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Introdution: During development, planes of cells give rise to complex tissues and
organs. The proper functioning of these tissues is critically dependent on proper
inter- and intra-cellular spatial orientation, a feature known as planar cell polarity
(PCP). To study the genetic and environmental factors affecting planar cell polarity,
investigators must often manually measure cell orientations, which is a time-
consuming endeavor. To automate cell counting and planar cell polarity data
collection we developed a Fiji/ImageJ plug-in called PCP Auto Count (PCPA).

Methods: PCPA analyzes binary images and identifies “chunks” ofwhite pixels that
contain “caves” of infiltrated black pixels. For validation, inner ear sensory epithelia
including cochleae and utricles from mice were immunostained for βII-spectrin
and imaged with a confocal microscope. Images were preprocessed using
existing Fiji functionality to enhance contrast, make binary, and reduce noise.
An investigator rated PCPA cochlear hair cell angle measurements for accuracy
using a one to five agreement scale. For utricle samples, PCPA derived
measurements were directly compared against manually derived angle
measurements and the concordance correlation coefficient (CCC) and Bland-
Altman limits of agreement were calculated. PCPA was also tested against
previously published images examining PCP in various tissues and across
various species suggesting fairly broad utility.

Results: PCPA was able to recognize and count 99.81% of cochlear hair cells, and
was able to obtain ideally accurate planar cell polarity measurements for at least
96% of hair cells. When allowing for a <10° deviation from “perfect”
measurements, PCPA’s accuracy increased to 98%–100% for all users and
across all samples. When PCPA’s measurements were compared with manual
anglemeasurements for E17.5 utricles there was negligible bias (<0.5°), and a CCC
of 0.999. Qualitative examination of example images of Drosophila ommatidia,
mouse ependymal cells, and mouse radial progenitors revealed a high level of
accuracy for PCPA across a variety of stains, tissue types, and species.

Discussion: Altogether, the data suggest that the PCPA plug-in suite is a robust
and accurate tool for the automated collection of cell counts and PCP angle
measurements.
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1 Introduction

The proper orientation of cells with regard to anatomical axes,
neighboring cell orientation, and overall system organization is of
critical importance for proper development and function in nearly
all multicellular organisms. During metazoan development,
immature sheets of cells respond to polarization cues that
provide the organizational direction necessary for the formation
of complex tissues, organs, and systems. The study of coordinated
cell polarization in these two dimensional sheets—known as planar
cell polarity (PCP)—has greatly benefitted from the improvement of
molecular and gene targeting methodology developed over the past
few decades, and there has been considerable scientific interest in
studying PCP pathways in a variety of developing tissues and model
organisms (López-Schier et al., 2004; Classen et al., 2005; Djiane
et al., 2005; Dohn et al., 2013; Wang et al., 2016; Yang et al., 2017).
Indeed, several factors that regulate PCP have been identified,
including several “core” PCP proteins that appear to be largely
conserved (Seifert and Mlodzik, 2007; Dreyer et al., 2022). In
addition, several recent publications show that there are novel
PCP factors to be discovered (Bonello and Peifer, 2019; Landin
Malt et al., 2019), some that may be specific to certain tissue types or
species (Hale and Strutt, 2015; Pitsidianaki et al., 2021). There is also
a growing list of functions for many PCP proteins beyond mere
polarization (Cheong et al., 2020; Humphries et al., 2020). As this
area of study continues to grow, new tool development and adoption
of streamlined methodologies will be highly beneficial.

A major technical limitation in the study of PCP is that the manual
characterization and collection of cellular polarity data is incredibly
labor intensive. Most types of tissue contain thousands-to-millions of
cells, making it nearly impossible to conduct analyses on the entire cell
population within an organ. Many investigators elect to quantify cell
orientations from a limited number of sampling areas or cells and then
extrapolate broader regional conclusions based on this data. Even with
such random and limited sampling, statistical power and experimental
rigor often require the measurement of hundreds of cells, which is still
intensive and vastly time consuming for investigators taking manual
measurements. Furthermore, limited sampling techniques may lead
investigators to draw incorrect regional assumptions, particularly in
cases where cell type ratios or cell density varies based on anatomical
location (Desai et al., 2005) or developmental age (Burns et al., 2012).
Beyond the extensive time commitment necessary to collect PCP data,
manual quantification of planar cell polarity—even by blinded
investigators—is subject to human error and potential bias. Due to
the limitations inherent in manual cell quantification, there has been a
growing interest in the development of automated or semi-automated
processes that would allow researchers to collect PCP data quickly and
accurately. Automation of PCP data collection should provide
tremendous savings in terms of time and human resources, with the
added benefit of minimizing variability and bias.

To address the need for a reliable and user-friendly approach to
automating PCP data collection, we have developed a user-friendly
plug-in tool suite called PCP Auto Count (PCPA). PCPA automates
cell quantification and collects PCP data in the form of angle
measurements from two-dimensional micrographs. PCPA is
integrated with the widely used open-source software Fiji (Fiji Is
Just ImageJ) (Schindelin et al., 2012) and allows researchers to
customize data collection parameters through a simple graphical

user interface. To test the efficacy of PCPA we utilized a number of
confocal fluorescent micrographs taken from murine inner ear
sensory epithelia and compared data collected with PCPA against
data collected through traditional manual quantification methods.

Inner ear auditory and vestibular sensory epithelia have become
prominent models for the investigation of how disruption to
developmental factors can affect PCP (Landin Malt et al., 2019;
Kozak et al., 2020; Ohta et al., 2020). The main sensory cell type of
the inner ear—known as hair cells—are characterized by stereocilia
protruding from the apical surface of the cell which are pushed by
mechanical forces in the direction of the cell’s primary cilium or
kinocilium. When this deflection is properly aligned mechano-
electric transduction channels are opened, depolarizing the cell
and triggering neurotransmitter release onto the vestibulocochlear
nerve. In order to bemaximally sensitive to deflecting forces, sensory
hair cells develop specific spatial orientations during late embryonic
and early postnatal ages. Disruption to developmental factors
influencing PCP have been shown to lead to deficits in hearing
and balance (Duncan et al., 2017; Tarchini, 2021; Ji et al., 2022).
Thus, we have developed the PCPA plug-in suite to automate the
collection of cell polarity measurements and validated its utility
extensively in cochlear and vestibular sensory epithelia. In addition,
we demonstrate the ability of PCPA to obtain orientation
measurements from published images of Drosophila ommatidia,
murine ependymal cells, and murine radial glia. Together, the data
suggest that PCPA is a reliable and accurate plug-in suite that
performs at least as well as manual quantification, and has
significant potential to streamline and expand planar cell polarity
analyses in multiple cell types and tissue models.

Finally, though the PCPA plug-in was primarily developed to
calculate cell polarity measurements, it also provides broader
experimental applicability through its ability to quantify cell
numbers. Across many areas of study in the biological sciences,
the counting of cells is necessary to understand the effects of
experimental manipulations. Investigators often wish to quantify
changes in RNA or protein expression in situ, or on the processes of
cell survival, proliferation, and differentiation by counting cells
expressing certain markers. In the inner ear, sensory cells can be
damaged or lost due to environmental factors, genetic
predisposition, and the normal aging process. Many research
questions related to sensory cell protection or regenerative
strategies use cell population counts as an important outcome
metric, and this approach (Kaltenbach et al., 2002; O’Sullivan
et al., 2020; Ciani Berlingeri et al., 2022) is subject to the same
limiting factors described above (time investment and potential
bias). Though not heavily emphasized here, our results demonstrate
that PCPA can be used to quantify cell numbers in addition to angles
of orientation, or independently for samples where cell polarity
information is not needed.

2 Methods

2.1 PCPA development and code deposition

The feature of interest in most PCP studies is often a cell or cell
surface, but may alternatively be a cellular structure, aggregate of
cells, aggregate of structures, or other features that can vary by tissue
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type. As such, we have elected to use generalized descriptive terms in
the development and functioning of PCPA, which should be broadly
applicable. The primary features of interest, usually large planar
surfaces (often the apical surfaces of cells) are termed “chunks”,
while prominent inclusions indicative of direction are defined as
“caves.” These chunk and cave configurations are present in many
types of samples used for PCP research (e.g., v- or u-shaped
morphology, such as the arrangement of photoreceptors in
Drosophila ommatidia, filiform papillae of the vertebrate tongue,
actin-rich Drosophila wing hairs, or stereocilia bundles of
mammalian outer hair cells). This organization also often arises
from combinations of various features, such as the co-labeling of cell
surfaces or borders and primary cilia (e.g., radial glia, ependymal
cells, and inner ear hair cells). In many remaining cases, chunks and
caves can be overlaid onto features of interest by investigators who
circle or otherwise draw on top of an image to highlight the points
of interest.

The primary principle in the operation of PCPA is that angles of
orientation of cells or groups of cells in planar tissues can be
measured using two reference points in each cell or cell
aggregate; namely, the center of mass of the chunk and the
center of mass of the cave. As a proof of principle, we utilized
cochlear and vestibular sensory hair cells where the apical surface
(chunk) is immunolabeled with βII-spectrin and the commonly used
orientation marker of hair cells, the fonticulus, is an unlabeled
circular inclusion (cave). We also provide examples of PCPA’s
utility on other tissue types (e.g., Drosophila ommatidia, murine
ependymal cells, and murine radial glia) taken from published PCP
literature.

PCPA was designed to analyze single plane, two-dimensional
binary images where chunks are represented by white pixels and
caves are comprised of black pixels. In practice, micrographs are not
generally acquired in this manner, often being acquired in color or
grayscale and in some cases as confocal z-stacks. While
polychromatic and grayscale images are useful for quantification
methods relying on human decision making, automated algorithmic
quantification is easier to accomplish and requires less processing
power when the image information is limited to binary pixel
composition. PCPA was therefore designed for analysis of binary
images which reduces computation and improves speed of
execution. As such, multicolor or grayscale images need to be
converted to binary images which can be easily accomplished
using existing Fiji features. Similarly, z-stacks can be readily
cropped or projected onto a two-dimensional image. Over many
iterations we have established that reliable image acquisition and a
limited number of preprocessing steps can decrease background
noise and yield the best flattening and binary conversion from a
grayscale or color image.

The PCPA plug-in requires no special licensing or permission to
use, and runs on any operating platform supported by Fiji
(i.e., Linux, Windows, MacOS). The PCPA plugin can be found
at https://sites.imagej.net/PCP-Auto-Count/. Detailed instructions
for installing Fiji plug-ins can be found in the PCPA user manual or
through Fiji’s wiki at https://imagej.net/plug-ins/updater or https://
imagej.net/plug-ins/. A user manual with detailed explanations of
the PCPA algorithm and function, along with PCPA’s open source
code, can be found at https://github.com/WaltersLabUMC/PCP-
Auto-Count.git.

2.1.1 Image acquisition and the creation of
binary images

Our image acquisition parameters were established using
murine cochlear (P4) hair cells immunolabeled for the commonly
used sensory hair cell marker βII-spectrin. In order to capture
images that required minimal preprocessing to create quality
binary images, the βII-spectrin channel was imaged with the
detector gain set to approach or slightly exceed saturation for
immunopositive pixels. We have found that binary images with
the best fidelity to detail are created from brightly imaged
micrographs obtained at relatively high resolution (minimum
1,024 × 1,024 pixels field of view), at high magnification (40X
to ×63 microscope objective), and using a robust antibody with
high signal-to-background fluorescence ratio. In P4 cochlear
samples, βII-spectrin signal intensity appeared brighter in inner
hair cells compared to outer hair cells. Uneven signal intensities such
as these sometimes led to issues when thresholding images to binary.
Thus, relatively even levels of fluorescence across all cells in a field
should be attained if possible. Where such evenness in intensity was
not achievable in images from P4 cochleae, inner and outer hair cells
were separated into different images and subsequently preprocessed
and analyzed with great success.

While it is recommended to maximize signal-to-noise ratio
(SNR) of fluorescence intensities, and to oversaturate as
necessary to ensure homogeneity across cells for ease of use of
PCPA, we also tested PCPA using images that were collected for
prior experiments using standard imaging parameters where pixel
intensities were not maximized or normalized, thus demonstrating
how PCPA could be useful in situations where researchers wish to
analyze existing micrographs or to maintain existing imaging
parameters for other reasons. We utilized micrographs of murine
vestibular (E17.5) hair cells, from our laboratory, that were
immunolabeled for βII-spectrin and imaged prior to the
development of PCPA. We also tested PCPA on images from
other laboratories in their previously published research. Those
images did not meet our resolution requirements (<1,024 ×
1,024 pixels) had their resolution artificially increased in Fiji
using “Image > Adjust > Size . . . ” with the size to meet or
exceed 1,024 pixels on the shortest edge of the image.

For P4 cochlear images obtained using optimal microscopy
parameters described above, we found that further pre-processing
was often not necessary and we could move straight to creating
binary images from these micrographs. For any images that did not
meet the criteria defined above (high SNR and flat 2D image), we
found that pre-processing steps completed using existing features in
Fiji enhanced the quality of subsequently created binary images, and
ultimately resulted in nearly all positively labeled cells from the
micrographs to be processed successfully by PCPA. We briefly
describe the preprocessing steps used below, and a detailed
explanation of pre-processing settings can be found in the PCPA
user manual which can be obtained within the PCPA plug-in (or at
https://github.com/WaltersLabUMC/PCP-Auto-Count.git).

First, to create 2D images from 3D (z-stack) micrographs, the
Fiji function “Image > Stacks > Z project . . . ” allowed for projection
using a variety of methods. Of these, the maximum intensity
projection worked best for most images, though the median
intensity function sometimes yielded better results. In cases
where SNR was low, PCPA performance was improved by
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selecting “Process > Subtract background . . . ”. Standard Fiji
functions were not always sufficient to correct high heterogeneity
of signal within particularly poor images. In these cases, we
corrected image intensity using the BioVoxxel plug-in tool suite
(www.biovoxxel.de). Specifically, the “pseudo flat-field correction”
option and/or “convoluted background subtraction” option
improved homogeneity of signal intensities and allowed further
background subtraction if needed after flat-field correction. After
background subtraction (if applicable), images were converted to
binary, most commonly by using the Fiji function “Image >Adjust >
Threshold . . . ,” where users manually set the threshold point.
Alternatively, for images that were of sufficient quality and
homogeneity, Fiji’s automated threshold options could be used
(e.g., “Process > Binary > Make Binary”).

When making an image binary, nonspecific staining could be
intense enough to be included as white pixels. While distinct non-
specific white pixels can be size excluded (via PCPA’s size exclusion
settings, described below), white pixels that arise in direct contact

with cells of interest could lead to erroneous calculations of the
centers of the cells during PCPA analysis. Furthermore, it is
generally beneficial to PCPA processing to eliminate spurious
concavities from cells, i.e., any indentations or holes that are not
the feature to be measured for directionality. While allowing such
features to remain would likely only slow PCPA analysis by a few
seconds, it could lead to occasionally erroneous angle
measurements. Thus, it is highly recommended to use the Fiji
option “Process > Noise > Remove outliers . . . ” to remove these
non-specific features. For the images used in this report, noise
removal between 6–12 pixels was generally sufficient.

2.1.2 PCPA identifies white pixels in a binary image
and aggregates adjoining white pixels into
discrete chunks

Here, we provide a brief description of PCPA’s workflow and
algorithmic processes, presented in operational order (Figure 1)
PCPA will first identify all potential chunks in a binary image. To do

FIGURE 1
Overview of PCPA’s algorithmic flow (Created with BioRender.com) (A) PCPA identifies aggregates of white pixels in a binary image, termed chunks.
(B) Chunks can be discarded from subsequent operations via an optional pixel size minimum and/or maximum (cells pseudo-colored pink). (C) PCPA has
a limited capacity (maximumof two conjoined cells) to separate chunks that abut one another or overlap. Larger aggregates of chunks can be excluded by
overall size or dimensions. (D) Cells that fall partially outside of the imaging frame can be discarded by setting an exclusion zone of a set number of
pixels away from the edge of the image frame (cells pseudo-colored blue). (E) In the absence of Plastic Wrap, indentations in the chunk that are not
completely enclosed by white pixels cannot be recognized by PCPA. Applying the “Plastic Wrap” option will add pixels to bridge the gap in the cell’s
perimeter thus enclosing the indented area. (F) Each chunk’s center of mass is calculated and stored as (x, y) coordinates. (G) Inclusions of black pixels
within chunks, or created by plastic wrap, termed caves, are identified and the cave best meeting selection criteria is identified as the directional cave of
interest and the center of mass of the enclosed black pixels is calculated as (x, y) coordinates. (H) The angle of orientation for each chunk and its cave is
calculated as the inverse tangent of the difference in (y) over the difference in (x). (I) PCPA outputs include annotated images specifying chunks excluded
due to violating chunk size limits (cells pseudo-colored pink) or touching the border of the image (cells pseudo-colored blue). Cells are labeled in the
annotated output and correspond with the angle results table, which provides a detailed output of (x, y) coordinates and angles for each chunk-cave pair
that was quantified. Rose diagrams and summary statistics tables are also produced.
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so, the Cartesian (x, y) coordinates of all white pixels in the image are
recorded. PCPA then systematically evaluates every white pixel to
determine if it abuts any other white pixels. All abutting pixels are
assigned as an aggregate representing an individual chunk
(Figure 1A). The coordinates of all chunk pixels are then stored
for later use in calculating the center of mass of each chunk. PCPA
then discards any chunks violating optional size exclusions from
further analysis. The user-defined upper and/or lower size limits
(Supplementary Figure S1A) allows users to filter out spurious signal
and to select for cells in a size range, which can be particularly useful
for filtering out immature cells which may not have yet developed
sufficient PCP characteristics for proper analysis (Figure 1B).

As the fusion of neighboring cells in micrographs is a common
problem in automated image analysis (Courtney et al., 2021; Salazar
et al., 2022; Sung et al., 2022), we developed an optional Doublet
Splitting mode, where PCPA will separate two cells that touch or
overlap by splitting the doublet mass in half, then treating each half
as a discreet cell during subsequent steps (Supplementary Figure
S1B). This optional function cannot recurse beyond separating two
conjoined cells. and works most effectively when fused cells are
somewhat reasonably aligned with the x or y-axis of an image. In this
way, users can avoid having to manually separate all conjoined cells
in an image. Alternately, users can choose to discard all doublets
(triplets, or larger aggregates) from further analyses via size
exclusion if preferred (Figure 1C). After PCPA has applied any
optional doublet splitting or excluded aggregate cells, PCPA will
then optionally exclude cells a set distance from the image border
(Supplementary Figure S1A). Setting a border exclusion zone is
recommended as this allows users to filter out cells that did not
completely enter the imaging frame. PCPA then calculates a center
of mass for all logged chunks by calculating the average x and y
values for all of the pixels within a chunk and stores this information
for later PCP angle measurement calculations (Figure 1F).

2.1.3 PCPA identifies inclusions of black pixels in
chunks and subsequently assigns one cave as the
directional point of interest

A cave is defined as any black pixel, or aggregate of black pixels,
fully contained within the body of a chunk (i.e., completely
surrounded by white pixels constituting the chunk). If the
primary PCP-indicating features present as unenclosed
indentations (e.g., the u-shaped configuration of rhabdomeres in
Drosophila ommatidia), we developed an optional feature called
Plastic Wrap to enclose such concavities (Supplementary Figures
S2A-S2A’). Plastic wrap identifies any breaks in the arc of a chunk’s
perimeter due to indentations in the chunk, then subsequently adds
a one-pixel thick bridging line across these areas (Figure 1E).
Algorithmically, Plastic Wrap runs immediately prior to chunk
centroid calculations because the bridging pixels added by Plastic
Wrap are considered part of the cell mass for subsequent chunk
centroid calculations. For a more in-depth explanation of Plastic
Wrap, see the PCPA user manual or source code.

Because natural cell variation, or due to loss of detail during the
process of making binary images, or due to the application of Plastic
Wrap, a chunk may contain more than one cave. PCPA must
identify one cave to serve as the directional marker of interest for
angle calculations. PCPA will first compile the coordinates of all
caves (including any caves created by Plastic Wrap) in each chunk.

PCPA will then select the cave that best meets user-defined criteria
to be designated as the directional point of interest. Users may set the
largest cave in the chunk or the cave best meeting a directional
criterion (i.e., northmost, etc.; Supplementary Figures S2C-S2C’) as
the selection criteria for the directional marker of interest. This
selection criteria can be combined with optional cave minimum
and/or maximum size requirements, which will exclude any caves
violating size requirements prior to cave of interest selection
(Supplementary Figure S2B). PCPA will then calculate the center
of mass for the cave of interest to use for subsequent PCP angle
calculations (Figure 1G).

2.1.4 PCPA calculates angles and creates
annotated data output and summary statistics

PCPA will calculate the inverse tangent of the chunk and cave
centers of mass for each chunk/cave pair in the image (Figure 1H).
Angle measurements can be calculated on a −180°/180° or 0°/360°

axis where angles increase incrementally clockwise or counter-
clockwise. Users are able to customize their axis settings in the
PCPA options dialogue (Supplementary Figure S3A).Once angle
measurements have been calculated, PCPA will output data tables
and annotated images, explained as follows (Figure 1I). The Results
Table consists of a data row for each chunk analyzed and contains:
an identification number assigned to each chunk, the (x, y)
coordinates of the chunk, and the angle measurement of the
chunk-to-cave vector. The Chunk Summary table contains
summary statistics for the data set, including: Processed Count
(the number of cells where an angle was measured), Bad Count
(the number of cells for which no angle was measured), Total Count
(sum of Processed Count and Bad Count), Processed %, mean angle,
resultant mean length (RML), circular variance, and circular
standard deviation. The output also includes a circular data
histogram known as a rose or windmill diagram. The
Successfully Processed Chunks output image features annotations
superimposed onto the binary image used for analysis, and includes
each cell’s identification number, angle measurement, and a
directional arrow derived from the angle measurement. This
output also features pseudo-coloring to indicate if any chunks
were excluded from analysis and why. Pseudocolor designations
can be customized by the user so that each exclusion category is
color specific (Supplementary Figure S4E). Lastly, an overlay image
containing only the identification number, angle measurement, and
directional arrow for all analyzed cells in the image is produced. This
overlay image can be superimposed over top the original grayscale or
color micrograph using inbuilt Fiji functionality (“Image >
Overlay > Add image . . . Zero transparent”). Each of these
outputs can be selected or deselected by users in the PCPA
options dialog (Supplementary Figure S4A).

While the aforementioned functionality described above
constitutes the main intended use of PCPA analysis using a
single binary image, PCPA has two further functionalities of
note. Firstly, PCPA can batch process multiple binary images,
aggregate each image’s cell measurements into one data set, then
produce a Results Table, Chunk Summary Table, and rose diagram
for this data set. This functionality allows users to quickly and easily
calculate a comprehensive PCP data set for all sample micrographs
of an experimental group taken from the same region. Second, the
PCPA plug-in suite also contains a stand-alone rose diagram feature
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which allows users to input any numerical angle measurement
dataset to obtain descriptive circular statistics and a rose
diagram, regardless of whether or not the data set was collected
via PCPA. Step-by-step instructions for using batch processing and
the standalone rose diagram function can be found in the PCPA
user manual.

2.2 Collection, processing, and analysis of
cochlear and utricular samples

2.2.1 Animal care
All mice used in these experiments were housed in a temperature-

controlled animal vivarium under a 12:12 light/dark cycle with ad
libitum access to standard chow and water. All procedures were
approved by the University of Mississippi Medical Center
Institutional Animal Care and Use Committee (IACUC) and
followed the NIH guidelines for the care and use of laboratory animals.

To obtain utricles from embryonic day (E) 17.5 mice, a timed
mating strategy was employed to cross Six2(+/−) female mice with
Six2(+/−)males. The Six2(+/−)mice were created andmaintained as
a mixed background of C57Bl/6J and 129/Sv (Self et al., 2006). The
male and female mice were paired in the evening, and on the
following morning the male was removed and female mice were
assumed pregnant with embryos at stage E0.5. On day E17.5, dams
were euthanized and embryos were collected. The heads of the
embryos were removed, rapidly hemi-sectioned, then placed into 4%
paraformaldehyde for 4 h at room temperature (RT) then stored in
PBS at 4°C until use. Tail biopsies were collected into sterile
microcentrifuge tubes for genotyping. Only wild type embryos
were utilized for PCPA data collection. For postnatal cochlea
experiments, CD1 mice were euthanized at postnatal day (P) four
and temporal bones were collected into 4% paraformaldehyde for
4 h at RT then stored in PBS at 4°C until use.

2.2.2 Immunohistochemistry and image
acquisition

E17.5 utricles were micro-dissected and collected for
immunohistochemistry. Whole mount samples were washed in
PBS then immersed in blocking buffer (0.2% Triton-X and 4%
donkey serum) for 60 min at RT. Tissue was incubated in the
following primary and secondary antibodies: βII-spectrin (1:200),
Alexa Fluor 568 goat anti-mouse IgG1 (1:400), and Alexa Fluor™
488 Phalloidin (1:800). Following a final PBS wash, samples were
whole-mounted to slides and coverslipped with Fluoro Gel plus
DABCO. Z-stack images of the entire E17.5 utricular maculae were
obtained by tile-scanning with a Zeiss LSM 880 confocal microscope
(×40 oil objective, 2048 x 2048 resolution). Maximum intensity
projections were then created from the z-stack images and used in
subsequent analysis.

P4 cochlear whole mounts were washed in PBS then incubated
in Image-iT™ FX signal enhancer for 30 min at RT. Following PBS
washes, samples were immersed in blocking buffer (0.2% Triton-X
and 4% donkey serum) for 60 min at RT. The Mouse on Mouse
(M.O.M.) IgG Blocking Reagent kit was used per manufacturer’s
instructions and the following primary and secondary antibodies
were used: anti-Pou4f3 (1:200), anti-βII-spectrin (1:200), Alexa
Fluor 647 goat anti-mouse IgG1 (1:1,000), Alexa Fluor 568 goat

anti-mouse IgG1 (1:1,000), Alexa Fluor™ 488 Phalloidin (1:800),
and Hoechst 33,342 (1:1,500). Following a final PBS wash, samples
were mounted with Fluoro Gel with DABCO. A detailed list of all
antibodies and reagents used, including catalog and RRID numbers
is presented in Supplementary Table S1. Z-stack images of cochlear
hair cells were taken from randomly selected areas from the apex,
middle, and base of P4 cochleae using a Zeiss LSM 880 confocal
microscope with a ×63 oil immersion objective and 2048 x
2048 resolution. Maximum intensity projections were then
created from the z-stack images and used in subsequent analysis.

2.2.3 Image preprocessing for PCPA
All preprocessing steps for cochlear and utricle images were

conducted using in-built functionality of Fiji unless otherwise stated.
Briefly, βII-spectrin or phalloidin staining were separated from
multicolor images by splitting the channels (“Image > Color > Split
channels”). To make the z-stacks two-dimensional, maximum intensity
projections were made (“Image > Stacks > Z project >maximum”) and
converted to 8-bit images (“Image > Type >8 bit”). Next the “Subtract
Background” function was applied (“Process> Subtract Background . . .
; ” rolling ball radius = 50 or 100 pixels depending on the user). Users
manually adjusted the threshold value for each image (“Image >
Adjust > Threshold”) with the goal of including as much cell
fluorescence as possible while minimizing non-specific or
background pixels. The “Process > Noise > Remove Outliers”
function (radius = between 2–12 pixels; threshold = 50) was often
employed to smooth the outer surfaces of chunks and reduce the risk of
creating spurious small caves with “Plastic Wrap”.

2.2.4 P4 cochleae data collection
All cochlear images were oriented such that the radial axis of the

cochlea was vertical with inner hair cells toward the bottom of the
image and outer hair cells toward the top. Inner and outer hair cells
were preprocessed and analyzed separately. Two investigators
independently preprocessed the cochlear images and ran PCPA
to obtain angle measurements.

Both investigators used the following PCPA settings: remove noise
of ≤500 pixels or fewer, exclude chunks ≤10 pixels from the image
border, apply the Plastic Wrap function, and separate doublets when
chunks measured ~2 times wider than they were tall. Investigators
differed on the following settings: investigator one ignored
caves ≤3 pixels and selected the largest cave as the directional point
of interest. Investigator two ignored caves of ≤15 pixels and selected the
northmost cave as the directional point of interest. Anglemeasurements
were set on a counter-clockwise 0°–360° scale where 90° pointed north.
A third investigator was provided the original images with an overlay of
arrows drawn by PCPA. This investigator assigned each analyzed cell an
accuracy score from 1 to 5 (1 = perfect measurement; 2 = <10°
deviation; 3 = 11°–40° deviation; 4 = 41°–90° deviation; 5 = 91°–180°

deviation; Figure 2).

2.2.5 E17.5 utricle data collection
In order to systematically survey hair cells across different

anatomical regions of the utricle, sample boxes (500 × 500 pixels)
within the following regions were drawn (Figure 3): posterior lateral
extrastriolar (boxes 1 and 2), central lateral extrastriolar (boxes 3 and
4), anterior lateral extrastriolar (boxes 5 and 6), striola (boxes 7, 8, and
9), posteriormedial extrastriolar (boxes 10 and 11), and anteriormedial
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extrastriolar (boxes 12 and 13). Boxes were oriented perpendicular to
the line of polarity reversal as drawn onto the image by one of two
investigators charged with manual angle measurements. To manually
measure planar cell polarity, investigators were instructed to bisect the
cuticular plate and continue through the center of the fonticulus, using
the arrow tool in Fiji.

Automated angle measurements were collected by a third
investigator who was provided the same utricle images used for
manual angle measurements described above. After image
preprocessing (described above), binary images were analyzed by
PCPA using the following settings: remove noise of ≤500 pixels or
fewer, exclude chunks ≤10 pixels from the image border, apply the
Plastic Wrap function, separate doublets when chunks measured
1.5 times wider than they were tall, ignore caves of ≤15 pixels and
select the largest cave as the directional point of interest. Angle
measurements were set on a counter-clockwise 0°–360° scale where
90° pointed north.

2.2.6 Preprocessing and PCPA settings: previously
published images

Images from published works were obtained by magnifying the
online images in a browser then saving screenshots (Ctrl + print
screen) as tiff files.

Images of murine radial glia from Mirzadeh et al. (Mirzadeh
et al., 2010) and images of ependymal cells taken from Boutin et al.
(Boutin et al., 2014) underwent channel splitting (Image > Color >
Split Channels), and each channel image was converted to 8-bit
grayscale (“Image > Type > 8-bit”). Each channel image then
underwent manual thresholding (“Image > Adjust > Threshold”).
Noise removal (“Process > Noise > Remove Outliers; ” radius =
between 2–10 pixels; threshold = 50) was applied to each image and
for the ependymal cells an additional binary erode step was taken
(“Process > Binary > Erode”). Image channels were then re-merged
(“Overlay > Add image . . . ”), and the LUT was inverted (“Image >
Color > Invert LUTs”).

Images of Drosophila ommatidia taken from Koca et al. (Koca
et al., 2022) were each duplicated (Image > Duplicate), then a
manual threshold was applied to the duplicated image to leave only
the cell junctions visible, the LUT was inverted so that the
junctional borders would appear white rather than black, and
Fiji’s “Process > Binary >Dilate and/or Erode” was used to connect
the lines as much as possible while leaving empty space in the
center of each ommatidium. This image was then added back to the
original as a zero-transparent overlay (“Image > Overlay > Add
Image . . . ; ” select “Zero Transparent”) and the image was
flattened (“Image > Overlay > Flatten”). This image was then

FIGURE 2
Criteria used to evaluate PCPA angle measurement accuracy. (A) A blinded investigator was instructed to consider an accurate planar cell polarity
measurement as a ray originating from the center ofmass of a cell and extending through the center of the fonticulus. The investigator then evaluated the
directional arrow drawn by PCPA and assigned each cell an accuracy score from one to five using the grades shown in the table in (B) and the schematic
from (A) as a reference. (C) Magnified view of example cells taken from a representative cochlear image (C’) showing matching angle accuracy
scores of 1,2, and 3 which were derived by PCPA after incomplete thresholding of the cochlear hair cells (C’’). Yellow boxes indicate the cells chosen for
magnification. Size excluded cells are pseudo-colored pink, and border excluded cells are pseudo-colored blue. Scores beyond three were not reported
for any of the images analyzed (scale bars = 10 µm).
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manually thresholded (“Image > Adjust > Threshold”) to isolate
the rhabdomeres. The LUT was then inverted (“Image > Color >
Invert LUTs”), and binary dilate (“Process > Binary > Dilate”) was
applied until rhabdomeres touched to form a u- or h-shaped
chunk. PCPA was then run on the images using Plastic Wrap
and the selection for the largest cave.

2.3 Data analysis

Mean angles, resultant mean length (RML), circular variance, and
circular standard deviation were calculated by PCPA using equations
based on Fisher (Fisher, 1993) (equations provided in the user
manual). All rose diagrams and descriptive statistics generated
using PCPA were checked for accuracy against rose diagrams and
descriptive statistics generated from the same data using the circular
package (Agostinelli, C. and Lund, U. (2023). R package “circular”:
Circular Statistics (version 0.5-0). URL https://CRAN.R-project.org/
package=circular, n.d.) in R. Inter-rater reliability for angular
measurements of utricle hair cells was tested using the SimplyAgree
package in R (Caldwell, 2022). The mean of cell angle measurements
from each image was paired between the manual blinded investigator
and PCPA, and from these a concordance correlation coefficient and
Bland-Altman limits of agreement were generated, again using the
SimplyAgree package in R.

3 Results

3.1 PCPA reliably recognizes and measures
directionality in cochlear hair cells

To test PCPA’s ability to count cells and calculate polarity we first
tested PCPA on mouse cochlear hair cells. Two investigators were
provided with 24 cochlear images from P4 mice (2 images per cochlear
apex, middle, and base; n = 4 mice). Each investigator independently
preprocessed the images and ran PCPA. Angle calculations from PCPA
were rated for accuracy by a third investigator using a one to five
agreement score (Figure 2) and overall accuracy scores per cochlear turn
were calculated for each rater (Table 1). For cell counting, PCPA
achieved 99.81% accuracy with PCPA being able to readily detect
1,538 out of 1,541 hair cells across the images analyzed. For PCP angle
measurements, 96.35% (apex), 97.81% (middle), and 98.06% (base) of
cells analyzed were scored as a one (perfect measurement). When cells
scored one and two were combined—indicating cells that had <10°
variation between PCPA measurements and idealized retrospective
manual measurements—99.41% (apex), 98.93% (middle), and 100%
(base) of cells analyzed by PCPA met this criterion. These data suggest
that PCPA is able to accuratelymeasure over 96%of βII-spectrin labeled
hair cells in a data set, with perfect precision as determined by a human
rater, and this metric jumps to over 98% when allowing for a <10°
deviation from ideal.

FIGURE 3
Performance of PCPA against manual PCP measurements for the E17.5 utricle (Panel (A) created with BioRender.com). (A) Example of regional
sampling for E17.5 utricle analysis. Boxes were generally aligned according to the line of polarity reversal (LPR). (B) Example of manually collected PCP
measurements from box 10 region of an E17.5 utricle. (C) The image from (B)was preprocessed, made binary, and analyzed using PCPA. The PCPA angle
measurements show high agreement with manual measurements in (B). (C’) Directional arrows (green) and cell ID overlays (orange) were overlaid
on the original micrograph. (scale bars = 10 µm).
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Though βII-spectrin staining of the apical surfaces of hair cells
presents as rather ideal circular chunks and caves, we tested whether
PCPA could be used with another commonly used fluorescent label:
phalloidin. Phalloidin binds to the F-actin rich hair cell stereocilia

and the vertex of the “V” shape of the stereocilia bundles in cochlear
outer hair cells has been used to assess cell polarity (Montcouquiol
et al., 2003; Jones and Chen, 2008; Copley et al., 2013). After
preprocessing and making the phalloidin images binary,

TABLE 1 Accuracy of PCPA angle measurements from P4 cochleae.

PCPA user 1 PCPA user 2

Score Apex Middle Base Apex Middle Base

1 475 491 506 334 246 360

2 15 8 10 18 9 10

3 3 3 0 2 3 0

4 0 0 0 0 1 0

5 0 0 0 0 0 0

% graded 1 96.35 97.81 98.06 94.35 94.98 97.30

% graded 1 or 2 99.39 99.40 100.00 99.44 98.46 100.00

Total number of cells 493 502 516 354 259 370

FIGURE 4
PCPA analysis of cochlear outer hair cells labeledwith AlexaFluor488 conjugated phalloidin. Phalloidin (A) and βII-spectrin (B) labeled outer hair cells
were imaged in different channels of the same P4 mouse cochleae, then the channels were separated and thresholded for PCPA analysis (thresholded
outputs shown in the bottom half of each panel). In both (A) and (B), size excluded cells are pseudo-colored pink and border excluded cells are pseudo-
colored blue. (C) PCPA analysis of the image in (A) resulted in angle measurements collected from n = 59 outer hair cells with a mean angle (θ) of
82.765° and a standard deviation (σ) of 9.989°. (D) PCPA analysis of the βII-spectrin channel from this same cochlear region alsomeasured angles from n=
59 outer hair cells with a resultant mean angle of 82.836° and a standard deviation of 7.733°. (E) The analysis was expanded to eight images of phalloidin-
labeled cochlear outer hair cells; PCPA was able to measure n = 385 cells and arrive at a mean angle of 79.997° (σ = 18.215). (F) PCPA analysis of βII-
spectrin labeled cells from the same eight samples resulted in angles being measured from n = 428 outer hair cells with a mean angle of 80.174° (σ =
9.605). Thus, PCPA is able to measure planar cell polarity using images of phalloidin labeled cochlear outer hair cells. However, while the resultant mean
angles in (E) and (F) were highly similar, the number of cells measured was greater when βII-spectrin labeling was used, and the variability of the
measurements was reduced as compared to the phalloidin data (F) vs (E). (scale bars = 10 µm).
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application of the Plastic Wrap function allows PCPA to bridge the
distance between the legs of the phalloidin positive bundle, and thus
create a large cave. Selecting the largest cave as the directional point
of interest causes PCPA to calculate polarity angles that were
directionally opposite to measurements using the fonticulus as
the directional point of interest (Figures 4A,B). We compared
PCP measurements obtained from βII-spectrin to the reversed
values of those obtained from phalloidin on the same samples
(acquired at the same time as multi-channel images that had
high SNR for both phalloidin and βII-spectrin). When the
phalloidin imaging was optimal, PCPA was able to measure the
same number of outer hair cells with similar angle results (Figures
4A–C). Across eight images of outer hair cells from N = 3 mice
PCPA results indicated that the phalloidin approach resulted in
fewer hair cells measured (n = 385) compared to the βII-spectrin
approach (n = 428). Mean angle measurements remained similar,
with a measurement of 79.997° (±18.215°) for the phalloidin staining
approach and a mean angle measurement of 80.174° (±9.605°) for
the βII-spectrin staining approach, though the variability was greater
for the phalloidin images (Figures 4E,F). These results show the
capability of PCPA to perform automated analysis of cell
polarizations and to obtain reliable mean angle measurements
from multiple markers. Although the data suggest that using βII-
spectrin staining results in slightly greater numbers of cells being
measured and decreased variability compared to phalloidin, these
discrepancies likely reflect the previously reported lesser reliability of
phalloidin as compared to spectrin, pericentrin, or other antibody
labeling that clearly demarcate the position of the fonticulus (or
kinocilium) (Deans et al., 2007; Yin et al., 2012).

3.2 PCPA angle measurements are
comparable to manually derived angle
measurements in the utricle

The performance of PCPA was next tested on E17.5 utricle
images which had been collected as control samples for a separate
project in the laboratory. As these images were collected prior to the
development of PCPA, the image acquisition parameters were not
optimized to maximize βII-Spectrin fluorescent intensity, thus
making them ideal “real-world” examples for testing. Sample
boxes (500 × 500 pixels) were taken from posterior lateral
extrastriolar, central lateral extrastriolar, anterior lateral
extrastriolar, striola, posterior medial extrastriolar, and anterior
medial extrastriolar regions (Figure 3). Cell angle measurements
were collected manually by investigators instructed to bisect the hair
cell apical surface and the fonticulus using the Fiji arrow tool and to
record the angle as measured by Fiji. Another investigator
preprocessed the images, converted them to binary, and used
PCPA to measure the angles of the same cells that were
quantified manually. Since the manual measurements did not
indicate which angle measurement corresponded to which
individual cell in any given image, the degree of agreement
between the two data sets was assessed using the mean angle
value from each image or image-pair as shown in Figure 5A–5L.
Sample size was thus n = 54 mean angle measurements from
5 separate embryos from two distinct litters and the data are
reported in Table 2. Calculation of the concordance correlation

coefficient (CCC) showed a high level of agreement between the
manually quantified data and PCPA quantified data (CCC = 0.999;
95% C.I. [0.9983, 0.9994]) (Figure 5M). Calculation of the Bland-
Altman limits of agreement suggest minimal bias for the PCPA
measurements as compared to manual measures, with a value of
0.482° (95% C.I. [−0.676, 1.64]). The limits of agreement (LoA) were
calculated at a 95% agreement level with the lower LoA at −7.833
(90% C.I [−9.143, −6.523]) and the upper LoA at 8.798 (90% C.I.
[7.487, 10.108]). As shown in Figure 5N, the Bland-Altman analysis
suggests that nearly all PCPA measured mean angles from similar
images could be expected to fall between −8 and +9 degrees of
manually obtained mean angle measures.

3.3 PCPA automated measurement of
polarity in a variety of tissues and from
different species

Because planar cell polarity is found in a variety of tissues
outside of the inner ear, we sought to test the PCPA plug-in on
other image types including those using different labels, as well as
samples from both wild-type animals and PCP mutants. To
accomplish this, we collected images from several peer reviewed
publications, preprocessed the images, ran PCPA, then compared
PCPA’s results to published results. We first tested PCPA using
images of radial glial cells from E16 and E18 mice from Mirzadeh
et al. (Mirzadeh et al., 2010) In that report, cell junctions were
labeled with an anti-beta-catenin antibody and primary cilia were
labeled using an anti-γ-tubulin antibody (red and green,
respectively, in the published figures). PCPA results (Figure 6)
demonstrate the effective measurement of cell polarity with a
decrease in variability in polarization evident from E16 (SD =
71.1) to E18 (SD = 56.5), consistent with the increasing
alignment of the cells with developmental progression.

Next, we tested PCPA’s performance on ependymal cell
orientation using images from wildtype and Celsr1 knockout
mice (Supplementary Figure S5; Figure 7). In the original report,
Boutin et al. (Boutin et al., 2014) manually traced the perimeter of
each ependymal cell using anti-ZO1 labeled cell junctions, then
traced the perimeter of the cell’s γ-tubulin positive cilia patch. They
then determined cell directionality utilizing a custom MATLAB
script that, similar to PCPA’s approach, calculated angles based on
the center of mass of the traced perimeter of the cilia patch in
relation to the center of mass of the traced perimeter of the cell
junction. We compared cell orientation results reported in Boutin
et al. (Boutin et al., 2014) to those generated by PCPA and found that
PCPA was able to replicate Boutin et al.’s (Boutin et al., 2014) angle
orientations with a high degree of agreement (Figure 7;
Supplementary Figure S5). One noted exception occurred in the
Celsr1 knockout sample where one cell’s PCPA-derived angle
projection was nearly 180° opposite to the published data (cell
number 6; Figure 7C, C’). Because Boutin et al.’s (Boutin et al.,
2014) preprocessing workflow required an investigator to manually
trace the cell perimeter, we speculated that the difference between
PCPA and the published result could be due to the tracing process.
Indeed, when we re-ran PCPA using Boutin et al.’s (Boutin et al.,
2014) tracings (Figure 7D−7D′), the directional disagreement for
cell number six was resolved.
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Finally, we compared PCPA’s performance on brightfield
images of osmium (OsO4) fixed Drosophila ommatidia from
Koca et al. (Koca et al., 2022). Analysis of Drosophila ommatidia
required a slight alteration to the preprocessing steps established
above for PCPA to isolate the rhabdomeres in the photoreceptor

cells (see methods section for details). PCPA produced angle
orientations comparable to the manually obtained orientations
collected by Koca et al. (Koca et al., 2022) for ommatidia from
WT (Figures 8F–H) and Abl-overexpression mutants (Figures
8I–K). PCPA measurements from these images have near

FIGURE 5
Manual vs PCPA obtained angle measurements of βII-spectrin labeled hair cells in E17.5 mouse utricles. Manual measurements of hair cell
orientations with respect to the LPR were taken as described in the manuscript main text and in Figure 4. A Rose diagram was plotted using PCPA (or
stand-alone Rose Diagram plug-in) to visualize the results from each region investigated. For each region, the mean angle is represented by a black line
and the exact value reported in black text. The number of cells in each region that were measured (n) and the circular variance in degrees (σ) is also
provided. Manually obtained data for the LES are presented in the outer rows and can be directly compared to PCPA data in the central rows such that
manual vs. PCPA for the posterior LES region (A vs. D), central LES (B vs. E), and anterior LES (C vs. F) are readily visualizable in the top two rows andmanual
vs. PCPA data for the posterior MES (J vs. G), striola (K vs. H) and anterior MES (L vs. I) are visualizable in the fourth and third rows. (M) Inter-rater reliability
was assessed for manual vs. PCPA measurements by plotting the mean angles for each image as a function of the PCPA value along the x-axis and the
manual value along the y-axis, which, in the case of perfect agreement would yield a bisecting diagonal line (“Expected” shown in black). A line of best fit
for the actual values (“Actual” shown in red) was plotted and the concordance correlation coefficient calculated as 0.999 (where a value of one would
indicate absolute agreement for all values). (N) A Bland-Altman plot was generated again using the mean angle values from each image analyzed and
upper and lower limits of agreement were calculated. The red line suggests a very small value for bias (<0.5°) with a confidence interval (pink) that lies on
both the positive and negative sides of zero. The blue and yellow lines represent the upper and lower limits of agreement, respectively, at a confidence
level of 95%.
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complete agreement to the published results (Figures 8H,K), and
demonstrate the ability of PCPA to detect disrupted cell polarization
in PCPmutants (Figure 8D vs. 8E and 8H vs. 8K). All together, these
results show that PCPA has the ability to collect PCP angle
measurements from a variety of diverse cell and tissue types
collected with various staining and imaging parameters, and
works in models with normal or disrupted PCP.

4 Discussion

Numerous fields in biology rely on the quantification of cell
numbers to assess proliferation, survival, and differentiation of cell
populations. The process of counting cells manually is tedious and
time consuming. Quantification of other cell characteristics, such as
PCP, are equally important for answering questions related to

TABLE 2 Utricle measurements: Manual quantification vs PCPA.

Manual quantification PCPA

Region N Mean angle SD N Mean angle SD

Posterior LES 134 228.70° 15.391° 135 227.61° 14.993°

Central LES 80 262.25° 19.800° 79 260.94° 18.178°

Anterior LES 58 295.50° 21.212° 57 296.10° 21.764°

Posterior MES 154 49.41° 15.054° 156 47.42° 15.116°

Striola 272 80.09° 21.023° 278 79.88° 19.136°

Anterior MES 118 123.06° 19.607° 121 123.22° 19.788°

LES, lateral extrastriolar; MES, medial extrastriolar

FIGURE 6
PCPA effectively measures radial glial progenitor cell orientations. Leftmost image in (A) and the leftmost image in (B) were reproduced from
Mirzadeh et al. (Mirzadeh et al., 2010) (licensed under CC-BY-NC-SA 3.0). Cell junction labeling with anti-β-catenin (green) and labeling of primary cilia
with anti-γ-tubulin immunolabeling (red) were used in this study to assess PCP in radial glial progenitors from (A) E16 and (B) E18 mouse embryos. PCPA
analysis of these images correctly defines the predominant angle as toward the bottom left corner of the images (216°–228°) and demonstrates
reduced variability as the alignment of cell direction becomes more consolidated during normal development from E16-E18.
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developmental biology, and require greater efforts to manually
quantify. As such, an automated method to assess micrographs
and return accurate cell counts and angle measurements represents
an important advance that should greatly benefit many disciplines in
biology. In this study we present PCPA, a novel Fiji-based plug-in
suite that automates the process of cell counting and calculation of
PCP angle measurements. This user-friendly plug-in provides easily
visualizable outputs (including rose diagrams, image overlays, and
summary statistics) and has the ability to greatly speed up data

collection for cell counting and PCP measurements while reducing
potential bias or error in datasets.

We tested PCPA’s ability to collect cell counts and PCP angle
measurements from βII-spectrin labeled cochlear and vestibular hair
cells. Retrospective grading of the cochlear PCPA analyses and a
direct head-to-head comparison between PCPA and manual
measurements from vestibular hair cells showed that PCPA was
able to accurately count cells present in the images, and measure the
angles of orientation of those cells. While the main advantage of
PCPA lies in the massive time-savings it can provide for researchers,
it is also reasonable to hope that the automation of data collection
will overcome any data biases introduced by human measurements.
We acknowledge, however, that the preprocessing steps
recommended to make high quality binary images for use with
PCPA still rely upon the manual adjustment of micrograph images
and could be a place where bias could be introduced. To combat this,
we first suggest that investigators acquire images with homogeneous
and high SNR, thus minimizing the need for pre-processing and
allowing for potential automation of thresholding images to binary
in Fiji (“Process > Binary >Make binary . . . ” or other options such
as Auto Threshold). However, consistently obtaining high quality
micrographs, with high SNR, especially across different samples, is
often challenging. Indeed, this is a limitation inherent in several
previously published cell quantification programs as well [26,37,38].
While we were able to successfully run PCPA on images of
suboptimal quality (both in terms of image resolution and
antibody SNR ratio) by using the pre-processing steps
recommended, we have also included several features in the
PCPA outputs (i.e., overlays of arrows, cell numbers, and angle
measurements) which are easily savable. These outputs can then be
checked by experimenters, impartial observers, or any others
persons wishing to verify the validity of the data.

In this report, we directly tested PCPA on samples from mouse
inner ears, but also demonstrated the versatility and applicability
of PCPA on a variety of cell morphologies and structures by
comparing PCPA’s output to previously published studies
examining PCP in murine radial glia (Mirzadeh et al., 2010),
murine ependymal cells (Boutin et al., 2014), and Drosophila
ommatidia (Koca et al., 2022). While minor changes to image
preprocessing approaches were sometimes required in order to
conform to PCPA’s central model of chunks being represented as
white pixels and caves being represented as black pixels, PCPA
showed robust ability to replicate PCP measurements from these
diverse cell types.

Since the role of gene mutations in disruption of PCP
phenotypes is a popular avenue of research in developmental
biology, it was necessary to test the ability of PCPA to collect
accurate data from sample images containing a wide degree of
cell orientations. To do so, we tested PCPA on images along the
line of polarity reversal (LPR) from E17.5 mouse utricles. The LPR is
the thin zone spanning the antero-posterior axis of the utricle along
which all hair cells orient; cells located on opposite sides of the LPR
will exhibit extreme changes in orientation, on the order of
approximately 180° reversals. Similar images with directly
opposing orientations came from Drosophila ommatidia and
again, PCPA’s angle measurements agreed with manual angle
measurements, which highlights the capability of PCPA to obtain
accurate measures from images with disorganized and/or highly

FIGURE 7
PCPA recapitulates anglemeasurements from ependymal cells in
a Celsr1 knockout mouse model. Panels (B) and (B’) are replicated
from Figure 4B,B’ of Boutin et al. (Boutin et al., 2014) (reproduced
under the PNAS license to publish agreement). (B) A confocal
image of Celsr1−/− mouse ependymal cells labeled with antibodies
against ZO-1 (green) and γ-tubulin (red). (B’) Manual tracings (green
and red) of the cells in (B) with overlaid angle measurement arrows
(red), as originally shown in Boutin et al. (Boutin et al., 2014). (C)
Annotated output of image (B) after preprocessing and data collection
with PCPA. The annotated output shows Plastic Wrap (yellow), edge
excluded chunks (blue), size excluded chunks (pink), cell ID number
with angle measurement (orange text), and vector arrows (green). (C’)
Arrows from PCPA analysis (blue) are overlaid onto the image from (B’)
to show the high level of agreement between PCPA and Boutin et al.’s
(Boutin et al., 2014) published data. Only one cell exhibited stark
disagreement (cell #6), where the angle measured by PCPA appears
nearly 180° opposite the published result. (D) Since Boutin et al.
(Boutin et al., 2014) measured manual tracings of the original image,
we preprocessed the manual tracing image and analyzed this with
PCPA. (D’)Overlaid arrows from PCPA analysis (blue) using themanual
tracings show complete agreement with those in the original
published work, suggesting any deviations in (C and C’) are likely the
result of differences in pre-preprocessing approaches (i.e., the use of a
thresholded image versus manual tracings).
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varied cellular patterning. We further validated PCPA’s ability to
measure cells with variable orientations by running PCPA on images
from previously published papers featuring PCP disruption. PCPA

performed similarly to the results published in Boutin et al. (Boutin
et al., 2014) to detect changes in ependymal cell orientation in
Celsr1 knockout mice. For Abl-overexpressing Drosophila

FIGURE 8
PCPA replicates angle measurements of wildtype and Abl overexpressing Drosophila ommatidia. Panels (A) and (B) were reproduced from Figures
1A,C from Tomlinson et al. (Tomlinson et al., 2011) (licensed under CC-BY 4.0). Panels (E), (G), (H), and (J)were adapted from Figures 2A,B from Koca et al.
(Koca et al., 2022) (licensed under CC-BY-NC-ND 4.0). (A) A lowermagnification scanning electronmicroscopy image of the eye of the fruit fly and (B) an
image taken under higher magnification with a light microscope after sectioning highlights the seven readily visible rhabdomeres from which PCP
can be determined. (C) A rose diagram generated by PCPA of wildtype/control Drosophila ommatidia shown in panels (F–H) shows that the ommatidia
are well aligned along the vertical axis. (D) A rose diagram generated by PCPA of ommatidia in Abl overexpressingDrosophila shown in panels (I–K) shows
disruption of the vertical alignment. Images for analysis were copied from Koca et al. (Koca et al., 2022). (F)Wildtype/control ommatidia (top) with overlay
mask (bottom) created during PCPA preprocessing to mask ommatidial junctions. (G) PCPA annotated output showing Plastic Wrap (yellow), edge
excluded chunks (blue), size excluded chunks (pink), unmeasurable chunks (red), the resulting angle measurements (orange text), and vector arrows
(green). (H) The PCPA output overlay (green arrows) was added to the measurements presented in Koca et al. (Koca et al., 2022) (red arrows) to show the
general agreement between PCPA and publishedmeasurements. (I) Abl overexpressing ommatidia (top) with overlaymask (bottom) created during PCPA
preprocessing to mask ommatidial junctions. (J) PCPA annotated output showing Plastic Wrap (yellow), edge excluded chunks (blue), size excluded
chunks (pink), unmeasurable chunks (red), the cell ID number with resulting angle measurements (orange text), and vector arrows (green). (K) The PCPA
output overlay (green arrows) was added to the measurements presented in Koca et al. (Koca et al., 2022) (red arrows) to show the general agreement
between PCPA and published measurements for the more disorganized ommatidia of the Abl overexpression mutant.
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ommatidia, PCPA was again able to replicate angle orientations
nearly identical to those published in Koca et al. (Koca et al., 2022).

While other research groups have published automated or semi-
automated methods for counting cells and for collecting PCP
measurements, we propose that PCPA may be a more useful
option for many research laboratories. For example, several of
the existing approaches have been published or made available as
uncompiled scripts, thus requiring users to have the means and
ability to compile these scripts on their systems, and/or to have some
degree of coding knowledge for debugging. Furthermore many
scripts, like those developed by Siletti, Tarchini, and Hudspeth
(Siletti et al., 2017), and by Boutin et al. (Boutin et al., 2014),
require manual selection or tracing of the internal feature(s) and
perimeter of each cell, which is time consuming and has the ability to
introduce human error or bias. In comparison, our Jython based
plug-in is installed and updated through the popular open source
image processing software Fiji and features a guided user interface
with highly customizable options for data collection to meet the
specific needs of investigators’ population of interest. Furthermore,
for most samples analyzed by PCPA, no manual tracing or drawing
is applied by the user, thus making the analysis closer to the original
raw data and eliminating one more step where bias or error could be
introduced.

While other standalone programs or Fiji based applications
aimed at automating PCP data collection have been developed,
some have not been updated for many years or are linked to software
programs that have been discontinued (e.g., Metamorph (Mirzadeh
et al., 2010)). Some are only executable on certain operating systems
(e.g., FijiWingsPolarity (Dobens et al., 2018), which works with Mac
OS, but not PC). Of those that remain, the underlying approaches to
measuring cell orientation differ from PCPA. For example,
QuantifyPolarity (Tan et al., 2021) and SEGGA (Farrell et al.,
2017) were developed to measure Drosophila cell wing polarity
across time lapse images using fluorescence intensity gradients
from developmental factors influencing PCP. These programs
share some similarities with PCPA including preprocessing
approaches that do not require manual drawing or segmentation,
a graphical user interface, and user customization options. The main
differentiating factor is the nature of the investigator’s approach to
PCP visualization. QuantifyPolarity (Tan et al., 2021) and SEGGA
(Farrell et al., 2017) are more appropriate for approaches using
fluorescently labeled proteins with a clear gradient across the cell or
for time lapse imaging studies, while PCPA was designed for use
with cell populations where the directional marker is a defined
morphology, i.e., that of a chunk with a cave.

Another area in the field of automated image analysis that is
gaining popularity at an exponential pace is artificial intelligence, or
A. I. While we are not aware of reports of any currently available
machine learning or A.I. workflows for the measurement of planar
cell polarity, there are currently several published machine learning
approaches for cell counting (Morelli et al., 2021; Kataras et al., 2023;
Kuijpers et al., 2023), and indeed several such approaches applied
specifically to the counting of hair cells (Urata et al., 2019; Cortada
et al., 2021; Buswinka et al., 2023). While these approaches are
mostly successful in counting cochlear hair cells (or other cells of
interest), machine learning approaches can face barrier-to-entry
challenges to investigators not trained in computer sciences or in
laboratories lacking the processing power required by somemachine

learning systems. A.I. approaches also often require training for each
dependent measure (or combination thereof) for which they are to
be used. In many cases, A.I. approaches require such training in each
new laboratory due to differences in sample quality and imaging
parameters. This extensive training has the potential to offset
potential time savings, as users will have to make numerous
manual measurements to provide the A.I. with feedback and
validate its performance. A.I. approaches can also suffer from
limited adaptability in the face of novel phenotypes or processing
approaches not encountered during the training period (Buswinka
et al., 2023). Thus, while A.I. based approaches are likely to continue
improving there is still a clear and present utility for a non-A.I.
automated approach such as PCPA, which does not require training
and retains a larger degree of user oversight and transparency.

Previously published automated cell counting programs also
often struggle to cope with overlapping cells, which can require
advanced machine learning systems (Buswinka et al., 2023), labor
intensive optical clearing methods (Urata et al., 2019), 3D processing
with expensive software such as Imaris, or user guided segmentation
of cells (Sung et al., 2022). In the case of inner ear tissues this issue
can be particularly problematic where, for example, there are little to
no options for the labeling of cell nuclei in the neurons of the
auditory nerve which makes segmentation nearly impossible. A
similar problem persisted for decades with regard to sensory hair
cells where myosin or other non-nuclear proteins were the best
available markers. More recently, immunolabeling of the nuclear
protein POU4F3 has been proposed in a semi-automated method
for hair cell counting (Sung et al., 2022), but even with a nuclear
marker, there appear to be difficulties with segmentation requiring
manual separation of doublets and triplets of overlapping cells by the
user. This problem may be partly solvable from the staining and
imaging side of the approach where we have found that
immunolabeling spectrin in hair cells provides better
segmentation than staining of POU4F3 (data not shown).
However, even with βII-spectrin labeling, overlap events still
occur. Our PCPA suite features some further ability to address
these instances of merged cells, through the optional Doublet
Splitting mode. By setting a maximum length: width ratio, users
are able to target cell conglomerates that violate these parameters
and split the aggregates in half, then subsequently treat each half of a
split as an independent cell during further analyses. Doublet
Splitting improves the ability to automate data collection in cell
populations that experience occasional overlap of cell bodies, though
this feature is limited to the ability to split one aggregate into halves
andmay not be useful for instances where cell density causes three or
more cells to overlap. Still, users may alternatively choose to exclude
cells by ratio or size, which is beneficial to avoid erroneous angle
measurements, but is sub-optimal for cell counting purposes.
However, PCPA color codes all excluded cells thus making it
easy for a user to identify cell aggregates and manually adjust the
final count. One further limitation of the doublet splitting function
in PCPA is that doublet recognition is accomplished through setting
a length vs. width parameter relative to the image axis. Doublets that
align more closely with vertical or horizontal axes are more likely to
be split accurately down the middle of the doublet mass, and doublet
splitting accuracy worsens as the alignment of a doublet approaches
45° relative to the image axes. Despite this limitation, Doublet
Splitting was used quite effectively in our cochlear and vestibular
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samples, partially thanks to the low incidence of cell overlap afforded
by the specificity of βII-Spectrin labeling. Furthermore, the majority
of doublets we encountered were aligned with the horizontal or
vertical axis, allowing for a high rate of success of the Doublet
Splitting feature.

Despite the listed caveats, the data suggest that the PCPA plug-
in suite is a robust and accurate tool for the automated collection of
cell counts and PCP angle measurements. Furthermore, the
increased throughput provided by PCPA may lend it for use in
phenotyping other processes beyond PCP. For example,
perturbations in development, regeneration, cancer, or other
processes, can result in tissue disorganization independent of
the PCP pathway. The ability that PCPA provides to measure
thousands of cells quickly could therefore suggest great enough
power and sensitivity to detect more subtle disorganization of
tissues as well as its potential use in higher throughput genetic or
molecular screens. In summary, this plug-in suite was designed to
be compatible with the widely used image processing software
Fiji(or ImageJ) and features an easy to understand guided user
interface. PCPA has been shown to perform comparably to
traditional manual PCP measurement methods, and has the
ability to greatly speed up PCP data collection while potentially
reducing human error and bias in PCP datasets. PCPA has been
shown here to be applicable to a number of cell and tissue types
with varied cell morphologies, including cochlear and vestibular
inner ear hair cells, murine ependymal cells, murine radial glia, and
Drosophila ommatidia. Finally, the PCPA plug-in has been
developed with a good deal of assistive material for users. A
detailed user manual for installing and using PCPA can be
found at https://github.com/WaltersLabUMC/PCP-Auto-Count.
git, and video tutorials demonstrating PCPA can be found
online including a simple demonstration of pre-processing and
analysis of a utricle sample at: https://www.youtube.com/watch?v=
PTFlGv5Laa0.
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