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Epigenetics refers to the mechanisms such as DNA methylation and histone
modification that influence gene expression without altering the DNA sequence.
These epigenetic modifications can regulate gene transcription, splicing, and
stability, thereby impacting cell differentiation, development, and disease
occurrence. The formation of dentin is intrinsically linked to the odontogenic
differentiation of dental pulp stem cells (DPSCs), which are recognized as the
optimal cell source for dentin-pulp regeneration due to their varied odontogenic
potential, strong proliferative and angiogenic characteristics, and ready
accessibility Numerous studies have demonstrated the critical role of
epigenetic regulation in DPSCs differentiation into specific cell types. This
review thus provides a comprehensive review of the mechanisms by which
epigenetic regulation controls the odontogenesis fate of DPSCs.

KEYWORDS

epigenetic regulation, odontogenic differentiation, pulp, DPSC, LncRNA, long
noncoding RNA

1 Introduction

Pulpitis refers to the inflammation of the dental pulp, typically caused by bacterial
infection, resulting in severe pain (Kakehashi et al., 1965; Brännström and Nyborg, 1973)
Over time, the pulp tissue may degenerate, leading to apical periodontitis, osteomyelitis, and
eventually necessitating tooth extraction (Shi et al., 2005). However, effective management
of pulp infections can stimulate the formation of reparative dentin and protect the pulp
from further damage (Tronstad and Mjör, 1972). Among the treatment options, vital pulp
therapy (VPT) presents a less invasive and more conservative approach compared to root
canal therapy (RCT) (Ferracane et al., 2010), although the inability to accurately assess the
severity of pulpitis clinically limits its potential for restorative success (Barthel et al., 2000;
Ricucci et al., 2014). As regenerative medicine advances, modulating the expression of
specific molecules can effectively suppress inflammation, promote the growth of reparative
dentin, and enhance the overall regenerative capacity of the pulp (Gangolli et al., 2019).

Human dental pulp-derived stem cells (hDPSCs) are a type of mesenchymal stem cell
developed from neural crest cells, which originate from ectodermal tissue (Nuti et al., 2016).
In 2000, Gronthos et al. (2000) were the first to successfully culture colony-like cells from
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human third molars in 2000. These cells were found capable of
differentiating into odontoblast-like cells and forming dentin-like
structures, indicating the presence of stem cells in pulp tissue and
leading to the initial concept of DPSCs. Subsequently, Miura et al.
(2003a) isolated stem cells from the pulp of human exfoliated
deciduous teeth (SHEDs), which are similar to mesenchymal
stem cells (MSCs) in their undifferentiated or hypodifferentiated
state. DPSCs are highly valued for pulp regeneration due to their
unique differentiation advantages. Under specific induction
conditions, DPSCs can differentiate into various functional cells
such as osteoblasts, adipocytes, chondrocytes, odontoblast-like cells,
and neuronal cells (Anitua et al., 2018). The odontogenic
differentiation of dental pulp stem cells is presently a field that
lacks comprehensive study, and the active investigation of the
molecular pathways of dentin differentiation, along with the
creation of reliable biomarkers, is imperative for examining the
formation of the pulp-dentin complex. It has been discovered that
chromatin state, transcriptional regulation, and epigenetic
modifications collectively perform a part during the self-renewal
and differentiation process of DPSCs (Bayarsaihan, 2016).
Epigenetics has emerged as a prominent research focus due to its
ability to modulate functional genes without altering DNA

sequences (Wu and Morris, 2001). Thus, this paper offers both
theoretical and empirical support for clinical endodontic practices,
especially VPT, by exploring the immunophenotypes and related
epigenetic processes that guide DPSCs potential for odontogenic
differentiation.

2 Epigenetic

Epigenetics is a branch of genetics that gradually took shape in
the 1980s to investigate how changes in non-genetic sequences
impact gene expression levels (Goldberg et al., 2007). The term
was initially introduced by Conrad Waddington in 1942 to illustrate
the intricate developmental journey from genotype to phenotype
(Waddington, 2012). Research has demonstrated that epigenetic
modifications play a critical role in the regulation of embryonic stem
cells (ESCs) and DPSCs, particularly in governing their self-renewal
and differentiation capabilities (Anitua et al., 2018). The most
extensively studied epigenetic mechanisms encompass DNA
methylation, histone modifications, and non-coding RNA-
mediated regulation of gene transcription (Figure 1). Given the
breadth of research on classical modifications in contemporary stem

FIGURE 1
Overview of the principal types of epigenetic modification with focus on odontogenic differentiation in dental pulp stem cells.

Frontiers in Cell and Developmental Biology frontiersin.org02

Huang et al. 10.3389/fcell.2024.1394582

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1394582


cell studies, we aim to revisit and update the existing research on the
epigenetic mechanisms of odontogenic differentiation.

2.1 DNA methylation

DNAmethylation is a ubiquitous process in eukaryotic cells that
serves as an established and inheritable epigenetic marker,
influencing chromatin organization and gene transcription. This
process entails attaching a methyl group to the 5′carbon atom of
cytosine (C) within the cytosine-phosphothio-nyl-guanine (CpG)
dinucleotide, creating 5-methylcytosine (5 mC). The methyl donor,
S-adenosylmethionine (SAM), provides the necessary methyl group,
and DNA methyltransferase (DNMT) enzymes catalyze the
reaction. (Radhakrishnan et al., 2011). The primary target of
DNA methylation is the CpG island, a genomic region rich in
cytosine and guanine (CpG) sequences, primarily located near gene
promoters and exon 1. CpG islands are typically unmethylated, but

high levels of methylation result in stable gene silencing (Bird, 2002).
The regulation of CpG methylation levels is dynamic and controlled
by DNA methyltransferase (DNMT) and DNA demethylase (TET)
enzymes (Li et al., 2015a; Zhang et al., 2018). The DNMT family
comprises DNMT1, DNMT3A, DNMT3B, and DNMT3L, with only
DNMTs (−1, -3A, and -3B) involved in DNA methylation, while
DNMT-3L lacks enzyme activity (Kareta et al., 2006). The TET
family, including TET1, TET2, and TET3, and activation-induced
deaminases (AID) are required to demethylate DNA by lowering
methylation marks in the course of DNA replication (Bochtler et al.,
2017). The expression of CpG genes is regulated through two main
mechanisms. First, methyl CpG-binding proteins recognize and
bind specifically to methylated CpG regions, attracting
transcriptional repression cofactors that suppress DNA
transcription (Gao et al., 2014), Second, methylation at CpG sites
can physically block the binding of DNA-binding proteins, such as
transcription factors, to their target sites, thereby inhibiting
transcription (Hlady et al., 2014).

FIGURE 2
The multilineage differentiation potential of DPSCs. DPSCs can differentiate into odontoblasts, osteoblasts, adipocytes, endothelial cells,
chondrocytes, myoblasts, neural cells.

Frontiers in Cell and Developmental Biology frontiersin.org03

Huang et al. 10.3389/fcell.2024.1394582

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1394582


2.2 Histone modifications

Histones, which encompass H1, H2A, H2B, H3 as well as H4, are
incorporated with DNA to constitute nucleosomes, the fundamental
units of chromatin. It has been demonstrated that histones play a
vital role in promoting transcription in promoter regions (Lee et al.,
2004). Moreover, histones undergo various post-translational
protein modifications (PTPM), such as methylation, acetylation,
ubiquitination, phosphorylation, succination, and ADP-ribosylation
(Jenuwein and Allis, 2001), that change their interactions with DNA
and with each other (Venkatesh and Workman, 2015). These
modifications are crucial for sustaining chromatin structure,
nucleosome stability, and gene expression (Zheng et al., 2014;
Lawrence et al., 2016; Bascom and Schlick, 2018; Yi and Kim,
2018). Among all the histone post-translational modifications
(HPTMs), methylation and acetylation are the most extensively
investigated.

2.2.1 Histone methylation
Histone methylation, a covalent modification, occurs on

arginine and lysine residues. This process involves transferring a
methyl group from SAM to a lysine or arginine site in the presence of
histone methyltransferase (Strahl and Allis, 2000). Typically, histone
methylation occurs at the N-terminal end of histone H3 or H4.
Arginine can undergo mono- or dimethylation, while lysine can be
mono-, di-, or trimethylated (Pedersen and Helin, 2010). Stem cell
differentiation processes produce enzymes that modify methylation
levels at specific genes, influencing gene expression. Depending on
the gene site, methylation can either repress or promote
transcription.

2.2.2 Histone acetylation
Histone acetylation is predominantly facilitated by histone

acetyltransferases (HAT) and histone deacetylases (HDAC) and
typically occurs on lysine residues. This is a reversible chemical
reaction where HAT catalyzes the acetylation of histone N-terminal
lysine residues, neutralizing the positive charge on histones. This, in
turn, reduces the affinity of histones for negatively charged DNA,
loosening the chromatin structure and ultimately promoting the
binding of transcription factors to DNA for the activation of specific
genes (Galvani and Thiriet, 2015). Conversely, HDAC-mediated
histone deacetylation can lead to gene silencing, as DNA
neutralization by histone binding, condensing the chromatin
structure, and inhibiting transcription factor binding (Meier and
Brehm, 2014). Our comprehension of the mechanisms underlying
alternative forms of histone modifications and the implicated
signaling pathways remains constrained, warranting further
investigations.

2.3 ncRNAs

Non-coding RNAs are synthesized from the reverse
transcription of protein-encoding genes and lack an open reading
frame. This group includes ribosomal RNA (rRNA), transfer RNA
(tRNA), small nuclear RNA (snRNA), small nucleolar RNA
(snoRNA), and microRNA (miRNA) (Kaikkonen et al., 2011).
Non-coding RNA transcripts outnumber mRNA transcripts, yet

they do not translate into proteins; instead, they play a role in
epigenetically regulating gene expression (Palazzo and Lee, 2015).
Among these, miRNA, a highly conserved non-coding single-
stranded RNA consisting of 20–23 nucleotides, is found in
eukaryotes and has been a central focus of epigenetics research.
MiRNA is transcribed from intergenic DNA sequences as an initial
transcript known as pri-mRNA, which is then processed into pre-
mRNA by the nuclease Drosha and further refined into mature
miRNA by Dicer. (Lee et al., 2003; Liu et al., 2004; Cipriani et al.,
2022). The mature miRNA is subsequently incorporated into the
AGO family of proteins to form the RNA-induced silencing complex
(RISC). miRNAs can bind to the 3′-untranslated region (UTR) of
mRNAs, resulting in the degradation or post-transcriptional
repression of target mRNAs, thereby modulating gene expression
(Ha and Kim, 2014; Seong et al., 2014). Additionally, competing
endogenous RNAs (ceRNAs) indirectly regulate downstream targets
by competing with miRNAs for binding. Among ceRNAs, circular
RNA (circRNA), a family of ncRNAs with a ring-like covalent
structure, resists RNA enzyme digestion, making it more stable
and less susceptible to degradation (Qu et al., 2015; Guo et al., 2020;
Zhang et al., 2020). Furthermore, circRNA is widely distributed in
living organisms and exhibits expression specificity and high
evolutionary conservation (Jeck et al., 2013). In some instances,
the richness of circRNA is more than 10-fold that of the relevant
linear mRNA, making it an ideal disease marker and treatment
target with important clinical and research implications (Li et al.,
2015b; Wang et al., 2016). Long non-coding RNAs (LncRNAs) are a
new heterogeneous linear ncRNA with more than 200 nucleotides,
and their functions are mainly divided into three aspects: modifying
chromosomes for apparent regulation, participation in
transcriptional regulation through interaction with transcription
factors, and post-transcriptional or translation regulation by
affecting mRNA processing. LncRNAs may serve as a biomarker
in multiple biological processes (Carpenter et al., 2013; Wang et al.,
2013; Legnini et al., 2014; Zhu et al., 2014), and increasing evidence
suggests that lncRNAs have a major contribution to the regulation of
odontogenic differentiation in hDPSCs.

3 Dental pulp stem cells

3.1 Discovery and characterization of DPSCs

Stem cells possess the remarkable ability to replicate, renew, and
give rise to specific cell types, significantly influencing tissue
development, repair, and homeostasis (McNeely et al., 2020)
Dental pulp stem cells, categorized as DPSC and SHED
depending on their origin, were successfully isolated and
identified in 2000 and 2003 (Gronthos et al., 2000; Miura et al.,
2003b). Both types exhibit the typical characteristics of MSC. DPSCs
were the first MSCs of oral and maxillofacial origin to be isolated,
paving the way for subsequent discoveries of similar cells, such as
SHED, periodontal stem cells, and apical papilla stem cells (Esposito
et al., 2003; Innes, 2010; Guven et al., 2011; Jeong et al., 2014). These
stem cells express MSC markers but lack haematopoietic markers
(Liu et al., 2015a) However, DPSCs are heterogeneous, with varying
marker expressions. Specific cell surface markers enable the isolation
of DPSC subpopulations for targeted differentiation in clinical
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settings. Researchers suggest that CD271+ DPSCs possess greater
potential for odontogenic differentiation (Alvarez et al., 2015), while
the expression level of CD146 correlates with the functionality of
dental pulp stem cells, marking it as a key functional indicator of
their efficacy (Ma et al., 2021).

3.2 Differentiation and application of DPSCs

DPSCs share similarities with bone marrow MSCs and
express markers related to mineralization and osteogenesis
(Chen et al., 2005; Ching et al., 2017). With proper induction,
dental pulp stem cells can differentiate into osteoblasts,
chondrocytes, adipocytes, and neural-like cells (Zhu et al.,
2018) (Figure 2). In a study conducted by Alge et al. (2010),
DPSCs demonstrated a higher proliferation rate and greater
clonal potential compared to bone marrow MSCs. Lineage
tracing in 2014 revealed that DPSCs originate from peripheral
nerve-associated glia (Kaukua et al., 2014), which can
differentiate into pulp cells in adult mice incisors.
Furthermore, the perivascular niche, a distinct environment
for various MSCs (Crisan et al., 2008), houses pulp stem cells
within the perivascular region of pulp tissue (Shi and Gronthos,
2003). In vivo experiments have shown the involvement of dental
pulp stem cells in angiogenesis (Iohara et al., 2009; Iohara et al.,
2013), demonstrating their strong capacity for promoting pulp
regeneration (Yang et al., 2015). In a groundbreaking study
conducted in 2000 (Gronthos et al., 2000), Gronthos et al.
transplanted DPSC-complexed hydroxyapatite/triple calcium
phosphate scaffolds into the dermis of immunodeficient mice,
resulting in the formation of pulpal and dentin-like tissues with
organized collagen matrices, albeit without haematopoietic or
adipocyte formation. This indicates that odontogenic
differentiation is a major default phenotype of DPSCs.
Furthermore, DPSCs derived from human mammary dental
stem cells were integrated with recombinant collagen and
injected into the pulp cavity. This integration enabled them to
maintain their viability, rebuild vascularized pulp tissues, and
differentiate into dentin cells expressing dentin
sialophosphoproteins and dentin matrix proteins (Itoh et al.,
2018). The diverse and complementary unity of cell populations
found in pulp stem cells plays a vital role in repairing and
maintaining the local homeostasis of pulp tissues. Achieving
functional pulp regeneration through pulp stem cells may rely
on the dynamic structure and unity of such diverse cell
populations.

4 Epigenetic mechanisms

4.1 DNA methylation associated with
odontogenic differentiation in DPSCs

DNA demethylation activates gene transcription, while DNA
methylation typically leads to gene repression. DNA methylation
patterns vary among different cell types and contribute to the diverse
differentiation potential of stem cells. Through the reprogramming
of stem cells, pluripotent stem cells (iPSCs) can be generated for
clinical therapy, with DNAmethylation playing a pivotal role in this
process (Godini et al., 2018) (Table 1). Genome-wide DNA
methylation analysis has revealed that the methylation profile of
DPSCs closely resembles that of embryonic stem (ES) and induced
pluripotent stem (iPS) cells. Specifically, the downregulation of
HERV-FRD and upregulation of PAX9 increase the efficacy of
DPSCs in differentiating into iPS cells (Dunaway et al., 2017).
DNA methylation patterns influence the expression of DPSC
genes, with DNA demethylases and DNA methyltransferase
(DNMT) activity affecting the differentiation potential of DPSCs.
Treatment with the DNA methyltransferase inhibitor 5-aza-2′-
deoxycytidine (5-Aza-CdR) reduced the proliferative capacity of
DPSCs but upregulated odontogenic markers (DMP1 and DSPP)
and transcription factors (OSX, RUNX2, and DLX5), increasing
ALP activity and accelerating the formation of calcified nodules,
thereby enhancing odontogenic differentiation capacity (Zhang
et al., 2015). The novel DNA methyltransferase inhibitor
RG108 also regulates DSPP and DMP1, promoting odontogenic
differentiation of DPSCs (Sun et al., 2019). Evidence suggests that
DNA methylation affects the transactivation of transcription factors
(TFs). Kruppel-like factor (KLF4), a critical mediator of cell
differentiation and proliferation, undergoes promoter region
demethylation during odontoblast differentiation, enabling
efficient SP1 binding and transcriptional regulation that
upregulates Klf4 expression (Sun et al., 2019). This process
promotes odontoblast differentiation and inhibits the growth of
primary DPSCs (Lin et al., 2011).

The fate of DPSCs is also influenced by DNA demethylases,
which regulate DNA methylation dynamics alongside DNA
methyltransferases. The TET family of demethylases, including
TET1, TET2, and TET3, plays a key role in this regulation.
TET1 promotes odontoblast differentiation in DPSCs while
inhibiting adipogenic and osteogenic differentiation. (Wiehle
et al., 2016; Cakouros et al., 2019; Qian et al., 2021). As a DNA
dioxygenase, TET1 is present in both the nucleus and cytoplasm of
DPSCs, and its expression increases during odontogenic induction.

TABLE 1 DNA methylation-mediated regulation of odontogenic differentiation in DPSCs.

Epigenetic modifier Epigenetic mark Regulatory factors Odontogenic genes Result

5-Aza-CdR DNMT inhibitor TRAF6 DSPP, DMP1, OSX, DLX5, RUNX2 Odontogenic (+) (Zhang et al., 2015)

RG108 DNMT inhibitor SP1 Klf4 Odontogenic (+) (Sun et al., 2019)

TET1 DNA demethylation FAM20C Odontogenic (+) (Li et al., 2018a)

TET3 DNA demethylation Odontogenic (?) (Argaez-Sosa et al., 2022)

METTL3 RNA methylation NFIC Odontogenic (+) (Sheng et al., 2021)

(+): positive effect; (−): negative effect; (?): no clear conclusion yet.
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However, TET1 expression decreases during early cell passage (less
than six generations) (Li et al., 2014). Knockdown of TET1 inhibits
both proliferation and odontogenic differentiation (Rao et al., 2016).
Additionally, TET1 can promote odontogenic differentiation by
regulating FAM20C demethylation, thereby upregulating
FAM20C expression (Li et al., 2018a). Interestingly, TET3 is
expressed gradually inPLSCs during adipogenic induction,
suggesting a tissue-specific role in regulating PLSC cell fate by
enhancing adipocyte differentiation. While TET3 may also play a
part in the odontogenic differentiation of DPSCs, further research is
needed to validate this hypothesis through extensive experiments
(Argaez-Sosa et al., 2022).

Reparative dentinogenesis is a delicate balance between
odontogenic differentiation and inflammation. DNA methylation
plays a role in the inflammatory responses that occur in human
dental pulp. During lipopolysaccharide (LPS)-induced
inflammation, DNMT1 mRNA and protein levels decrease in
DPSCs. DNMT1 influences the promoter methylation of the
MyD88 gene and suppresses the expression of miR-146a-
5p. Reduction in DNMT1 can activate the NF-κB pathway,
thereby intensifying the inflammatory response (Meng et al.,
2019; Mo et al., 2019). LPS-treated DPSCs exhibit elevated
expression of pro-inflammatory cytokines such as GM-CSF,
MCP-2, RANTES, IL-8, and IL-6. Additionally, 5-Aza-CdR
activates the NF-κB and MAPK signaling pathways by decreasing
the methylation level of the TRAF6 promoter in DPSCs. These

findings suggest that 5-Aza-CdR promotes inflammation by
activating TRAF6 (Feng et al., 2019). TET2 also modulates
inflammation in dental pulp tissue by converting 5-
methylcytosine to 5-hydroxymethylcytosine, which promotes
DNA demethylation. Evidence suggests that TET2 enhances LPS-
induced inflammation by regulating MyD88 hydroxymethylation in
an in vitro culture model (Wang et al., 2018a). These results imply
that DNA methylation plays a crucial role in promoting DPSCs’
odontogenic differentiation and the formation of reparative dentin
both in vitro and in vivo.

In conclusion, further investigation is necessary to uncover the
intricate mechanisms governing the methylation-dependent
regulation of DPSCs. Such efforts will pave the way for using
DPSCs in regenerative tissue bioengineering and vital pulp
therapy with optimal safety and efficacy.

4.2 Histone modifications associated with
odontogenic differentiation in DPSCs

4.2.1 Histone methylation
Histone methylation, a well-researched form of histone

modification, involves the methylation of lysine or arginine
residues in histone tails and is dynamically regulated by enzymes
that control histone methylation and demethylation (Shen et al.,
2017) (Table 2). A comparison of the epigenetic status between

TABLE 2 Histone modifications in DPSCs.

Epigenetic
modifier

Epigenetic
mark

Downstream targets Epigenetic targets Result

EZH2 Histone methylation Wnt/β-Catenin pathway, IL-6,IL-8,
CCL2

H3K27me3 Inflammation (+), Odontogenic (+) (Li
et al., 2018b)

EHMT1 Histone methylation Runx2 H3K9me2 Odontogenic (−) (Huang et al., 2018)

MLL Histone methylation Wnt5a H3K4me3 Odontogenic (−) (Shi, 2007)

KDM2A Histone
demethylation

EREG H3K4/H3K36 Odontogenic (−) (Dong et al., 2013)

KDM6B/JMJD3 Histone
demethylation

WNT5A, BMP2 NF-κB H3K27me3 Odontogeni (+) (Hoang et al., 2016)

KDM5A Histone
demethylation

DMP1, DSPP, OSX,OCN H3K4me3/me2 Odontogenic (−) (Li et al., 2020)

KDM7A/JHDM1D Histone
demethylation

Wnt/β-catenin H3K9/27me2 Odontogenic (−) (Huang et al., 2010)

p300 Histone acetylation OCN, NANOG, SOX2, DSPP,
Dmp2, Osx

H3K9ac Odontogenic (+) (Wang et al., 2014; Liu
et al., 2015b)

HDAC6 Histone deacetylation Odontogenic (+) (Wang et al., 2018b)

HDAC3 Histone deacetylation Dmp1, Sp7 H3K27ac Odontogenic (+) (Tao et al., 2020)

TSA HDACis DMP1, DSPP, BSP HDAC 1, 2, 3; HDAC 4,5,6 Odontogenic (+) (Jin et al., 2013)

VPA HDACis BSP, OPN HDAC 1, 2, 3; HDAC 4,5,6 Odontogenic (+) (Paino et al., 2014)

SAHA HDACis Nfic, Dspp, Alp, Dmp1, nestin HDAC1,2,3,8,HDAC4,5,6,7,9,10 Odontogenic (+) (Kwon et al., 2012)

LMK-235 HDACis ALP, DSPP HDAC 4, 5 Odontogenic (+) (Liu et al., 2018a)

MS-275 HDACis RUNX2, DMP1, ALP, DSPP HDAC 1, 3 Odontogenic (+) (Sultana et al., 2021)

(+): positive effect; (−): negative effect.
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dental follicle cells (DFCs) and DPSCs showed that H3K27me3-
mediated suppression of dental-derived genes DMP1 and DSPP in
DFCs was not observed in DPSCs. It has been demonstrated that
DPSCs exhibit higher expression of DMP1 and DSPP under
osteoinductive conditions (Gopinathan et al., 2013), which is
partially attributed to differences in histone methylation profiles.
The histone methyltransferase EZH2, which methylates H3K27me3,
decreases in activity during odontogenic differentiation, leading to
lower levels of H3K27me3. Although a lack of methyltransferase
activity in EZH2 was initially not expected to impact DPSCs’
differentiation into odontogenic cells, it has been shown to
negatively affect this process. siEZH2 transfection of β-TCP/
DPSCs implanted subcutaneously in nude mice has been
observed to promote mineralized tissue formation. Additionally,
chromatin immunoprecipitation (ChIP) analysis revealed that
EZH2 downregulated β-catenin expression by increasing
H3K27me3 methylation levels in the β-catenin promoter region,
thereby inhibiting the Wnt/β-catenin signaling pathway and
suppressing odontogenic differentiation (Li et al., 2018b). Histone
methylation of H3K9 plays a role in the osteogenesis of DPSCs.
Euchromatin Histone Methyltransferase-1 (EHMT1), an enzyme
that represses transcription, demethylates H3K9, thereby promoting
cellular differentiation (Kramer, 2016). During osteogenesis
stimulated by BMP-2, the co-repressor CBFA22T reduces
H3K9me methylation at the Runx promoter, which plays a key
role in cellular mineralization and can inhibit H3K9me2 normally
mediated by Euchromatin Histone Methyltransferase 1 (EHMT1) at
the RUNX2 promoter. Downregulation of CBFA2T2 increases
EHMT1 expression, leading to an increase in
H3K9me2 methylation and subsequent inhibition of osteogenic
differentiation (Huang et al., 2018).

Histone methylation is a reversible process regulated by
demethylases. KDM2A, a histone demethylase, inhibits the
osteogenic and odontogenic differentiation of dental DPSCs by
demethylating H3K4 or H3K36, which suppresses the expression
of genes such as BSP, OPN, and OCN (Du et al., 2013). Du et al.
(2013) found that KDM2A initiates its demethylation activity by
binding to the BCL6 co-repressor and targeting the promoter of the
epiregulin (EREG) gene, reducing the methylation of H3K4 and
H3K36 and thus inhibiting EREG expression, further suppressing
osteogenic and odontogenic differentiation in dental-derived
mesenchymal stem cells. Dong et al. (2013) observed that using
shRNA to interfere with KDM2A expression in dental papilla stem
cells resulted in significant increases in stemness-related genes such
as SOX2 and H3K4me3 in the promoter region of NANOG. This led
to an increase in SOX2 and NANOG gene expression, promoting
lipogenic and chondrogenic differentiation. The Jumonji domain-
containing protein D3 (JMJD3), also known as lysine-specific
demethylase 6B (KDM6B), is a protein that specifically removes
H3K27me2/3 methyl marks, thereby regulating gene expression and
odontogenic differentiation through multiple mechanisms.
Increased expression of JMJD3 enhances odontogenic
differentiation, whereas its suppression through the addition of
alcohol to the mineralization induction medium inhibits
odontogenesis (Hoang et al., 2016). JMJD3 removes the
H3K27me3 methylation mark by binding to the BMP2 promoter
during odontogenic induction, thus activating the expression of
transcriptional proteins associated with BMP2 and odontogenic

differentiation (Xu et al., 2013). The promoter region of the
Wnt5a gene contains a “bivalent domain” with both repressive
H3K27me3 and active H3K4me3 markers. These modifications
maintain the Wnt5a gene in a state of balance, allowing its
transcription to be either repressed or activated depending on
various stimuli (Bernstein et al., 2006). JMJD3 erases
H3K27me3 on the Wnt5a promoter and activates Wnt5a in
DPSCs under odontogenic stimulation. Conversely,
JMJD3 deficiency leads to an increase in H3K27me3, which
silences Wnt5a and impedes odontogenesis. Additionally,
JMJD3 inhibits odontogenesis through interaction with the
mixed-lineage leukemia complex (H3K4me3 methyltransferase)
(Zhou et al., 2018).

An additional histone demethylase, known as lysine-specific
demethylase 5A (KDM5A), is highly specific for the activity
marker H3K4me3 (Shi, 2007). Depletion of KDM5A results in
increased levels of H3K4me3 at the promoters of odontogenic
differentiation genes, such as DMP1, OSX, OCN, and DSPP,
suggesting a link between H3K4me3 and odontogenesis (Li et al.,
2020). Another histone demethylase, JHDM1D, also referred to
as KDM7A, is used to remove dimethyl tags at lysine nine and
lysine 27 on histone H3 of target gene promoters (Huang et al.,
2010; Yokoyama et al., 2010). According to a report by Yang et al.
(2019), JHDM1D may inhibit osteogenesis in mouse bone
marrow cells (ST2) by deactivating the Wnt signaling
pathway. JHDM1D knockdown leads to increased mineralized
nodule formation in human dental pulp-derived stem cells
(hDPSCs) and upregulation of β-catenin expression, which is
achieved by downregulating DKK1. Above results suggest that
inhibiting JHDM1D expression could activate the Wnt/β-catenin
signaling pathway to regulate odontogenesis in hDPSCs.

Furthermore, it has been discovered that modifications to
histone methylation are implicated in the pulpal inflammatory
response (Hui et al., 2017). Moreover, EZH2 has been shown to
serve a key role in the inflammation and regeneration of dental
pulp tissue (Hui et al., 2018). Upon TNF-α stimulation, DPSCs
differentiate into dentin-producing odontoblasts and migrate to
the site of infection to generate reparative dentin. Studies using
immunohistochemistry and immunofluorescence have shown
that infected cells exhibit significant reductions in EZH2 and
H3K27me3 levels. Inhibiting EZH2 downregulates inflammatory
factors such as IL-1β, IL-6, and IL-8, which suppresses DPSC
proliferation but enhances osteogenesis. This suggests that
EZH2 enhances inflammation and cell proliferation while
suppressing osteogenic differentiation (Hui et al., 2014). Given
that histone methylation is a reversible epigenetic modification,
understanding its regulatory mechanism in DPSCs offers the
potential to use histone methylation inhibitors in vital pulp
therapy to modulate the inflammatory process.

4.2.2 Histone acetylation
The process of histone acetylation is under the control of HAT

and HDAC enzymes (Marmorstein and Zhou, 2014), and it has
profound consequences on the growth and specialization of various
cells (Clayton et al., 2006; Fukuda et al., 2006; Cameron et al., 2016)
(Table 2). HAT enzymes can enhance the odontogenesis of DPSCs
by increasing histone H3 acetylation on the DSPP gene (Gu et al.,
2013). For instance, the HAT enzyme p300, which is a member of
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the lysine acetyltransferase three family, transfers acetyl groups to
lysine residues on histones. p300 predominantly targets the
promoter regions of the OCN and DSPP genes, acetylating
histone H3K9 and thereby promoting gene transcription and
enhancing mineralization and differentiation in dental pulp cells
(Wang et al., 2014; Liu et al., 2015b). The overexpression of
p300 increases H3K9ac labeling on the OCN and DSPP genes,
and it also regulates the promoter regions of NANOG and SOX2,
ensuring sufficient expression of stemness-related genes and
maintaining stemness (Liu et al., 2015b). Knocking down p300 in
DPSCs inhibits proliferation and odontogenic differentiation,
consistent with a previous report (Haigis and Guarente, 2006).
HDAC enzymes also play a role in histone acetylation by
removing acetyl groups from histones and facilitating the
densification of chromatin structure (Fukuda et al., 2006). There
are 18 known human HDACs, categorized into four classes based on
homology to yeast HDACs. Classes I (HDAC1, HDAC2, HDAC3,
HDAC8), II (HDAC4, HDAC5, HDAC6, HDAC7, HDAC9,
HDAC10), and IV (HDAC11) are zinc-dependent enzymes with
high sequence conservation (Wang et al., 2018b). Also, Class III
HDAC (usually known as sirtuins) is a nicotinamide adenine
dinucleotide-reliant enzyme (Haigis and Guarente, 2006).
HDAC6 was found to promote the DPSCs odontogenic
differentiation, and the mineralization and ALP activity capability
in pDPSCs were increased when HDAC6 was knocked down (Wang
et al., 2018b). In mouse tooth papillary mesenchymal cells subjected
to odontoblast induction, elevated p300 expression and decreased
HDAC3 expression were observed, leading to an increase in H3K9ac
and H3K27ac levels. This suggests that HATs and HDACs regulate
odontogenic specialization in a coordinated manner (Tao et al.,
2020). For further exploration, the transcription factor KLF4 is
found to have a trans-activation domain that directly attaches to
target gene promoters, recruiting either co-repressors like
HDAC3 or coactivators like p300 (Tao et al., 2019). Chromatin
immunoprecipitation (ChIP) assays have shown that HDAC3 and
p300 regulate odontogenic differentiation in a time-sensitive
manner through interactions with KLF4. When dental pulp cells
are induced into odontoblasts, HDAC3 primarily interacts with
KLF4 at the Sp7 and Dmp1 promoters on the first day of induction,
keeping DMP1 and OSX expression at moderate levels. However, on
day 7, HDAC3 relocates to the cytoplasm, allowing KLF4 to link
with p300 and transactivate Dmp1 and Osx, thereby enhancing
odontoblast differentiation. These findings reveal that KLF4 can
influence histone acetylation in the promoter regions of both
Sp7 and Dmp1, regulating odontoblast differentiation through
interactions with HDAC3 and p300 (Tao et al., 2019).

It has been documented that HDAC inhibitors (HDACi) have
the potential to modulate gene expression through the regulation
of histone acetylation levels. These inhibitors have been studied
for their therapeutic potential in cancer treatment (Lakshmaiah
et al., 2014), inflammatory diseases (Hull et al., 2016), and
neurodegenerative disorders (Didonna and Opal, 2015). These
inhibitors also influence the differentiation and proliferation of
DPSCs, showing promising prospects for pulp regeneration. Pan-
HDAC inhibitors such as Trichostatin A (TSA), suberoylanilide
hydroxamic acid (SAHA), and valproic acid (VPA) hold potential
for use in dental restorations (Duncan et al., 2011). Recent
research demonstrates that TSA, an isohydroxamic acid, can

inhibit the activity of all HDACs except class IIA, enhancing
the expression of proliferating cell nuclear antigen (PCNA), cell
cycle-related protein CCDN1, DSPP, DMP1, and BSP, thus
promoting mineralization and differentiation of DPSCs (Jin
et al., 2013). The Smad2 and Smad3 signaling pathways play a
key role in mediating mineralization and differentiation of
DPSCs stimulated by TSA. Moreover, recent in vivo studies
have explored the developmental effects of HDAC inhibitors
on dental pulp by injecting pregnant mice with TSA. Compared
to control groups, an increase of 1.64-fold in the dentin matrix
and 1.74-fold in the number of odontoblasts was observed,
suggesting that histone acetylation plays a critical role in
mouse tooth development (Jin et al., 2013). VPA, a short-
chain fatty acid, can inhibit class I HDACs. Research suggests
that low concentrations of VPA promote DPSC mineralization
and correlate with increased expression of osteopontin (OSP)
and bone sialoprotein (BSP) (Paino et al., 2014). VPA heightens
the expression of OPN and BMP through HDAC2 while
simultaneously reducing OCN, a belated marker of osteogenic
differentiation. This suggests that VPA enhances early osteogenic
differentiation, but not the terminal differentiation phase. Gene
expression levels were accompanied by the suppression of
another class I HDAC, HDAC-2 (Paino et al., 2014). SAHA, a
type of pan-inhibitor of HDACs, activates Nfic, increasing DSPP
expression and thus enhancing the DPSCs odontogenesis (Kwon
et al., 2012). From a mechanistic perspective, SAHA was recently
discovered to encourage matrix metalloproteinase 13 (MMP-13)
expression in rat DPSCs to promote mineralization and
migration. Despite this, low concentrations of SAHA did not
affect cell proliferation (Duncan et al., 2016). As a means of
reducing off-target effects and improving specificity over
conventional pan-HDAC inhibitors, the development of
subtype-specific HDACs has been underway for about a
decade (Balasubramanian et al., 2009). A recent study
demonstrated that LMK-235, a selective inhibitor of HDAC-4
and HDAC-5, enhances the differentiation of human DPSCs into
odontoblast-like cells while having no effect on cell proliferation
(Liu et al., 2018a). Similarly, MS-275 is a specific HDACi that
targets both HDAC1 and HDAC3. Administration of MS-275 in
normal cultures of pDPSCs can upregulate the expression of ALP,
RUNX2, DMP1, and DSPP without being cytotoxic at a
concentration of 20 nmol/L. Remarkably, the MAPK signaling
system remains largely inactive upon MS-275 stimulation,
indicating that it is unlikely that MAPK signaling pathway
transduction is involved in MS-275-induced odontogenesis
(Lee et al., 2020). The odontogenic potential of MS-275 has
also been observed in MDPC-23 cells, a murine odontoblast-
like cell line, where MS-275 alone can enhance the expression of
Runx2, Bmp2, Bmp4, Ocn, Dspp, Dmp1, Klf5, Col1α1, and Msx1,
and increase calcified nodule formation and ALP activity without
mineralized medium induction (Sultana et al., 2021). These
findings support the use of target-specific HDACis to promote
odontoblast differentiation, thereby creating a promising avenue
for potential therapeutic applications (Manaspon et al., 2021).
Histone acetylation regulates a variety of physiological processes
in DPSCs, which can impact their fate. While there is still much
to be explored, As a potential mineralized regeneration tool,
HDACis may hold promise.
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4.3 ncRNAs associated with odontogenic
differentiation in DPSCs

4.3.1 MiRNAs
The field of epigenetics has seen a surge of interest in miRNAs,

with numerous studies on their role in the odontogenic
differentiation of DPSCs(Table 3). Using PCR analysis of
104 known miRNAs, 48 were differentially expressed between
DPSCs and BM-MSCs, with 17 upregulated and
29 downregulated (Vasanthan et al., 2015). High-throughput
microarray analysis revealed that 22 miRNAs were differentially
expressed in odontogenic differentiated DPSCs, with 12 upregulated
and 10 downregulated. It is of particular interest to note that miR-
135b was significantly downregulated in the course of pulp cell
mineralization. In light of the similarity between odontogenesis and
osteogenesis and miR-135b’s significance in osteogenesis, it is
postulated that miR-135b may serve a key part in regulating
differentiated DPSCs mineralization (Schaap-Oziemlak et al.,
2010). A recent study targeting miR-135b revealed its ability to
inhibit odontogenic differentiation of DPSCs by modulating both
SMAD5 and SMAD4 (Song et al., 2017). The miR-143 family exerts
a negative regulatory effect on the odontogenic and osteogenic
differentiation of DPSCs. Specifically, miR-143-5p is known to
target RUNX2 to impair odontogenic differentiation through the
OPG/RANKL pathway (Zhan et al., 2018). A number of studies have
shown that miR-143-5p interacts with MAPK14, thereby reducing
its expression. This leads to an induction of MAPK14 expression
upon miR-143-5p knockdown, activating the p38 MAPK signaling
pathway and enhancing odontogenesis (Wang et al., 2019a).

Additionally, microarray analyses have revealed that miR-143
and miR-145 are significantly downregulated in mouse DPSCs
and can form a negative regulatory feedback loop with KLF4 to
inhibit the expression of Dspp and Dmp1 mRNA and protein,
consequently having a negative impact on odontogenic
differentiation (Liu et al., 2013). Importantly, this represents the
first report of a feedback loop regulation involving miRNA during
odontogenic differentiation.

Various other miRNAs have been affiliated with the DPSCs
osteogenic and odontogenic differentiation. Upon induction of
DPSCs into odontoblasts, miR-140-5p is decreased, and miR-
140-5p mimics can impede odontogenic differentiation by
targeting Wnt1 to repress the Wnt1/β-catenin signaling pathway
(Lu et al., 2019). During odontogenesis induction, a gradual decline
in miR-508-5p and a concomitant increase in glycoprotein non-
metastatic melanoma protein B (GPNMB) can also be observed.
Subsequent investigations have demonstrated that the knockdown
of miR508-5p, which releases GPNMB expression, bolsters
odontogenesis in DPSCs (Liu et al., 2019). In DPSCs, according
to Chang et al. (2019), miR-218 expression is differentially
downregulated, and miR-218 mimics considerably decrease DPSC
proliferation and differentiation. It has also been established that
insulin-like growth factor 1 induces DPSCs proliferation and
osteogenic/odontogenic differentiation via activating the JNK and
P38MAPK pathways. Increasing let-7c inhibits the insulin-like
factor-1 receptor (IGF-1R) by reversing the process as well as
inhibiting activation of the JNK/P38 MAPK pathway (Liu et al.,
2018b). This process, including miR-488, may also be adversely
involved (Yu et al., 2019).

TABLE 3 miRNAs-mediated regulation of odontogenic differentiation in DPSCs.

ncRNAs Targets Differentiation

miR-135b SMAD5/SMAD4 Odontogenic (−) (Song et al., 2017)

miR-143-5p Runx2, MAPK14, TNF-α Odontogenic (−) (Zhan et al., 2018; Wang et al., 2019a)

miR-145 KLF4 Odontogenic (−) (Liu et al., 2013)

miR-140-5p Wnt1/β-catenin Odontogenic (−) (Lu et al., 2019)

let-7c, let-7c-5p IGF-1R, DMP1 inflammation Odontogenic (−) (Liu et al., 2018b)

miR-218 RUNX2 Odontogenic (−) (Chang et al., 2019)

miR-431 Odontogenic (−)

miR-508-5p GPNMB Odontogenic (−) (Liu et al., 2019)

miR-488 p38 MAPK Odontogenic (−) (Yu et al., 2019)

miR-720 NANOG Odontogenic (+) (Hara et al., 2013)

miR-146a-5p Odontogenic (+) (Qiu et al., 2019)

miR-675 DLX3 Odontogenic (+) (Zeng et al., 2018a)

miR-27a-5p TGF-β1/smads Odontogenic (+) (Hu et al., 2019)

miR-223-3p Smad3 Odontogenic (+) (Huang et al., 2019)

miR-506 inflammation (Wang et al., 2019b)

miR-125a-3p Fyn Odontogenic (+) inflammation (Wang et al., 2020)

miR-21 STAT3 Odontogenic (+) (Xu et al., 2018a)

(+): positive effect; (−): negative effect.
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In addition to their inhibitory effects, miRNAs can promote
odontogenic differentiation in DPSCs (Sun et al., 2015). Studies have
shown that miR-720 can promote odontogenic differentiation while
concurrently reducing the proliferative capacity of DPSCs. As such,
miR-720 represents a novel miRNA involved in the process of
DPSCs differentiation (Hara et al., 2013). Kato (2018)
demonstrated that lentiviral transfection of hDPSCs with miR-
146a-5p resulted in its overexpression, which led to a significant
upregulation in the expression of odontogenic differentiation
markers (Dspp and Dmp1), suggesting a positive regulatory role
of miR-146a-5p in odontogenic differentiation of hDPSCs. Through
the inhibition of DNMT3B, miR-675 promotes the odontogenic
differentiation of DPSCs by mediating DLX3methylation (Qiu et al.,
2019). Another miRNA, miR-27a-5p, positively regulates
odontogenic differentiation by suppressing the LTBP1 molecule
and activating the TGF-β1/Smad pathway (Hu et al., 2019).

Interestingly, this miRNA is found in the exosomes secreted by
DPSCs during odontogenic induction. There is a conserved motif in
miRNA, which can be recognized by RNA-binding proteins and
transported in a cell-specific manner.WhenmiRNA is present in the
EXOmotif, it is recognized by specific RNA-binding proteins, loaded
into vesicles, transported to other cells, and recognized by other cells
for cell interaction; miRNA in vesicles can also inhibit gene
expression in the receiving cells (Garcia-Martin et al., 2022). In
the future, RNA editing technology can be used to specifically
change the motif of specific miRNA molecules and solve the
problem caused by disordered cell interaction, opening up new
ideas for future treatment in the oral field.

The modulation of miRNA is an essential aspect during the
development of dental pulp inflammation, and studies have
identified its distinct expression profiles in healthy and inflamed
dental pulp (Zhong et al., 2012). The odontoblast differentiation of
pDPSCs can be stimulated by LPS or TNF-α (He et al., 2015). In
most cases, the protective effect of miRNA is achieved by mitigating
the inflammatory response or promoting odontogenic
differentiation. A significantly increased miRNA in inflamed pulp
tissue is miR-223-3p, which can be detected in pulp tissue.
Overexpression of miR-223-3p has been found to promote
DPSCs odontoblast differentiation in vitro (Huang et al., 2019).
Both let-7c-5p and miR-506 can safeguard against LPS-induced
pDPSC inflammation by reducing the pro-inflammatory cytokines
performance (Wang et al., 2019b; Huang et al., 2019). In vivo
experiments have confirmed that let-7c-5p reduces the ability of
LPS to induce pulpitis in rats (Yuan et al., 2018). Furthermore, let-
7c-5p has additional potential for promoting bone growth in
inflamed pDPSCs(Yuan et al., 2019). Knocking down miR-140-
5p has been found to enhance odontoblast differentiation, and Toll-
like receptor-4 is involved in the miR-140-5p-mediated effects on
pDPSCs, inhibiting pDPSC proliferation upon LPS stimulation (Sun
et al., 2017). Fyn is a member of the Src kinase family, which has
been reported to be upregulated in the microenvironment of deep
caries. The miR-125a-3p has been identified as an upstream factor of
Fyn and a positive factor in regulating pDPSC odontoblast
differentiation upon TNF-αstimulation (Wang et al., 2020). At
low concentrations (1–10 ng/mL), TNF-αenhances odontogenic
differentiation, while at high concentrations, it suppresses it. As
shown above, miR-21 is detected even at low levels of TNF-α, along
with an increase in the expression of signal transduction and

activator of transcription3 (STAT3). When high concentrations
are present, the opposite results are observed. STAT and miR-21
are both involved in positive feedback loops regulating odontogenic
differentiation (Xu et al., 2018a).

MiRNA, as a subject of epigenetic research, has attracted much
attention, with many theories constantly being updated and
improved. One such theory is target-directed miRNA degradation
(TDMD), where target genes can degrade miRNA by binding to it
(Figure 3). The form of miRNA and target gene binding influences
the stability of miRNA. When the 3′end of miRNA does not fully
bind to target genes, miRNA remains relatively stable. However,
miRNA is easily degraded when the 3′end of miRNA can fully bind
to target genes (Kato, 2018). For instance, research has shown that
the 3′end of miR-382-3P can be completely complementary to the
upstream gene GAS5, leading to the autodegradation of miR-382-
3p. This process relieves the inhibitory effect of the downstream
target gene TAF1, promoting the osteogenic differentiation of
hBMSCs (Song et al., 2022). Another emerging concept is the
nuclear activating miRNA (NamiRNA), which investigates the
epigenetic regulatory mechanisms of miRNAs themselves. A
systematic analysis of 1,594 miRNA precursors across seven
different tissue types revealed more than 300 miRNA precursors
with genomic positions overlapping enhancer histone modification
markers H3K4me1 or H3K27ac. This association between tissue-
specific miRNA and enhancers led to the discovery that the
activation of these nuclear miRNAs relies on the integrity of the
enhancer region. Knocking down specific sequences of the enhancer
can prevent miRNA upregulation, affecting tumor cells’
proliferation and migration capabilities. Some scholars suggest
that miRNAs function as bifunctional molecules. In the
cytoplasm, miRNAs act as negative regulators, blocking mRNA
translation and suppressing gene expression. Conversely, in the
nucleus, miRNAs serve as activators, modulating the chromatin
state of enhancers to stimulate gene transcription (Xiao et al., 2017).

While these theories have yet to be applied to the odontogenic
differentiation of DPSCs, they present innovative concepts and
perspectives that could stimulate scientific inquiry and inspire
further research into restorative dentin and pulp regeneration.
These ideas offer potential pathways for more in-depth
exploration of these fields, potentially leading to breakthroughs in
regenerative dental therapies.

4.3.2 LncRNAs
A mounting body of research underscores the significant

regulatory role of lncRNA in the differentiation process of
hDPSCs(Table 4). One such lncRNA, H19, is an imprinted
paternal gene that encodes a 2.3-kb noncoding RNA and
exhibits multiple biological effects, including promoting the
ability of hDPSCs proliferation, migration, and differentiation
(Huang et al., 2016). Research indicates that H19 inhibits the
expression of LATS1 by increasing zeste homolog two-induced
trimethylation levels of histone three at lysine 27. Conversely,
LATS1 suppresses the differentiation, proliferation, and
migration of hDPSCs by decreasing YAP and TAZ levels,
thereby activating the Hippo-Yes-related protein (YAP)
signaling pathway. Transplanting hDPSCs overexpressing
lncRNA H19 into nude mice showed that lncRNA
H19 inhibits LATS1 and promotes the production of
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odontoblast cells in vivo (Du et al., 2021). H19 also upregulates
S-adenosyl homocysteine (SAH), an inhibitor of
S-adenosylmethionine-dependent methyltransferase (Zhou
et al., 2015). It enhances the odontogenic differentiation of
DPSCs by downregulating the methylation level of the distal-
free homology cassette 3 (DLX3) gene to upregulate the
expression of DLX3 (Zeng et al., 2018b). Furthermore,
H19 can bind to miR-140-5P via the sponge mechanism,
which derepresses miR-140-5P on the downstream edentulous
target genes (BMP-2, FGF9) to promote odontogenic

differentiation (Zhong et al., 2020). Nonetheless, research has
shown that lncRNA H19 expression was not significantly
detected during odontogenesis. This discrepancy may arise
from the fact that differentiated and undifferentiated cells
used in the studies were derived from different individuals,
potentially leading to varying results. Additionally, phenotypic
differences and variations in sequencing methods may introduce
errors. Therefore, large-scale studies are required to confirm
these findings and provide more definitive conclusions (Zhong
et al., 2020). In addition to chromosomal modifications that

FIGURE 3
Themodulation of TDMDmechanism. The 3′end of miRNA does not fully bind to target genes, miRNA remains relatively stable. The 3′end of miRNA
can fully bind to target genes, miRNA is easily degraded. Created with BioRender.com.

TABLE 4 LncRNAs-mediated regulation of odontogenic differentiation in DPSCs.

ncRNAs Targets Differentiation

H19 SAHH/miR-140-5P Odontogenic (+) (Zhou et al., 2015; Zeng et al., 2018b; Zhong et al., 2020)

DANCR p-GSK-3β/β-catenin Odontogenic (−) (Chen et al., 2016)

G043225 miR-588 Odontogenic (+) (Chen et al., 2020)

MALAT1 miR-140-5p/GIT2 Odontogenic (+) (Bao et al., 2020)

SNHG1 miR-328-3p/TGF-β/Wnt Odontogenic (−) (Fu et al., 2022)

SNHG7 Odontogenic (+) (Liu et al., 2020)

(+): positive effect; (−): negative effect.
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participate in epigenetic regulation, long non-coding RNAs
(LncRNAs) may also engage with the key molecules of related
signaling pathways to regulate the odontogenic differentiation of
DPSCs. The LncRNA anti-differentiation non-coding RNA
(ANCR), also known as differentiation antagonistic non-
protein coding RNA (DANCR), was initially discovered in
2012 to inhibit differentiation and promote undifferentiation
of somatic progenitor cells (Kretz et al., 2012). Furthermore,
studies have revealed that inhibition of ANCR leads to
neurogenic, osteogenic, and lipogenic differentiation in DPSCs
without impeding their proliferation (Jia et al., 2016). ANCR
impedes the odontogenic differentiation of DPSCs by targeting
the Wnt/β-catenin signaling pathway (Chen et al., 2016).

The ability of dental pulp stem cells (DPSCs) to undergo
odontogenic differentiation has been associated with the activity
of lncRNAs. RNA-sequencing analysis has revealed a correlation
between the loss of odontogenic differentiation potential and the
downregulation of 108 lncRNAs, as well as the upregulation of
36 lncRNAs (Zheng and Jia, 2016). Moreover, inducing
odontoblastic differentiation in DPSCs differentially alters the
expression of 132 lncRNAs and 114 miRNAs. Bioinformatic
analysis has identified lncRNAs linked to odontogenic proteins
such as retinoid and fibronectin 1. Their associated competing
endogenous RNA (ceRNA) networks play a role in the complex
differentiation of DPSCs. Further studies have shown that
lncRNA G043225 inhibits the expression of FBN1 by acting as
an endogenous miRNA sponge, competitively inhibiting miR-
588, thereby promoting odontogenic differentiation (Chen
et al., 2020).

Prominent researchers have meticulously investigated the novel
regulatory circuit governing the odontogenic differentiation of
hDPSCs. This circuit involves an interplay between the long non-
coding RNA metastasis-related lung adenocarcinoma transcript 1
(MALAT1), microRNA-140-5p (miR-140-5p), and the G protein-
coupled receptor kinase two interaction protein 2 (GIT2). During
the odontogenic differentiation of hDPSCs, miR-140-5p is
significantly downregulated. Dual-luciferase reporter gene assays
have demonstrated that miR-140-5p directly targets GIT2. RNA
pull-down assays have further confirmed that MALAT1 can bind to
miR-140-5p, thereby positively regulating GIT2 expression.
Notably, increased miR-140-5p levels or GIT2 knockdown in
hDPSCs (via exogenous transfection or lentiviral infection)
inhibits the expression of key markers of odontogenic
differentiation, such as ALP activity, DSPP, DMP-1, and DLX3.
Collectively, these findings suggest that MALAT1 may play a crucial
role in regulating odontogenic differentiation in hDPSCs (Bao et al.,
2020). Analogously, the lncRNA colon cancer-associated transcript
1 (CCAT1) was initially found to participate in various aspects of
metabolism, migration, and proliferative processes in select cancers
(Li et al., 2018c). Subsequently, researchers have established that
CCAT1 can also promote the DPSCs proliferation of odontogenic
differentiation and proliferation. Remarkably, luciferase assays have
evinced that CCAT1 is bound to miR-218, leading to negative
modulation of miR-218 expression (Zhong et al., 2019). The
most recent investigation has unveiled that the impact of small
nucleolar RNA host gene 1 (SNHG1) can influence the progression
of osteosarcoma by controlling miR-101-3p, miR-326, and miR-577
(Wang et al., 2018c; Jiang et al., 2018; Deng et al., 2019).

Furthermore, SNHG1 can also impede the proliferation of
colorectal cancer cells through miR-154-5p (Xu et al., 2018b).
The overexpression of SNHG1 is observed during the
differentiation of hDPSCs into odontoblast-like cells.
SNHG1 expression increases progressively on days 0, 3, and
seven of hDPSCs’ odontogenic differentiation. The
overexpression of SNHG1 boosts the mRNA and protein
expression of DSPP, DMP-1, and ALP. Mechanistically,
SNHG1 can bind to miR-328-3p, lifting its inhibitory effect on
target genes to activate the Wnt/β-catenin pathway, thereby
promoting odontogenic differentiation (Fu et al., 2022). Recent
research has highlighted substantial alterations in
SNHG7 expression during the odontogenic differentiation of
DPSCs. By culturing human DPSCs in an osteogenic/odontogenic
differentiation medium for 14 days and analyzing the cells’ RNA
sequences, scientists identified 89 differentially expressed lncRNAs,
1,636 mRNAs, and 113 miRNAs. Silencing SNHG7 was found to
inhibit the odontogenic/osteogenic differentiation of DPSCs,
suggesting it as a promising target for dentin-pulp complex
regeneration and tissue engineering (Liu et al., 2020).

Despite progress, significant knowledge gaps remain in
understanding the role of lncRNAs in odontogenic
differentiation. Further research is needed to confirm the
functions of various molecules involved. The current
understanding centers around competing endogenous RNA
(ceRNA) competition, transcription factor regulation, and DNA
methylation interactions. However, more intricate and nuanced
epigenetic mechanisms should be explored. It is clear that
lncRNAs play a critical role in the differentiation potential of
hDPSCs and represent a promising target for new
treatments in VPT.

4.3.3 CircRNAs
CircRNA, with its closed-loop system, is highly conserved

and extremely resistant to RNA enzymes, making it a noteworthy
molecular entity. Moreover, it is recognized as a potent miRNA
sponge due to its ability to competitively bind miRNAs. First
discovered in viruses in 1976, circRNA has since been identified
as a pivotal post-transcriptional regulator of cell proliferation,
differentiation, and apoptosis (Wang et al., 2019c).

Numerous studies have verified the significant role of circRNAs
in regulating the osteogenic differentiation of dental stem cells.
However, there have been few studies on the effects of circRNAs on
the odontogenic differentiation of DPSCs. Among them, Chen et al.
(2020) have utilized microarray analysis to determine that
187 circRNAs have been differentially expressed more than 1.5-
fold during odontogenic differentiation in the induced group
compared to the non-mineralized induced group, of which
44 circRNAs have been upregulated, and 143 have been
downregulated. In the induced group, hsa_circRNA_005044, hsa_
circRNA_005044, hsa_circRNA_406763, and hsa_circRNA_
104101 have been upregulated 3.78, 8.29, 15.95, 19.03-fold,
respectively, compared to the uninduced group. Furthermore,
hsa_circRNA_079813 has undergone a 3.85-fold downregulation
and hsa_circRNA_008336 has undergone a 3.74-fold
downregulation. Among the 187 circRNAs that have significantly
different expressions prior to mineralization induction, these six
circRNAs exhibit the most pronounced changes. Knockdown of
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circRNA_104101 has resulted in varying degrees of reduction in
odontogenic markers, such as ALP, DSPP, DMP1, and OCN, after
the 7th and 14th days of induction. Furthermore, based on
bioinformatics analysis, it is indicated that the Wnt/TGF-β
signaling pathway may be involved; however, the precise
mechanism still requires further exploration. Li and Jiang (2019)
have identified 1314 upregulated and 1780 downregulated circular
RNAs, respectively, during odontogenic induction using high-
throughput sequencing. The expression trends obtained by high-
throughput sequencing have been consistent with the results of RT-
qPCR screening and validation of two circular RNAs with large fold
changes (hsa_circ_0015260 and hsa_circ_0006984). Additionally,
the MAPK signaling pathway has been predicted to be part of
odontogenic differentiation, but further investigation is necessary to
determine specific results and mechanisms.

The bulk of research on the odontogenic differentiation of
DPSCs has primarily centered on miRNAs, with circRNAs
receiving relatively little attention. Given their inherent stability
and significant abundance in physiological systems, circRNAs
represent a promising avenue for biomarker research related to
disease diagnosis (Han et al., 2018). However, numerous molecules
and mechanisms remain to be explored in greater depth, with
circRNAs presenting as potentially powerful targets for VPT.
This paper serves as a concise summary intended to provide a
reference point for the continued investigation into the regulatory
mechanisms of circRNAs in the odontogenic differentiation
of DPSCs.

5 Conclusion

This comprehensive review examines the odontogenic
differentiation of DPSCs with a focus on the critical role of
epigenetic modifications, including DNA methylation, histone
modifications, and non-coding RNA regulation. Although most
current research emphasizes in vitro studies, further in vivo
research and animal disease models are essential for advancing
our understanding. Additionally, the field shows great potential
for progress in circRNA research. It is important to highlight two
complementary concepts, TDMD and NamiRNA, which enhance
our understanding of the unique impacts of miRNA molecules
across different cellular locations. Given the wide range of
epigenetic modifications and underlying mechanisms, our
comprehension of epigenetic regulatory influences remains in
its early stages, with a focus on classical epigenetic modifications
and their respective locations.

Currently, clinical practice mainly employs biomaterials
embedded with HDACi and integrates inhibitors into
biologically derived dental restorative biomaterials for pulp
restoration in exposed areas. However, advances in
biotechnology are leading to the discovery of new epigenetic
modifications, such as DNA 6 mA modifications, tRNA-enriched
epigenetic modifications, and molecular variant shearing, all of
which play roles in regulating odontogenic differentiation in
DPSCs.The complex interplay of these various modifications
presents a challenge in unraveling the epigenetic regulatory
mechanisms that govern the odontogenic differentiation of
dental pulp stem cells.

6 Future direction

Current trends in dentistry emphasize minimally invasive and
biologically oriented restorative strategies, focusing on preserving
the vital pulp and harnessing its natural regenerative abilities to
facilitate self-renewal. The use of calcium silicate-based materials
has increased the success of pulp regeneration therapies. However,
limitations persist with existing dental materials, such as significant
cytotoxicity, reduced tissue repair capacity, and a lack of target
specificity. A comprehensive understanding of the biological
mechanisms of pulp repair and regeneration is crucial for
advancing treatment options. While DPSCs have been employed
in vitro and in animal models for tissue engineering, their clinical
applications remain limited. The expansion and cultivation of
DPSCs involve complex procedures that require specialized
culture media and conditions to preserve their pluripotency and
multipotency. These challenges demand urgent solutions,
particularly for large-scale clinical use. Given the variation in the
differentiation potential of DPSCs across individuals and sources,
patient outcomes may differ.

Looking forward, there are several key areas of focus: 1.
Enhancing research on the growth and culture conditions of
DPSCs is vital to optimize their expansion and stability while
retaining their totipotency and pluripotency; 2. Developing a
deeper understanding of the mechanisms and regulatory
networks that govern DPSC differentiation is essential. Exploring
additional epigenetic processes, such as lactation and succination
modifications, can promote targeted differentiation of DPSCs into
specific cell lines and improve the efficiency of regenerative
therapies; 3. Improving regenerative therapy efficiency through
the integration of biomaterials and bioengineering technologies is
crucial. By combining these approaches to design suitable scaffolds
and carriers, optimal growth environments can be created for
DPSCs, promoting their directed differentiation and facilitating
dental pulp tissue regeneration and repair; 4. Advances in
pharmacology offer opportunities to target essential pulp-
preserving therapies against epigenetic or other cellular markers,
opening the door to clinical applications of novel endodontic
restorative materials. However, the use of epigenetic agents
presents several unresolved challenges that warrant attention,
including: i. The absence of robust clinical trial data regarding
the induction of dentition, raising significant ethical and
regulatory concerns; ii. Limited specificity, as inhibitors targeting
particular HDAC classes have been developed but lack total
specificity, potentially leading to associated side effects; iii. Heavy
reliance on the Zn2+ binding motif, which may strongly bind to
other vital metalloenzymes, inducing cytotoxicity and restricting the
clinical applicability of the inhibitors. Consequently, the future may
call for the creation of highly precise inhibitors or the examination of
combination therapies to mitigate dose dependency and enhance
drug efficacy.
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