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Multiple complex biological processes take place during pregnancy, including the
migration of fetal cells to maternal circulation and their subsequent engraftment
in maternal tissues, where they form microchimerisms. Fetal microchimerisms
have been identified in several tissues; nevertheless, their functional role remains
largely unknown. Different reports suggest these cells contribute to tissue repair
and modulate the immune response, but they have also been associated with
pre-eclampsia and tumor formation. In thematernal heart, cells of fetal origin can
contribute to different cell lineages after myocardial infarction. However, the
functional role of these cells and their effect on cardiac function and repair are
unknown. In this work, we found that microchimerisms of fetal origin are present
in the maternal circulation and graft in the heart. To determine their functional
role, WT female mice were crossed with male mice expressing the diphtheria
toxin (DT) receptor. Mothers were treated with DT to eliminate microchimerisms
and the response to myocardial infarction was investigated. We found that
removal of microchimerisms improved cardiac contraction in postpartum and
post-infarction model females compared to untreated mice, where DT
administration had no significant effects. These results suggest that
microchimerisms play a detrimental role in the mother following myocardial
infarction.
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1 Introduction

Pregnancy carries a series of biological adaptations aimed at ensuring a healthy
gestation, birth and postpartum. These include a process where cells are exchanged
between fetus and mother; thus, the fetus contributes cells to several organs of its
mother, including liver, kidneys, and brain, forming microchimerisms (Boddy et al.,
2015; Cómitre-Mariano et al., 2022). The same applies to the mother’s cells, which
migrate into the fetus’ own developing organs and form maternal microchimerisms in
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turn, although seemingly at lower rates (Loubière et al., 2006;
Fujimoto et al., 2021). This bidirectional flow of cells increases as
gestation progresses and is more pronounced in the latter half of the
pregnancy (AdamsWaldorf et al., 2010), and the method of delivery
can affect the rate of occurrence, with Cesarean delivery increasing
its probabilities compared to uncomplicated vaginal deliveries
(Shree et al., 2019). Placental disfunction (Fjeldstad et al., 2023b),
and mother’s age (Roh et al., 2017) positively correlate with the
occurrence of microchimerisms as well.

While some of these cells are cleared by the mother’s immune
system after birth, many persist for decades (Bianchi et al., 1996;
Evans et al., 1999; Maloney et al., 1999; Bayes-Genis et al., 2005).
Transference of fetal cells to the mother is conserved from the
evolutionary point of view in placental mammals (Gammill and
Nelson, 2010), including rodents, cattle (Turin et al., 2007), goats
(Gash et al., 2019), and pigs (Wang et al., 2022). These chimeric cells
have been reported in the liver (Johnson et al., 2002; Guettier et al.,
2005), heart (Kara et al., 2012; Kara et al., 2012; Lintao et al., 2023),
brain (Tan et al., 2005; Chan et al., 2012), bone marrow
(O’Donoghue et al., 2004), kidney (Florim et al., 2015), lung, and
spleen (Rijnink et al., 2015).

Despite the consensus on the existence of these fetal
microchimerisms, their functional effect is far from being
understood; especially in the long term after pregnancy
(Boddy et al., 2015). It remains unclear whether the effect of
these microchimerisms is beneficial or detrimental. It has been
proposed that cells coming from the fetus have an active role in
the mother’s immunomodulation, increasing the immunological
tolerance to paternal antigens with the aim of increasing the
tolerance to the fetus itself (Kinder et al., 2017). The presence of
fetal cells in maternal organs is associated with an increase in
CD4+ regulatory lymphocytes (Treg) with immunosuppressive
action (Aluvihare, Kallikourdis, and Betz, 2004), and has been
tentatively linked to reduced risk of brain cancer (Kamper-
Jørgensen et al., 2022) and better clinical outcomes on
COVID-19 (Cirello et al., 2023). In the heart, fetal
microchimerisms have been linked to the mitigation of the
inflammatory response in experimental autoimmune
myocarditis (Ribeiro et al., 2022). Fetal cells may also
participate in tissue repair, contributing to the formation of
fibrotic scar and angiogenesis (Nassar et al., 2012; Alkobtawi
et al., 2022; Sbeih et al., 2022), and could also play a role in
psychology and mother-child bonding (Álvarez et al., 2023); this
last role may be included in the structural and functional changes
experienced by maternal brains during pregnancy (Hoekzema
et al., 2017; Barba-Müller et al., 2019).

On the other hand, fetal microchimerisms could increase the
mother’s susceptibility to auto-immune diseases (Nelson, 2012;
McCartney et al., 2023) as well as endocrine pathologies
(Fugazzola, Cirello, and Beck-Peccoz, 2012). They have also been
associated with preeclampsia, miscarriages, premature births, and
fetal growth restrictions (Leung et al., 1998; Al-Mufti et al., 2000;
Gammill et al., 2013; Peterson et al., 2013). Poor glucose control and
placental dysfunction in diabetic pregnancies correlate with an
increase in the rate of fetal microchimerisms (Fjeldstad et al.,
2023a). The presence of microchimerisms has been reported in
the adult heart in both human and mice and has been mainly
associated with changes in immune cell populations, in line with

their proposed immunomodulatory role. Furthermore,
transdifferentiation into different maternal cardiac cell
populations has been proposed and their number increases
following myocardial infarction (Kara et al., 2012). However, the
functional role of these cells has not been specifically explored.

Myocardial infarction due to blockage of a coronary artery
causes cardiomyocytic death through the lack of oxygen and
nutrient supply, resulting in a reduction of the contractile
capacity of the heart. The extremely limited capacity for
regeneration possessed by the heart prevents the proper
replacement of dead cardiomyocytes. Myocardial infarction (MI)
has a prevalence of 3% on adults over 20 years old in the
United States, where it causes one out of every 7 deaths (Tsao
et al., 2022). Estimates point to 580.000 new cases and
210.000 recurring cases every year in the US, with around
165.000 “silent” infarctions as well. Prevalence is slightly lower in
women, although the value itself remains high (2.3%). The
probability of death because of MI is higher in women than in
men, partly because they tend to suffer these cases at an older age.
While recent advances in treatment and diagnosis have brought
down the mortality rates of MI, there is still no cure, and all available
treatments are palliative only.

Myocardial infarctions taking place in late pregnancy and
postpartum display a much higher recovery rate compared to
other pathologies (Felker et al., 2000), which lead to the
hypothesis that fetal cells somehow contribute to cardiac
repair. Placenta-derived stem cells have shown the ability to
develop cardiac and vascular lineages in vitro, and their
administration in a myocardial infarction model resulted in
reduced adverse remodeling and improved function (Vadakke-
Madathil et al., 2019). Microchimerisms in the form of
multipotent fetal cells have been shown to home in on injured
areas of maternal hearts in vivo, and are capable of differentiating
into endothelial cells, smooth muscle cells, and spontaneously
beating cardiomyocytes in vitro (Kara et al., 2012; Kara et al.,
2012). Although no organized sarcomeres were detected in vivo,
an immature cardiac phenotype was on display instead. However,
the actual functional role of these cells and whether they help or
hinder the mother’s own response to injury have yet to
be studied.

In this work, we investigated the functional contribution of fetal
cells to the maternal heart in rodents, by evaluating the effects of fetal
microchimerism reduction in an experimental model of myocardial
infarction.

2 Materials and methods

2.1 Mice

All experimental procedures included in this project were
carried out in conformity with European Union Directive 2010/
63/EU and were approved by Hospital Gregorio Marañón’s
Research Committee and Ethical Committee for Animal
Experimentation (ES280790000087).

C57BL6/J mice were obtained from Jackson Laboratory
for this experiment. Transgenic mice with an EGFP gene
in their ROSA26 locus blocked by LoxP-flanked STOP fragment
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(B6; 129-Gt(ROSA)26Sortm2Sho/J, #004077) were crossed with
transgenic Sox2-Cre mice (B6.Cg-Edil3Tg(Sox2-cre)1Amc/J, #008454).
This resulted in offspring with EGFP expression in all cells derived
from the epiblast during embryogenesis, as well as any tissue with
constitutive Sox2 expression (ROSA26-EGFP-Sox2).

Male ROSA26-EGFP-Sox2 mice were then crossed with WT
mice to produce heterozygous offspring with similar Sox2-triggered
EGFP expression in their organism (Figure 1).

2.2 Diphtheria toxin receptor (DTR) mice

For the functional study, male C57BL6/J mice were modified to
express DTR in all their cells.

While a cross between DTR/DTR males and WT/WT females
was attempted to guarantee WT/DTR genotype offspring (and thus
full microchimerism clearance upon DT inoculation), breeding was
unsuccessful, and heterozygotic males were used instead. Male
heterozygotic WT/DTR mice were crossbred with female WT/
WT mice, resulting in offspring with WT/WT and WT/DTR
genotypes, which would likewise produce microchimerisms
displaying both genotypes. Cells expressing DTR die after
exposure to Diphtheria Toxin (DT), allowing WT/DTR genotype
cells to be selectively eliminated through DT inoculation (200 ng,
intraperitoneal injection).

This injection was carried out on female breeders 3 days after
giving birth, in order to clear any WT/DTR microchimerisms
present in their organism. Further administrations were
performed at post-partum day 6 and day 9 in order to maximize
FMc depletion, and the myocardial infarction model was carried out
at post-partum day 10, 7 days after first DT injection, following
previous reports of DTR + cell clearance on mouse heart (Cha et al.,
2003; Akazawa et al., 2004).

2.3 Myocardial infarction
pathological model

The myocardial infarction experimental model consisted on the
ligation of the Left Anterior Descending coronary artery (LAD-
ligation), as previously described (Villalba-Orero et al., 2021).
Briefly, a week after DT injection, mice were anesthetized,
intubated, and mechanically ventilated for the procedure. A left
thoracotomy was performed between the third and fourth ribs, and
the left descending artery was permanently ligated after
pericardiectomy to induce a myocardial infarction.

2.4 Echocardiography

Transthoracic echocardiography was performed at three time
points: before the LAD-ligation (baseline), and at days 3 and 28 after
the LAD-ligation. This process was performed by an expert operator
using a high-frequency ultrasound system (Vevo 2100, Visualsonics
Inc.), in blinded conditions.

The parasternal long axis was analyzed at three levels (basal,
mid, and apical) and all measurements were averaged over three
consecutive cardiac cycles. LVEF and FS were calculated using the
modified Quinone method, using the following formulas:

LVEF � LVIDed2 − LVIDes2( )/LVIDed2

FS = (LVIDed−LVIDes)/LVIDes.
Where LVIDed is left ventricular internal diameter at end

diastole and LVIDes is left ventricular internal diameter at
end systole.

2D-guidedM-mode of parasternal short-axis short (middle) was
used to measure ventricle wall thickness.

FIGURE 1
Mus musculus genotypes with single fluorescent protein expression used in this study. (A) RO-SA26R-EGFP genotype with construct detail,
composed of a housekeeping promoter next a STOP codon flanked by LoxP sequences and followed by the GFP gene; the first STOP codon will be
removed by the Cre-recombinase wherever it’s expressed, triggering GFP expression. (B) Sox2-Cre genotype, with Cre-recombinase expression in
Sox2+ cells. (C) Rosa26R-EGFP-Sox2 male genotype, with constitutive expression of GFP in all Sox2+ cells.
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2.5 Infarct size measurement

For the infarct size measurements, hearts were cut into 5 µm-thick
slices along the transverse axis from apex to base with a microtome.
Sections were stained using Masson’s trichrome (MTC) to study
fibrosis, and midline infarct length was measured as previously
described (Takagawa et al., 2007). Three measurements from three
different slices of the same sample were averaged to obtain the % length
value for each sample, and these values were averaged across all samples
in the same group (N = 5 each).

2.6 Flow cytometry

For flow cytometry assays, blood samples (250 µL per animal)
were collected under anesthesia on gestation day 20 and 30 days
post-partum (N = 1) and stored in MiniCollect tubes with EDTA to
prevent coagulation. An erythrocyte lysis protocol was carried out
using Red Blood Cell Lysis solution (RBCL, cat#130-094-183,
Miltenyi Biotec). Briefly, 100 µL of blood were mixed with
900 µL of RBCL and incubated for 10 min at room temperature
(RT). Samples were centrifuged at 300 g for 5 min, and the
supernatant was removed, obtaining an erythrocyte-free pellet.

Samples were analyzed using a MACSQuant Analyzer 16 flow
cytometer (Miltenyi Biotec) and images were processed with the
Kaluza software. Blood samples were analyzed without the use of
antibodies, with direct detection of the intrinsic fluorescence
showcased by the transgenic mice model used in this study.

For the myocardial sample assays, hearts were extracted from
the animals (N = 2) after sacrifice through cervical dislocation and
cut into three pieces each. No perfusion was included, and the
samples were rinsed thoroughly with sterile phosphate-buffered
saline (PBS 1x) afterwards to remove traces of blood and
subjected to mechanical digestion with a syringe over a 40 μm
cell strainer. FCM buffer (2% Fetal Bovine Serum and 0.1% sodium
azide in PBS 1x) was added throughout the process. Samples were
centrifuged for 5 min at 4°C at 1500RPM and resuspended, then
stored at 4°C until they were analyzed with the flow cytometer.
Myocardial cell samples were analyzed without the use of antibodies.

2.7 Statistical analysis

The statistical significance of the differences between group
means was assessed through unpaired Student’s t-test or one-way
ANOVA, as appropriate. In cases where ANOVA indicated inter-
region variability, a multiple comparison was performed using the
Tukey test. Data are presented as mean ± SD, and a p < 0.05 was
considered statistically significant.

3 Results and discussion

3.1 Identification of fetal microchimerisms in
circulating cells

To determine the presence of fetal microchimerisms,WT female
mice were crossed with ROSA26-EGFP-Sox2 male mice, which

express EGFP in all cells, including sperm. To verify the presence
of fetal microchimerisms in maternal blood, blood samples were
extracted from the WT female breeders at day 20 of pregnancy and
1 month post-partum, and the presence of EGFP + cells was
analyzed using flow cytometry (Figure 2). Any fluorescence
detected in blood would correspond to cells of fetal origin, as
WT animals did not showcase any baseline fluorescence
(Supplementary Figure S1). A slight increase in positive
fluorescence cells (1.28%, compared to the baseline 0.08%) was
detected at day 20, which would correspond to a moderate number
of fetal cells having crossed into the maternal systemic circulation
with the potential to form microchimerisms; this number was
reduced at 30 days post-partum (0.41%), although the value still
remained elevated compared to the baseline in control WT females.
This observation would point to microchimerisms being present in
the maternal circulation throughout pregnancy and remaining for at
least 1 month after delivery, in accordance with previous studies
which found even longer periods of permanence (Bianchi et al.,
1996; Bayes-Genis et al., 2005; Kamper-Jørgensen et al., 2014).

To determine the presence of microchimerisms in the heart, cells
from myocardial samples were analyzed by flow cytometry
(Figure 3). WT and ROSA26-EGFP-Sox2 mice were used as
negative and positive controls, respectively. As expected, the WT
mouse showed no EGFP + cells in the heart, while most cells in
ROSA26-EGFP-Sox2 mice were EGFP+ (Figures 3A, B). Hearts
fromWT female mice crossed with ROSA26-EGFP-Sox2 male mice
showed 1.6%–1.7% EGFP + cells (Figures 3C, D), indicating that
fetal microchimerisms migrated and engrafted to the heart. EGFP +
cells were also observed in maternal heart tissue samples through
confocal microscopy, while there was no such fluorescence in the
base WT animals (Supplementary Figures S2, S3).

3.2 Effect of microchimerism reduction on
the myocardial infarction model

Since we had detected fetal microchimerisms in the heart, we
next investigated whether these microchimerisms had any effect on
cardiac function following myocardial infarction. For this purpose,
WT female animals were crossed with male transgenic animals
expressing diphtheria toxin receptor (DTR). Fetal microchimerisms
present in maternal tissue were eliminated by treating the mothers
with diphtheria toxin (DT), which induced the death of cells
expressing the DTR (i.e., fetal microchimerisms).

DT was administered 3, 6, and 9 days post-partum to remove
any cells expressing DTR. Myocardial infarction was induced
through permanent ligation of the left descending coronary
artery 10 days post-partum, and its presence was confirmed
3 days after surgery by echocardiography as a strong reduction in
left ventricular ejection fraction (LVEF).

DT treatment resulted in improved cardiac contraction, as
evidenced by increased LVEF and stroke volume (SV) values
28 days post-MI in microchimerism-depleted mice compared to
untreated mice. This effect following DT administration was not
observed in WT mothers that had been crossed with WT males,
suggesting that it was specific and caused by the depletion of DTR-
expressing fetal microchimerisms in the maternal cardiac tissue
(Figures 4A–D; Table 1). DT-treated animals also showcased a
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smaller average infarct length compared to its control group after
histological study (Figure 5).

While previous research from Kara et al. had pointed at fetal
microchimerisms not only being present in maternal heart tissue but
also specifically homing in on injured areas, there was no clear

evidence of any effects on tissue repair, beneficial or detrimental.
The capability of differentiation into cardiac cell lineages was
demonstrated in vitro but not in vivo, where chimerisms just
formed disorganized and undifferentiated structures and
remained stuck. The result of this not only failed to support the

FIGURE 2
Flow cytometry analysis results for blood samples for (A) C57BL6/J WT, (B) ROSA26R-EGFP-Sox2, (C) C57BL6/J WT x ROSA26R-EGFP-Sox2 cross
on gestation day 20 and 30 days post-partum. N = 1. Amount of detected EGFP + cells, corresponding to fetal-origin cells in systemic circulation.
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hypothesis of fetal cells being able to aid in maternal injury repair
and provide benefits, but it directly opposed such a notion. Indeed,
the deletion of microchimerisms in female breeders undergoing

myocardial infarction was associated with improved contractile
capacity compared to mice in which microchimerisms
were retained.

FIGURE 3
Flow cytometry analysis results for heart tissue samples. (A) C57BL6/J WT, (B) ROSA26R-EGFP-Sox2, (C,D) C57BL6/J WT x ROSA26R-EGFP-
Sox2 cross maternal samples from (C) \ J3 and (D) \ J3.2. EGFP + cell detection results. J3 and J3.2 denote different animals from the same group. N = 2.
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The reported lack of proper differentiation and structure in
vivo may be the cause of this pernicious effect. Microchimerisms
may be unable to mount a proper response to the damage and
complete repairs to the tissue, while obstructing the mother’s
own response. This situation would be more likely to occur in the
natural environment, as opposed to previous reports where the
specific positive selection for cells with the desired traits and the
right environments may have ensured a higher efficiency and
likelihood of an effective response. On the other hand,
microchimerism-depleted females would rely exclusively on

their own cells and regenerative processes, which would have
a higher success rate and recover a higher degree of function
after injury.

It should be noted that this depletion was not complete, as
some fetal microchimerisms remained in the hearts because they did
not express the DTR receptors; as such, one hypothesis
would suggest that the process of cell death experienced by the
DTR + microchimerism population could be triggering a
proliferative and reparative response of the DTR-population in
turn, which would prime them for a more efficient reparative

FIGURE 4
Effect of fetal microchimerisms reduction on cardiac function after myocardial infarction. WT female mice were crossed with DTR-expressing (N =
9/11) (A,C) or WT (N = 4) (B,D) male mice. Mice were treated (DT) or not (Control) with DT 3, 6, and 9 days post-partum and myocardial infarction was
induced at 10 days by permanently ligating the left descending coronary artery. Functional parameters were measured using echocardiography before
infarction and 28 days post-MI. Results show mean ± SEM. #p < 0.05 DT-treated vs. control mice, 2-way ANOVA followed by Šídák’s multiple
comparisons test. LVEF: Left Ventricular Ejection Fraction, SV: Stroke Volume.
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action after MI, compared to the more extensive but inactive
population of fetal microchimerisms present in non-depleted
maternal hearts.

It is also worth pointing out that this study did not include any
significant characterization of the cell populations involved in these
dynamics; the overall size range of the cells detected through FC

would potentially match a myocytic profile, as opposed to other cell
types such as lymphocytes, but this doesn’t constitute definitive
evidence of any specific cell type being favored by the fetal
microchimerism population in the maternal heart. Likewise, the
possibility of contamination of the heart samples from circulating
cells present in traces of blood cannot be completely ruled out, with

TABLE 1 Effect of fetal microchimerisms reduction on cardiac function after myocardial infarction. WT female mice were crossed with DTR or WT male
mice. Mice were treated (DT) or not (Control) with DT 3, 6, and 9 days post-partum and myocardial infarction was induced at 10 days by permanently
ligating the left descending coronary artery. Functional parameters were measured using echocardiography before infarction and 28 days post-MI. Results
show mean values ± SE. *p < 0.05 infarcted vs. pre-MI, #p < 0.05 DT-treated vs. control, 2-way ANOVA plus Šídák’s multiple comparisons test.

Pre-MI WT \ x DTR _ WT \ x WT _

Control DT Control DT

EF (%) 51.36 ± 3.11 48.90 ± 2.64 52.80 ± 2.56 53.10 ± 3.05

SV (µL) 27.73 ± 1.77 26.04 ± 1.65 25.03 ± 1.25 25.22 ± 4.62

LVEDV (µL) 54.80 ± 3.24 53.48 ± 2.13 47.87 ± 3.71 46.83 ± 5.63

LVPWd (mm) 0.65 ± 0.02 0.71 ± 0.04 0.69 ± 0.09 0.65 ± 0.06

IVSd (mm) 0.65 ± 0.03 0.68 ± 0.07 0.59 ± 0.04 0.53 ± 0.05

n 9 11 4 4

28 days post-MI Control DT Control DT

EF (%) 18.89 ± 3.99* 29.86 ± 3.85*,# 25.34 ± 7.59 * 26.87 ± 5.23*

SV (µL) 17.20 ± 2.41* 24.85 ± 2.15# 23.02 ± 2.49 17.81 ± 4.64*

LVEDV (µL) 101.83 ± 9.00* 90.03 ± 6.54* 105.26 ± 18.23* 71.35 ± 20.52

LVPWd (mm) 0.75 ± 0.04 0.64 ± 0.04# 0.76 ± 0.16 0.72 ± 0.06

IVSd (mm) 0.77 ± 0.05* 0.65 ± 0.01# 0.53 ± 0.08 0.59 ± 0.05

n 9 11 4 4

EF, ejection fraction; LVEDV, left ventricular end diastolic volume; LVPWd, left ventricular posterior wall in diastole; IVSd, interventricular septum in diastole; n, number of mice analyzed.

FIGURE 5
Myocardial infarct scar size comparison in control and diphtheria-treated (microQ-depleted) WTxDTR animals 28 days post-infarction. (A) Average
infarct size % values. N = 5. *p < 0.05. (B,C) Representative images of Masson’s staining in (B) control and (C) diphteria-treated infarcted mouse heart
samples. Scale bar = 1 mm.
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the potential skewing of the results regarding density and type of
FMc present in cardiac tissue. Thus, it would be interesting to
include that kind of effort in any future research on this topic, to
better understand what is actually happening with the fetal
microchimeric cells and the nature of whatever specific activity
they are carrying out in a pathological context. For example, the
immune system is involved in the response to MI, and as such it is
possible that cells of fetal origin presenting an immune system
phenotype could be taking part in that response and even resulting
in such a negative effect as it may be inferred from the results of
this study.

4 Conclusion

The presence of fetal-origin cells in the maternal organism in the
shape of microchimerisms has been extensively reported, but the
actual beneficial or detrimental effect they may have is still unclear.
The present study confirmed the presence of cells of fetal origin in
the mother’s heart and systemic circulation. Contrary to
expectations, loss of microchimerisms resulted in improved
cardiac contractility following myocardial infarction. While fetal
cells are likely to hold the potential to differentiate into the required
cell lineages and structures and aid in maternal wound repair,
whether they are able to do so in normal circumstances and in
all cases remains to be confirmed. Further research would be needed
to ascertain all the unknowns regarding fetal microchimerism
dynamics in maternal injury and illness.
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