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Mammalian genomic DNA is packed in a small nucleus, and its folding and
organization in the nucleus are critical for gene regulation and cell fate
determination. In interphase, chromosomes are compartmentalized into
certain nuclear spaces and territories that are considered incompatible with
each other. The regulation of gene expression is influenced by the epigenetic
characteristics of topologically associated domains and A/B compartments
within chromosomes (intrachromosomal). Previously, interactions among
chromosomes detected via chromosome conformation capture-based
methods were considered noise or artificial errors. However, recent studies
based on newly developed ligation-independent methods have shown that
inter-chromosomal interactions play important roles in gene regulation. This
review summarizes the recent understanding of spatial genomic organization in
mammalian interphase nuclei and discusses the potential mechanisms that
determine cell identity. In addition, this review highlights the potential role of
inter-chromosomal interactions in early mouse development.
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Introduction

Development of the chromosome conformation capture (3C) assay, a proximity ligation
assay used with PCR, was a breakthrough in chromatin biology (Dekker et al., 2002). Next-
generation sequencing has led to the development of several 3C-derived approaches to
assess contact frequencies between two genomic loci: circular 3C (4C)-seq to identify loci
that interact with a single locus (Simonis et al., 2006; Wei et al., 2013) and high-throughput
3C (Hi-C) to map genome-wide interactions (Lieberman-Aiden et al., 2009; Duan et al.,
2010). These methods marked an era of three-dimensional (3D) genome structural analysis
of interphase nuclei. Recent developments in super-resolution microscopy and imaging
techniques have facilitated high-throughput examination of chromatin conformation in
single cells (Su et al., 2020; Takei et al., 2021). CRISPR/Cas9 is an adaptive immune system
that cleaves exogenous gene elements in certain microorganisms. Endonuclease-deficient
Cas9 facilitates targeted gene regulation through epigenetic editing and imaging of specific
genomic loci in living cells. The combination of live imaging and CRISPR-based systems has
improved the understanding of chromatin contact dynamics (Gu et al., 2018; Shaban and
Seeber, 2020). Here, the recent advances in 3D genomics are summarized and future
research directions are discussed.
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Principles of genomic structure and
nuclear organization

The mammalian genome contains a large amount of DNA with
a total length of 2 m. Folding and organizing genomic DNA in the
interphase nucleus is critical for gene regulation and cell fate
determination. Proximity ligation-based genome-wide approaches
such as Hi-C have drastically enhanced our understanding of the
association between transcriptionally active/inactive states and 3D
structural DNA patterns in the mammalian genome.

Hi-C revealed that the genome is classified into two spatial
compartments: “A” compartment containing actively transcribed
genes and “B” compartment containing transcriptionally silent
domains (Lieberman-Aiden et al., 2009; Rao et al., 2014). The A
compartment, located inside the cell nucleus, is gene-rich, marked
by histone modifications for active transcription, and possesses
high GC content. In contrast, the B compartment, located near the
nuclear periphery, is gene-poor, condensed, and marked by
histone modifications for gene silencing. Initially, the A/B
compartments were considered to be approximately 1–10 Mb in
size and comprise many topologically associating domains (TADs)
(Lieberman-Aiden et al., 2009; Dixon et al., 2012), but recent high-
resolution analysis has revealed that most compartments are less
than 100 kb in size. The median compartment size is 12.5 kb
(Harris et al., 2023). TADs are considered to be formed by
active extrusion of chromatin loops (Sanborn et al., 2015;
Fudenberg et al., 2016). Loop extrusion factors such as cohesin
bind to chromatin fibers and chromatin loops gradually expand
until they either drop out, encounter each other, or encounter
extrusion barriers that define the TAD boundary (Nuebler et al.,
2018). TADs regulate transcriptional activation by restricting
enhancers to target promoters within the same loop. Genes
within the same TAD synchronize their expression patterns and
are often co-regulated during cellular differentiation (Szabo et al.,
2019). Disruption of TAD boundaries can result in the aberrant
expression of genes that should not be expressed, leading to
developmental abnormalities and diseases (Giorgio et al., 2015;
Lupiáñez et al., 2015).

Although TAD structure was thought to be relatively constant
among different cell types across species, later studies adopting high-
resolution analyses have revealed that there are sub-TADs within
TADs and that many of sub-TADs change their structures during
cell differentiation (Dixon et al., 2015; Ibn-Salem et al., 2017;
Oudelaar et al., 2020; Georgiades et al., 2023). A/B compartments
are cell type-specific and can switch over during cell differentiation
and lineage commitment (Lieberman-Aiden et al., 2009; Nora et al.,
2017; Rao et al., 2017; Schwarzer et al., 2017; Miura et al., 2019).

Chromosomal DNA is compartmentalized into constant
intranuclear spaces called “chromosome territories” (Cremer and
Cremer, 2010). Nuclear locations of chromosome territories in
human and mouse cells are not random (Croft et al., 1999;
Cremer et al., 2003). Gene-rich loci were more internally
localized, whereas gene-poor loci were more peripherally
localized. The distribution of chromosome territories is tissue-
specific (Parada et al., 2004; Bolzer et al., 2005) and the
territories are lost during mitosis and recovered after mitosis
(Gerlich et al., 2003). Genomic DNA folds in the nuclear space
in an orderly manner at multiple levels via different mechanisms.

Inter-chromosomal interactions
revealed by proximity ligation-
independent methods

Most genome-wide methods for determining chromatin
structure are based on proximity ligation. Previously, inter-
chromosomal interactions were considered artificial errors in Hi-
C studies (Kalhor et al., 2012; Kaufmann et al., 2015; Bertero, 2021).
Compared with the intrachromosomal interactions described in the
previous section (e.g., TAD and compartment formation within a
chromosome), the fundamental understanding of inter-
chromosomal interactions remains limited (Figure 1). The
nucleolus exhibits the best nuclear organization via inter-
chromosomal interactions. In various eukaryotic species,
including humans and mice, the nucleolus exhibits the largest
nuclear organization via the coalescence of ribosomal DNA
(rDNA) genes across multiple chromosomes (McStay, 2016; van
Sluis et al., 2020; Mangan and McStay, 2021). However, such inter-
chromosomal interactions in the nucleolus have rarely been detected
in previous Hi-C studies. Yu and Lemos attempted to detect the
long-range interactions among rDNAs by analyzing over 15 billion
Hi-C reads from previous studies. However, the ratio of reads
supporting such interactions was <1%, indicating the difficulty of
recovering rDNA information from Hi-C data (Yu and Lemos,
2018). On the other hand, among the gene promoters bound by
polycomb repressive complex 1 (PRC1) in mouse ES cells, an
unusually strong intra- and inter-chromosomal spatial network
was revealed by promoter-capture Hi-C techniques (Schoenfelder
et al., 2015). Because the strongest spatial network was composed of
the four Hox clusters, the clusters are proposed to act as central 3D
nucleation points for PRC1-bound genes. This spatial network is
considered to constrain genome organization and differentiation of
ES cells (Joshi et al., 2015; Schoenfelder et al., 2015).

In split-pool recognition of interactions by tag extension
(SPRITE), the cross-linked nuclear lysate is first divided into
wells of a 96-well plate, each containing a unique tag for ligation.
After ligation, the samples are pooled and divided into the wells of a
new 96-well plate containing different unique tags again. This
process is repeated five or six times to generate more than one
trillion barcodes (Quinodoz et al., 2018) (Figure 2). Therefore,
SPRITE does not depend on the ligation of spatially close DNA
fragments and facilitates the detection of interactions across larger
distances in the genome. By applying this innovative approach to
human cells, two major inter-chromosomal hubs were identified:
nucleoli and nuclear speckles (Quinodoz et al., 2018). The loci
clustered in the nucleoli exhibited low transcriptional activity and
contained few genes. In contrast, different chromosomal loci with
active gene transcription clustered in the nuclear speckles
(Quinodoz et al., 2018, 2021). Furthermore, a group of genomic
loci enriched in common super-enhancers is strongly involved in
speckle-associated chromosomal interactions in a conserved
manner across various cell types (Joo et al., 2023). This finding
indicates the formation of transcriptionally active hubs in the
nucleus. Similar results have been reported using another
ligation-free method, genome architecture mapping (GAM)
(Beagrie et al., 2017; Fiorillo et al., 2021) (Figure 2). A CRISPR-
based live-cell imaging approach called 4D-CLING revealed that
inter-chromosomal interactions are as common as
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intrachromosomal interactions (Maass et al., 2018). These new
methods, not based on proximity ligation, show that inter-
chromosomal interactions are common events in mammalian
cells and occur at greater distances than intrachromosomal
interactions.

Inter-chromosomal interactions are
involved in cell fate determination

Several studies have demonstrated the inter-chromosomal
interactions between specific enhancers and target promoters. For
example, within the Tead4 promoter interactomes investigated
using 4C-seq, our group identified five genomic loci that enhance
Tead4 promoter activity in a trophoblast lineage-specific manner
in vitro (Tomikawa et al., 2020). These enhancers are located on
chromosomes other than chromosome 6, where Tead4 is located.
Particularly, the enhancer located on chromosome 19 contributes to
the strong trophoblast lineage-specific expression of Tead4 at the
blastocyst stage. Furthermore, inter-chromosomal enhancers
promote Pax5 gene expression in a B cell-specific manner (Fujita
et al., 2017).

The most extraordinary inter-chromosomal regulator is the
multi-chromosomal enhancer acting on mouse olfactory receptor
(OR) genes (Markenscoff-Papadimitriou et al., 2014; Monahan et al.,
2017). This enhancer (the Greek island enhancer) consists of
63 enhancers on 18 chromosomes. Moreover, it acts as the key
machinery for removing heterochromatin marks from a single OR
gene stochastically selected for expression among more than
1,400 OR genes dispersed in multiple heterochromatic gene

clusters (Magklara et al., 2011; Markenscoff-Papadimitriou et al.,
2014; Monahan et al., 2019) (Figure 3).

These studies indicate that interactions among different
chromosomes affect gene expression. Moreover, inter-
chromosomal interactions have important implications in normal
cell fate determination. Although chromosome territories generally
limit inter-chromosomal interactions, in exceptional cases, they
allow interactions between certain genomic elements.

Long non-coding RNAs (lncRNAs) are
involved in the formation of 3D
chromatin structures

In addition to DNA and histones, RNA is a major component of
the nucleus (Rinn and Chang, 2012). Transcribed RNA can be
divided into mRNA and ncRNA. The number of known lncRNAs of
approximately 200 bp or longer is rapidly increasing because of the
accumulation of RNA-seq data (Mercer et al., 2009; Wang and
Chang, 2011; Derrien et al., 2012). Although the approximate
number of known human protein-coding genes is 20,000, the
FANTOM-5 project has identified 28,000 human lncRNAs (Hon
et al., 2017). However, the functions of most lncRNAs remain
unknown. Moreover, their expression levels are low, and their
sequences are not highly evolutionarily conserved (Necsulea
et al., 2014; de Hoon et al., 2015). Many lncRNAs exhibit
spatiotemporal expression patterns (Gupta et al., 2010; Cabili
et al., 2011). Well-characterized lncRNAs modulate higher-order
chromatin structures (Saxena and Carninci, 2011; Marchese and
Huarte, 2014).

FIGURE 1
Understanding the spatial organization of the nuclear genome. In interphase nuclei, each chromosome occupies its own distinct territory, called “a
chromosome territory.” In each territory, chromatin forms highly organized structures such as TADs and A/B compartments. Hi-C technology has greatly
advanced the understanding of the 3D genomic structures configured by intrachromosomal interactions. However, the understanding of inter-
chromosomal interactions has lagged far behind, as their presence can be detected by DNA fluorescence in situ hybridization but is difficult to
detect by Hi-C. The existence of chromosome territories, which limit the interactions between different chromosomes, is another important reason.
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Xist is the master regulator of X chromosome inactivation (XCI),
a dose compensation system that balances the expression levels of
X-linked genes in male and female mammals. XCI is induced by the
upregulation of Xist expression on the future inactivated X (Xi)
chromosome (Mutzel and Schulz, 2020). Female mouse pluripotent
ES cells possess two active X (Xa) chromosomes (Takahashi et al.,
2018). In these cells, XCI is caused by the induction of
differentiation, and Xist accumulates in the entire Xi
chromosome in cis (Herzing et al., 1997; Hoki et al., 2009).
Bacher et al. (2006) analyzed differentiated female mouse ES

cells. They showed that Xi and Xa segregate into separate nuclear
compartments after transient co-localization of the two X
chromosomes at the beginning of the inactivation process. After
XCI induction, PRC1 and PRC2 are transported to the Xi
chromosome, where Xist accumulates. Mono-ubiquitination of
lysine 119 on H2A (H2Aub119) and histone 3 lysine
27 trimethylation (H3K27me3) by PRC1 and PRC2, respectively,
directly block transcription (Aranda et al., 2015), induce and
maintain heterochromatinization of the Xi chromosome, and
suppress gene expression (Almeida et al., 2017; Masui et al.,

FIGURE 2
Techniques to study chromatin organization. In all of these methods, the first step is the fixation of cells for cross-linking. Next, in Hi-C, the DNA is
digested, followed by different DNA regions that are in close spatial proximity and ligated with biotin (red). After end repair and adapter (blue and orange)
ligation, the sequencing libraries are amplified, purified, and sequenced. Sequencing data are mapped to their genomic locations to yield genome-wide
contact frequency matrices. In GAM, cells are cryosectioned into thin slices and the nuclei are isolated by laser microdissection. The DNA is
extracted and sequenced. Analysis of locus co-occurrence in many sections allows proximity, including multi-way interactions, to be inferred without
ligation. In SPRITE, chromatin is covalently coupled to N-hydroxysuccinimide (NHS) beads after fragmentation, followed by repeated pooling and splitting
steps. The DNA fragments are barcoded sequentially. Next, the libraries are amplified and sequenced. The resulting sequencing data allow the detection
of DNA fragment sequences in close proximity to each other.
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2023). Overall, Xist creates a heritably silent and heterochromatic
nuclear territory with a 3D structure distinct from the Xa
chromosome.

Firre, another lncRNA that modulates local higher-order
chromatin structures, is predominantly expressed on the Xa
chromosome in females and localizes at an approximately 5 Mb
locus, flanking its transcription site on the X chromosome. Allele-
specific deletion of the Firre locus showed that Firre RNA transcribed
from the Xa chromosome specifically helps anchor the PRC1 and
PRC2 complexes to the Xi chromosome tomaintainH3K27me3 levels
and affects the nuclear localization of the Xi chromosome, which
normally localizes in the vicinity of the nucleolus (Fang et al., 2020).
CCCTC-binding factor (CTCF)-binding sites are located across the
Firre locus. CTCF specifically binds to the Firre locus on the Xi
chromosome but not to the Xa chromosome (Hacisuleyman et al.,
2014; Yang et al., 2015). CTCF affects the nucleolar association of
genomic loci, and the extent of CTCF binding across the Firre locus of
the Xi chromosome is reduced by Xa chromosome-specific Firre
deletion (Yang et al., 2015; Fang et al., 2020). These data suggest
potential cooperation between Firre RNA and CTCF in maintaining
Xi chromosome location. CTCF binding sites facilitate inter-
chromosomal interactions (Botta et al., 2010). Firre interacts with
chromosomes 2, 9, 15, and 17, which overlap with known genes
including Slc25a12, Ypel4, Eef1a1, Atf4, and Ppp1r10. Four of these
genes (Ypel4, Eef1a1, Atf4, and Ppp1r10) play regulatory roles in
adipogenesis (Rubi et al., 2004; Seo et al., 2009; Lee et al., 2011;
Nukitrangsan et al., 2011) (Figure 3). LncRNAs tether genes involved
in similar biological processes in close proximity, facilitate
spatiotemporal co-regulation, and serve as nuclear organization
factors. Proper localization of Firre requires physical interactions
with the heterogeneous nuclear ribonucleoprotein U (hnRNPU) to
maintain multi-chromosomal nuclear interactions (Figure 3). Genetic

deletion of Firre results in the loss of nuclear proximity of several
inter-chromosomal loci to the Firre locus (Hacisuleyman et al., 2014).
Similarly, many lncRNAs remain in the nucleus and interact with the
chromatin to regulate their spatial structure and function (Tsai et al.,
2010; Rinn and Guttman, 2014; Somarowthu et al., 2015; Zhao et al.,
2020; Mattick et al., 2023).

LncRNAs are important for establishing higher-order 3D
genomic structures in the nucleus. Exploring the roles of
lncRNAs and their functions in dynamic assembly with other
macromolecules will enhance our understanding of cellular
development and evolutionary biology.

Differentiation potential and frequency
of inter-chromosomal interactions

In 2017, two groups successively reported the time-course
changes of chromatin structures before and after zygotic genome
activation (ZGA) examined using low-input Hi-Cmethods. Although
their data resolution was limited, these studies showed that TAD
structures are obscure in mouse zygotes and 2-cell stage embryos,
which are totipotent, and are gradually established during embryonic
development between 4-cell and 7.5 days post-coitum (dpc) stages
(Du et al., 2017; Ke et al., 2017). Single-nucleus Hi-C analysis further
revealed that TADs are formed but in an immature state in these
totipotent cells (Flyamer et al., 2017; Gassler et al., 2017; Tomikawa
and Miyamoto, 2021). Sperm nuclei have unique features, such as a
small nuclear volume, highly condensed DNA, and loss of
approximately 90% of histones. However, the TADs and A/B
compartments observed in mouse sperm were similar to those
observed in somatic cells. The notable difference between the 3D
genome structures of sperm and somatic cells is that inter-TAD and

FIGURE 3
Transactivation of the target genes through inter-chromosomal genomic organization. (Left) An example of a typical OR hub. An OR gene can be
activated through a concerted genomic organization that reduces the number of activating OR-specific enhancers from 63 available Greek Islands to
3–5 enhancer hubs. (Right) Firre-hnRNPU interplay mediates trans-chromosomal interactions, which promotes adipogenesis. Four genes involved in
adipogenesis are organized together in spatial proximity and are co-expressed.
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inter-chromosomal interactions are frequently observed in sperm
(Battulin et al., 2015; Ke et al., 2017; Wang et al., 2019). A
comparison of the ratio of inter-chromosomal interactions among
all chromosomal interactions at different stages (sperm, oocyte,
zygote, 2-cell, 4-cell, 8-cell, 3.5 dpc, and 7.5 dpc) revealed that it
was most abundant in sperm (~11%) and gradually decreased during
development from the zygote (9.5%) to the 8-cell stage (3%).
Interestingly, it transiently increased to 6% at 3.5 dpc (blastocysts)
and decreased again to 3% at 7.5 dpc (Ke et al., 2017). The occurrence
of pluripotent cells in the inner cell mass may be involved in the
transient increase of inter-chromosomal interactions in blastocyst.
The observed dynamics of inter-chromosomal interactions suggests
their potentially critical role in organizing 3D chromatin structures in
the nuclei during early development. TADs are almost completely
absent in earlyDrosophila embryos before ZGA and are re-established
after ZGA (Hug et al., 2017). Although TADs are immature in
totipotent cells in mice, ZGA occurs in these cells in a genome-
wide manner (Kigami et al., 2003; Eckersley-Maslin et al., 2018). The
pharmacological inhibition of ZGA did not interfere with the
formation of TAD structures (Du et al., 2017; Ke et al., 2017).
These observations suggest that TAD formation and ZGA are
regulated independently. The abundance of inter-chromosomal
interactions at the zygotes and 2-cell stages suggests the possibility
that the 3D genomic architectures defined by such interactions play
regulatory roles in essential developmental events, such as ZGA
initiation and acquisition of totipotency. The progress of
chromatin research for totipotent cells has lagged behind that for
somatic cells, owing to the absence of a faithful in vitro model for
totipotent cells and the experimental difficulty in acquiring large
numbers of totipotent embryos.

Current limitations and future
challenges

To date, 3C-based methods, such as Hi-C (Fullwood et al., 2009;
Lieberman-Aiden et al., 2009; Rao et al., 2014; Mumbach et al., 2016),
and new methods, such as GAM (Beagrie et al., 2017) and SPRITE
(Quinodoz et al., 2018), have provided insights into the genome-wide
3D spatial structure and physical proximity of DNA in the interphase
nuclei. Mammalian genomes are characterized by DNA loops (Rao
et al., 2014), TADs (Dixon et al., 2012; Nora et al., 2012), A/B
compartments (Dekker and Mirny, 2016; Dixon et al., 2016), and
other higher-order structures. These 3D structures play critical roles in
the regulation of genomic functions. However, the extent to which the
results obtained using the above-mentioned molecular methods are
faithful to the actual 3D structure of the genome in vivo needs to be
further carefully validated, as these methods indirectly quantify the
proximity between two or more genomic loci via molecular
manipulation steps and sequencing. Conversely, microscopy-based

methods can directly image the target’s appearance. Microscopic
techniques have advanced rapidly over the last few years (Jerkovic
and Cavalli, 2021). Moreover, it is now possible to simultaneously
visualize thousands of DNA loci, hundreds of different RNA
molecules, and several types of protein and histone modifications,
thereby enabling high-throughput chromatin structural and
functional analyses in thousands of single cells (Su et al., 2020;
Takei et al., 2021). These optical microscopy methods have been
accompanied by the development of electron microscopy, which
allows the study of genome structure at nanometer and kilobase
resolutions. The application of such advanced imaging technologies
provides powerful information about 3D genome organization that
complements molecular techniques, such as Hi-C and SPRITE,
thereby enabling the study of genome structure and function in
previously unthinkable ways.
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