolute Counting Beads (Cruz-Barrera et al., 2020).

In an effort to minimize the impact of donor variation,
researchers pool peripheral blood mononuclear cells (PBMCs)
from up to 10 different donors in MLR and mitogen induced
lymphocyte proliferation (Christy et al., 2020). However, recent
report indicates that optimal lymphocyte proliferation in MLR
experiments can be achieved with as few as four donors (Hansen
et al., 2022). Furthermore, two studies have identified PHA as the
most suitable mitogen among tested components in their panels
(Hansen et al., 2022; Kashef et al., 2022). It is noteworthy that,
despite the conventional duration of 4–5 days for most lymphocyte
proliferation assays, the peak of PBMC proliferation suppression
occurs within 48 h following co-culture with MSCs, and extending
the incubation window does not elicit significant changes (DeWolf
et al., 2016; Suzdaltseva et al., 2022).

3.2.3 Other assays
One of the assays to evaluate MSC potency, not required by

ISCT but still frequently employed, is the endothelial cell tube
formation assay. It evaluates MSC ability to support angiogenesis
in vitro (Arnaoutova et al., 2009). Briefly, endothelial cells, whether
primary or immortalized, are combined with MSC conditioned
media and then seeded onto a basement membrane matrix. In
response to angiogenic signals present in the media, cells start to
rapidly form capillary-like structures. Within 1 hour, they align
themselves, and by the second hour, tubules containing lumens
begin to emerge. In vitro angiogenesis is then quantified as the
number of branch sites/nodes, loops/meshes, or the number and
length of tubes formed (DeCicco-Skinner et al., 2014; Carpentier
et al., 2020). As the probable mechanism of action by which MSCs
elicit an angiogenic response is through their paracrine activity, a
quantification of expression of angiogenic factors and cytokines
such as VEGF can be used to assess their angiogenic potency (Thej
et al., 2017).

In accordance with ISCT guidelines, recent studies focus on
developing assay matrix approach in order to predict MSC potency
(Figure 3). One of the more commonly employed strategies involves
utilizing secretory soluble factors, specifically chemokines and
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cytokines, through a multiplex analytical method (Lipat et al., 2022;
Porter et al., 2022). Additionally, Kowal et al. claim that they could
predict BM-MSCs proliferative capacity and the differentiation
potential by assessing their morphological characteristics (Kowal
et al., 2020).

In line with these efforts, Robb et al. developed an in vitromatrix
of multivariate readouts, specifically, cell morphology, gene
expression, soluble factor expression, macrophage polarization
and angiogenesis (Robb et al., 2022b). Quantification of these
critical quality attributes would serve to prospectively screen
potent MSC donors or cell culture conditions to optimize for the
desired basal MSC immunomodulatory or angiogenic fitness.

3.3 Autologous vs. allogeneic origin of MSCs

While autologous MSCs were historically favored for their lower
risk of immune rejection, in recent years, the medical community
has increasingly embraced allogeneic sources owing to
immunological » invisibility« of MSCs in general. This shift can
be ascribed to several factors, including their convenience, optimal
donor and tissue selection, cost-effectiveness, as well as a compelling
body of clinical evidence supporting their efficacy and safety. Still,
some warn that the discrepancies between outcomes of murine
preclinical models and human clinical trials could be attributed to
the pre-clinical mouse data overwhelming use of syngeneic, major
histocompatibility complex (MHC)-matched cells when examining
efficacy endpoints (Galipeau and Sensebe, 2018; Giri and Galipeau,
2020). Indeed, repeated intra-articular injection of allogeneic
mesenchymal stem cells in equine model resulted in an adverse

clinical response, suggesting there is a potential for immune
recognition of allogeneic MSCs upon repetitive exposures (Joswig
et al., 2017).

Unfortunately, clinical trials directly comparing the application
of allogeneic and autologous MSCs are rare and often inconclusive,
primarily due to small sample sizes (Hare et al., 2012a). However, a
study comparing safety and efficacy of autologous and allogeneic
BM-MSCs in patients with non-ischemic dilated cardiomyopathy
reported superior efficacy for allogeneic MSCs (Hare et al., 2012b)).
A recent study comparing transplantation of autologous BM-MNCs
(bone marrow mononuclear cells) to allogeneic WJ-MSCs into
diabetic patients with chronic limb-threatening ischemia
confirmed that both treatments are safe and effective. However,
the therapeutic benefit was more pronounced when treating patients
with allogeneic WJ-MSCs (Arango-Rodriguez et al., 2023).
Furthermore, in a study investigating the potential of MSCs to
alleviate GVHD following hematopoietic stem cell transplantation,
there was no observed correlation between donor HLA-match and
response rate (Le Blanc et al., 2008).

A recent review evaluating the outcomes of clinical trials using
culture-expanded MSCs to treat osteoarthritis could not definitively
distinguish between autologous and allogeneic MSCs in terms of
efficacy (Copp et al., 2023). Similarly, in vitro study comparing
immunomodulating effects of autologous and full HLA mismatched
donor MSCs relative to the responder cells did not detect any
significant difference in inhibition of PBMC proliferation
(Waldner et al., 2018). Conversely, in a meta-analysis of
randomized controlled trials comparing the efficacy and safety of
autologous and allogeneic MSCs for knee osteoarthritis
management, autologous MSCs emerged as superior in providing

FIGURE 3
An example of a matrix of assays to predict MSC potency. Morphological characteristics, cell surface marker expression, gene expression, soluble
factor secretion, tri-lineage differentiation, lymphocyte proliferation, macrophage polarization and endothelial cell tube formation could be used to
assess potency of MSC cell product lots.
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long-term pain relief and a lower incidence of adverse events
(Jeyaraman et al., 2022).

Autologous MSCs sources can prove functionally inferior to
allogeneic, especially when derived from donors with underlying
systemic diseases. For example, AD-MSC derived from patients with
chronic obstructive pulmonary disease exhibited decreased
migration capacity than those derived from healthy donors. Still,
they were equally efficient at reducing lung emphysematic damage
in a mouse model (Rio et al., 2023). Importantly, autologous MSCs
may exhibit suboptimal quality and fail to meet the requisite criteria
for clinical utility, most often due to quality of starting material
(Alves-Paiva et al., 2022). For example, a study investigating safety
and feasibility of intramuscular transplantation of autologous BM-
MSCs for patients with no-option critical limb ischemia reported a
high rate of karyotype abnormalities in expanded cells (Mohamed
et al., 2020). Moreover, MSCs derived from patients with type
2 diabetes displayed altered phenotype that most likely
compromised their therapeutic efficacy (Capilla-Gonzalez et al.,
2018). Similarly, MSCs derived from patients with systemic lupus
erythematosus displayed dysfunctional phenotype and while
patients responded to allogeneic MSC treatment, no response was
seen with autologous cell transplantation (Cheng et al., 2019; El-
Jawhari et al., 2021).

There is yet no clear clinical evidence to confirm whether
autologous or allogeneic MSCs are superior to one another. It is
plausible that specific conditions, especially those requiring tissue
repair associated with MSC differentiation, may benefit more from
autologous MSCs, while others, particularly may derive greater
benefits from allogeneic MSCs. However, given the numerous
advantages associated with allogeneic MSCs, particularly the
greater ease of acquisition and production, it is probable that
allogeneic MSCs will increasingly replace autologous cell sources.

4 Defining the optimal tissue source

Given the several tissues from which MSCs can be obtained, a
natural question arises: which source is the most suitable? While
multiple factors contribute to the decision made by institutions or
medical teams, some sources offer more advantages than others.
While bone marrow has traditionally served as a primary source for
MSCs, the therapeutic potential of BM-MSCs is constrained by
invasive harvesting techniques, suboptimal collection efficiency,
age-related decline in quality, and donor-associated morbidities.
On the other hand, a particularly advantageous source is the
umbilical cord, primarily due to its noninvasive, low cost and
ethically acceptable collection procedure.

4.1 Umbilical cord as a superior source
of MSCs?

UC-MSCs can be isolated from various compartments
including Wharton’s jelly, veins, arteries, umbilical cord
lining, subamnion, perivascular regions, or the whole
umbilical cord (Nagamura-Inoue and He, 2014). In recent
years, Wharton’s jelly, the mucoid connective tissue
surrounding the umbilical cord’s arteries and vein, has

emerged as the preferred compartment for MSC isolation,
although some argue that whole umbilical cord offers more
advantages (Subramanian et al., 2015; Semenova et al., 2021).

UC-MSCs are considered more primitive than MSCs derived
from adult tissues because they share more common gene expression
with embryonic stem cells and show higher expandability in vitro
(Hsieh et al., 2010; Musiał-Wysocka et al., 2019). Additionally,
studies have reported a stronger immunomodulatory potential
for UC-MSC in comparison to MSCs derived from alternative
tissue sources. For example, higher expression levels of
immunosuppressive molecules CD152 and HLA-G have been
observed in UC-MSC compared to AD-MSC and DT-MSC
(Zoehler et al., 2022). Furthermore, scRNA-seq data from MSCs
originating from four distinct tissues reveal UC-MSCs as possessing
the highest immunoregulatory scores among the analyzed samples
(Hou et al., 2021). UC-MSCs have also demonstrated superior
immunosuppressive function in comparison to BM-MSC in MLR
and mitogen-induced T-cell proliferation (Ketterl et al., 2015b).
Importantly, the use of UC-MSCs allows for planned selection of
starting materials, using perfectly healthy donors, thereby avoiding
potential functional compromises of final MSC products that could
arise from patient-derived, autologous products (Oliva-Olivera
et al., 2015; Widholz et al., 2019). It also allows for the
opportunity to avoid age-related problems, which can represent
an important issue BM-or AD-MSCs derived from elderly patients.
Nevertheless, special attention should be given to gestational age
when harvesting umbilical cords. As shown by Iwatani et al. UC-
MSC proliferation can vary significantly when comparing pre-term
and term UC-MSCs, a phenomenon demonstrated to be dependent
by differential expression of theWNT pathway (Iwatani et al., 2017).

In clinical settings, BM-MSCs and UC-MSCs displayed
comparable therapeutic effects when transplanted into patients
with type 1 diabetes, including improvements in glycemic control
and the preservation of β-cells (Zhang W. et al., 2022). More
importantly, a systematic review investigating the generation of
donor-specific antibodies after allogeneic MSC treatment has
revealed that only when MSCs were obtained from the umbilical
cord, there was no allo-response in any of the treated patients
(Sanabria-de la Torre et al., 2021). The especially low
immunogenicity of UC-MSCs compared to other MSC types
renders their use particularly relevant in repetitive administration
protocols, considering the possibility of immune sensitization and
subsequent allo-rejection of the cellular product. Regarding specific
aspects of their clinical utility, UC-MSC could prove to be superior
in regenerative medicine particularly for treatments relying on
increased neoangiogenesis. Namely, Kehl et al. have performed a
detailed proteomic analysis, showing that MSC derived from
wharton’s jelly display an enriched profile of angiogenic factors,
with significantly higher concentrations of angiogenic proteins,
compared to AD-MSCs and BM-MSCs (Kehl et al., 2019). Such
differences between MSC types could have important implications
for MSC selection in future clinical studies.

4.1.1 Differentiation potential of UC-MSCs in tissue
regeneration

Most of the studies report reduced differentiation capacity of
UC-MSCs compared to MSCs derived from other tissue sources
(Batsali et al., 2017; Todtenhaupt et al., 2023). It was suggested that
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the differential expression of the WNT pathway-associated
molecules could have a role in the inferior osteogenic and
adipogenic potential of UC-MSCs compared to BM-MSCs
(Batsali et al., 2017). Interestingly, while UC-MSCs display a
lower capacity for differentiation along osteogenic, adipogenic,
and chondrogenic lineages compared to BM-MSCs, they
outperform BM-MSCs in tenogenic differentiation. Namely, they
exhibit superiority in forming a well-organized tendon-like matrix
and in enhancing full-thickness tendon defect regeneration (Yea
et al., 2023).

Along these lines, a meta-analysis comparing bone marrow
aspirate concentrate (BM-AC) with CB-MSCs as a supporting
treatment in various knee osteoarthritis patients undergoing high
tibial osteotomy reported improved clinical outcomes in both
groups. However, CB-MSCs allowed for a better articular
cartilage regeneration than BM-AC augmentation (Park et al., 2023).

On the other hand, some studies have demonstrated higher
osteogenic differentiation of UC-MSCs than BM-MSCs (Baksh et al.,
2007). And a recent systematic review, centered on MSC
transplantation for articular cartilage lesions in the human knee,
established that UC-MSC transplants yielded superior outcomes
when compared to BM-AC (Wang and Xing, 2023).

4.2 Pooled MSCs vs. MSCs from
individual donors

The variability in biological properties among MSCs due to
donor-to-donor heterogeneity is compromising the quality of
data and hindering inter-study comparability. Pooling MSCs
from several different donors has been proposed as a strategy
to overcome these challenges (Zyrafete et al., 2016). The aim was
to reduce the variance observed across donors. One of the first
studies has shown that pooling MSCs leads to a greater increase

of their ability to suppress lymphocyte proliferation than
performances of MSCs derived from individual donors
(Samuelsson et al., 2009). This was confirmed to some extent
clinically by Ringden et al. where BM-MSCs from two different
donors were pooled to treat a patient with myelofibrosis
experiencing severe hemorrhage, yielding an encouraging
outcome (Ringden and Leblanc, 2011).

Since then, several strategies of pooling MSCs have been tried,
revealing interesting findings. More recently, we have also witnessed
publications of GMP-compliant protocols for manufacture of MSCs,
pooled from different donors (Padhiar et al., 2022). A study
comparing the immunosuppressive potential of single batches to
pooled products of MSCs prepared from iliac crest bone marrow
aspirates did not show a significant difference that would favor
pooled MSCs over MSCs from single donor batches. The allo-
suppressive potential was comparable in both variants (Hejretova
et al., 2020). Other studies comparing MSCs from various tissue
sources have confirmed compensation for intra-individual variances
among donors. However, there was no statistically significant
difference in their immunosuppressive potential between the
mean of a single MSC donor and pooled donors (Hansen et al.,
2022). On the other hand, pooling BM-MNCs together before
generation of BM-MSCs led to a significantly higher
allosuppressive potential of the pooled cells. This phenomenon
indicates that MNC pooling induces a strong alloreaction, which
could positively select progenitor cell fractions for MSCs with higher
allosuppressive potential, either through cell–cell interactions and/
or soluble molecules (Zyrafete et al., 2016; Bieback et al., 2019).
Among the published data, Waldner et al. had a surprisingly
different approach–they pooled cells from the same donor but
from different tissue sources, specifically bone marrow and
adipose tissue. Interestingly, the pooled cells demonstrated a
synergistic immunosuppressive effect on PBMC proliferation
(Waldner et al., 2018).

FIGURE 4
Two strategies of MSC pooling currently used in therapeutic applications. MSCs from three donors are individually expanded and then pooled
together for Stempeucel

®
MSC bank generation. On the other hand, in MSC-FFM, MNCs from eight donors are pooled together before cells attach to the

surface of tissue culture flasks. After expansion, cells are harvested and stored in cryovials to constitute a MSC bank.
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Examining other characteristics after establishing MSC pools
reveals varied reports. Some studies confirmed a correlation between
mean proliferation rate of individual donors to proliferation rate of
pooled MSCs (Zyrafete et al., 2016). Others, however, observed a
higher population doubling for pooled cells compared to individual
batches, inferring that the fast proliferating cells contribute more
towards the whole cell population in the pooled setting, resulting in
faster overall proliferation rate and eventually increasing the relative
portion of the respective cells (Widholz et al., 2019). It has been
shown that pooling BM-MSCs at different passages does not change
their functional characteristics or diminish their quality (Willer
et al., 2022). Additionally, introducing multiple rounds of
cryopreservation of pooled cells does not induce significant
changes in their fundamental characteristics (Mamidi et al.,
2012). However, comparing WJ-MSCs from individual donors to
cells pooled from three donors revealed lower levels of expression of
pro-inflammatory cytokines in the pooled batches. This observation
prompted speculation that the act of poolingMSCs could potentially
create a slightly inflammatory microenvironment, consequently
directing MSCs toward a more immunosuppressive phenotype.
Still, the immunosuppressive potential of the pooled MSCs
remained similar to that of individual donor cells (Kannan
et al., 2022).

Currently, two MSC products containing pooled cells for
therapeutic applications are in active use (Figure 4). Leading the
way is Stempeutics, an India-based company and the first to
commercialize pooled MSCs. Their advanced therapy medicinal
product, Stempeucel®, consists of BM-MSCs pooled from three
healthy donors and is intended to treat a variety of conditions
such as limb ischemia, osteoarthritis of the knee joint, perianal
fistulas and diabetic foot ulcers (Rengasamy et al., 2016; Gupta
et al., 2017; Thej et al., 2017; Gupta et al., 2023a; Gupta et al.,
2023b). The other is generated from pooled BM-MNCs from
eight allogeneic donors, also referred to as “MSC-Frankfurt am
Main” or MSC-FFM, named after the city where it was produced.
This pooled product is licensed with a national hospital
exemption authorization in Germany. It is applied to patients
with steroid and therapy-refractory acute GvHD and was shown
to be safe and effective (Zyrafete et al., 2016; Bader et al., 2018;
Bonig et al., 2019).

While the use of pooled MSCs definitely represents several
potential advancements toward product harmonization, as well as
offering several logistical solutions, potential limitations should be
addressed. One such is the potential for alloreactive immune
response associated with allogeneic cell therapy treatments. Most
likely, this is not an issue of great concern, since MSCs are widely
recognized as hypoimmunogenic (due to low expression of HLA
molecules) and their allogeneic clinical use is extensively
documented, confirming safety. Nevertheless, consideration of
histocompatibility barriers along with anticipation of immune
rejections and immune sensitization reactions should be kept in
mind. For example, certain percentage of patients have been shown
to develop alloantibodies and subsequent immune rejection of
administered MSCs (Sanabria-de la Torre et al., 2021). Even in
case of UC-MSCs, where the formation of alloantibodies is seldom
reported, this phenomenon could be potentially amplified using
pooled MSC products from different donors, where HLA diversity is
further increased.

5 Conclusion

The potential of MSCs to regulate the host immune system and
promote tissue regeneration through paracrine signaling offers a
great promise for addressing a variety of issues. However, studies
that would reproducibly and reliably confirm this potential in
clinical setting are still lacking. One of the culprits most
frequently implicated in these discrepancies is the heterogeneity
of transplanted MSC batches. It can arise from inherent biological
differences among tissue sources, donors and MSC subpopulations
or it can be introduced by variations in preparation protocols.
Strategies to mitigate these differences could range from careful
selection of tissue source, donors and specific MSC subpopulations,
to harmonized growing conditions, potency assays and
administration protocols. Amidst the multitude of options, we
also propose an off the shelf approach of pooling UC-MSCs to
increase consistency and homogeneity of the final cell product. UC-
MSCs are relatively easy to obtain and have several advantageous
characteristics in comparison to MSCs derived from other tissue
sources. Moreover, pooling UC-MSCs from several donors would
reduce inter-donor variability, improve dose-to-dose equivalence
between patients, and facilitate the comparison of therapeutic
efficacy across clinical studies. This approach could be relatively
easily implemented in hospital GMP manufacturing centers. The
main pre-requisites are established standard operating protocols in
association with maternity wards for the supply of biological starting
materials, and obviously for MSC manufacture. In addition, the pre-
requisite that a well-managed cryobank is present for storing
allogeneic MSC aliquots is key. In closing, we propose increased
academic research efforts in the area of MSC pooling, to further
resolve potential benefits, as well as its limitations and challenges on
the path toward standardized and homogeneous MSC-
based ATMPs.
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