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Tumor-associated endothelial cells (TECs) are crucial mediators of immune
surveillance and immune escape in the tumor microenvironment (TME). TECs
driven by angiogenic growth factors form an abnormal vasculaturewhich deploys
molecular machinery to selectively promote the function and recruitment of
immunosuppressive cells while simultaneously blocking the entry and function of
anti-tumor immune cells. TECs also utilize a similar set of signaling regulators to
promote themetastasis of tumor cells. Meanwhile, the tumor-infiltrating immune
cells further induce the TEC anergy by secreting pro-angiogenic factors and
prevents further immune cell penetration into the TME. Understanding the
complex interactions between TECs and immune cells will be needed to
successfully treat cancer patients with combined therapy to achieve
vasculature normalization while augmenting antitumor immunity. In this
review, we will discuss what is known about the signaling crosstalk between
TECs and tumor-infiltrating immune cells to reveal insights and strategies for
therapeutic targeting.
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Introduction

The endothelial cell network represents the first barrier for circulating immune cells to enter
the tissuemicroenvironment through the process of transendothelial extravasation andmigration
under inflammatory conditions (Ley et al., 2007). It is well established that tumor-associated
endothelial cells develop anergic phenotypes (Griffioen et al., 1996) that upregulate neo-
angiogenesis, extracellular matrix (ECM) degradation, and IGF regulation pathways (Xu
et al., 2023) while down-regulating adhesion molecules and interferon signaling pathways to
selectively limit certain type of immune cell entry, which in turn profoundly impacts the immune
cell composition within the TME (Huinen et al., 2021). The T cell populations crossing the
endothelial barrier can be selected by TECs via specialized chemokines and chemokine receptors.
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Contact with TECs can also regulate T cell differentiational status and
functional capacity. Tumor-associated macrophage (TAM) infiltration
positively correlates with blood vessel density in the TME (Yang et al.,
2021). In contrast, the presence of an adaptive anti-tumor immune
response negatively impacts the function and the angiogenic phenotype
of TECs. The emergence of combined therapies targeting angiogenesis
and augmented T cell immunity with immune checkpoint blocking
antibodies highlights the importance of understanding the crosstalk
between the endothelial system and immune components when
administrating therapy to cancer patients (Yi et al., 2019). The
normalized tumor vascular network promotes T cell recruitment and
induces M1-like TAM polarization (Huang et al., 2012). In this mini
review, we will discuss the signaling crosstalk between the TECs and
immune components in the TME. The molecular interactions between
TECs and immune cells serve as a rich landscape of targets for anti-
tumor therapeutic development (Figure 1, created with BioRender.com).

Signaling from TECs to immune
cell subsets

Hypoxia and angiogenic pathways

Rapid oxygen consumption by fast-growing tumor cells
stimulates pro-angiogenic signaling pathways. The hypoxia in

tumor regions that are farthest from the tumor vasculature
initiates proangiogenic gene expression such as platelet-derived
growth factors (PDGFs) (Kourembanas et al., 1990) and vascular
endothelial growth factors (VEGFs) (Shweiki et al., 1992) via the
hypoxia-inducible factor (HIF) transcription factors (Pugh and
Ratcliffe, 2003). These signaling molecules stimulate the
angiogenic vasculature reprogramming via VEGF or the
angiopoietin (ANG1/2)/Tie-2 pathway (Augustin et al., 2009) in
an autocrine or paracrine manner. Angiogenesis is one of the
hallmarks of cancer and is associated with tumor vessels that are
abnormal. There are direct interactions of pro-angiogenic molecules
with immune cell populations to foster an immune privileged
microenvironment. The circulating HIF-1 target VEGF-A impairs
the maturation and function of DCs which impedes antigen-
presentation (Gabrilovich et al., 1996) mediated by the inhibition
of nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) (Oyama et al., 1998). In response to the high VEGF-A level,
myeloid-derived suppressor cells (MDSCs) expand and acquire
immunosuppressive features (Kusmartsev et al., 2008). The
upregulated VEGF-A and prostaglandin E2 (PGE2) expression
also stimulate the TECs to secrete IL-8 which drives TAM M2-
polarization (Martinez et al., 2008). Moreover, the pro-angiogenic
PDGF-C enhances TAM survival by inhibiting the activation of
caspase-3, -7, -8, and -9 and cleavage of poly (ADP-ribose)
polymerase (Son et al., 2014).

FIGURE 1
Signaling from TECs to immune populations. Blue, upregulated signaling molecules in TECs. Red, attenuated signaling molecules in TECs. Created
with BioRender.com.
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The angiogenic vasculature in tumor is often leaky, collapsed
with narrowed lumens, and ill-perfused with blunt ends and low
blood flow (Schaaf et al., 2018). These abnormal vessels elevate the
interstitial fluid pressure (IFP) that increases transforming growth
factor beta (TGF-β) production from local fibroblasts (Swartz and
Lund, 2012) or myeloid dendritic cells (DCs) which maintains an
immature DC phenotype, stimulates proliferation of regulatory
T cell (Tregs) (Ghiringhelli et al., 2005), and induces tumor-
associated macrophage (TAM) M2-phenotype reprogramming via
interleukin one receptor-associated kinase (IRAK)-M expression
(Standiford et al., 2011).

The TECs are inefficient at delivering nutrients, exchanging
oxygen (Arner and Rathmell, 2023) and removing waste. This in
turn exacerbates the deprivation of local oxygen and causes a
profound switch of metabolic pathways from oxidative
phosphorylation to anaerobic glycolysis via mammalian target of
rapamycin complex one signaling dysregulation and contributes to
an immunosuppressive microenvironment. The inability to remove
metabolic waste results in the accumulation of lactate and decreases
the pH of the extracellular milieu. An acidic TME inhibits the
differentiation of CD8+ T cells to memory T cells (Brand et al., 2016)
and the function of natural killer (NK) cells (Gerriets et al., 2016),
promotes the survival of Tregs (Colegio et al., 2014) and polarizes
TAMs toward an immunosuppressive M2-like phenotype
(Nakagawa et al., 2015).

Immune cell recruitment and lymph
drainage pathways

The endothelial barrier controls tumor cells dissemination and
immune cell infiltration. TECs have aberrant expression of key
adhesion molecules that favors tumor cell intravasation and
suppresses immune cell extravasation. The process of immune
cell transmigration consists of the following steps: rolling
(mediated by P/E-selectin), intravascular luminal activation and
crawling (mediated via membrane bound chemokine -
chemokine receptor interaction), adhesion (mediated via integrin
- VCAM-1/ICAM-1 interaction), and paracellular or intracellular
extravasation (Salminen et al., 2020).

Angiogenic TECs develop an altered phenotype that prevents
immune cell infiltration into the TME. VEGF-A (Flati et al., 2006),
fibroblast growth factor 2 (FGF2) (Flati et al., 2006), and epidermal
growth factor-like domain-containing protein 7 (EGFL7) (Delfortrie
et al., 2011) actively downregulate the expression of the leukocyte
adhesion molecules P/E-selectin, ICAM1 and VCAM1 on the
luminal side of TECs (Griffioen et al., 1996). This results in
TECs that are unable to tether leukocytes, and eventually
hampers leukocyte infiltration. Another signaling molecule
negatively regulating immune cell recruitment and drainage is
nitric oxide (NO) secreted by TECs, MDSCs, and TAMs. NO is a
potent vessel relaxant that reduces blood flow. High levels of NO
significantly affect leukocyte recruitment by downregulating ICAM-
1 expression, preventing immune cell rolling and adhesion (De
Caterina et al., 1995). The overexpression of endothelin B receptor
and the ligand endothelin-1 in tumors increases NO release in the
endothelium, thereby impairing lymphocyte arrest and reducing
tumor-infiltrating lymphocyte content in the tumor (Buckanovich

et al., 2008). Notably, NO can also attenuate the contraction cycles of
tumor-associated lymphatic vessels (Liao et al., 2011), reducing
tumor antigen-presenting DC drainage and impairing T-cell
priming in the draining lymph node. The low lymphatic drainage
in turn elevates the IFP that exacerbates the immunosuppressive
microenvironment (Raju et al., 2008) by the mechanism mentioned
above. Another body of evidence demonstrates that high IFP
increases lymph drainage to promote the recruitment of tumor-
associated antigens and immature DCs from the
immunosuppressive microenvironment to the adjacent lymph
nodes and activates naïve T cells in a tolerogenic manner to
compound peripheral tolerance (Tammela and Alitalo, 2010;
Swartz and Lund, 2012). The two mechanisms may both
function in solid tumors, and spatial-temporal regulation of
lymphatic drainage in different tumor types and disease stages
needs to be further investigated. On the contrary, TECs
selectively upregulate specific adhesion molecules that promote
infiltration of immunosuppressive cells. TECs upregulate mucosal
addressin cell adhesion molecule 1 (MAdCAM1), which interacts
with β7 integrin expressed on Tregs, thereby preferentially
promoting Treg infiltration into tumor sites (Nummer et al.,
2007). An example is tumor-associated lymphatic endothelium
upregulation of immunosuppressive adhesion receptor common
lymphatic endothelial and vascular endothelial receptor
(CLEVER-1/STABILIN-1), resulting in the infiltration of Tregs
(Nummer et al., 2007) and TAMs (Karikoski et al., 2014).

Chemokine and chemokine receptor signaling-mediated
intravascular crawling is well recognized as the key selection step
for the preferential recruitment of specific immune populations. The
levels of CXCL10, CXCL9, and CXCL11 in the tumor correlates with
the concentration of intratumoral cytotoxic lymphocytes (CTLs)
and reduced tumor angiogenesis (Burkholder et al., 2014). TECs
upregulate chemokines (CXCL12 and sphingosine one phosphate)
and receptors (CXCR4/ACKR3/CXCR2 and sphingosine one
phosphate receptor) via HIF-1 signaling to drive the blood vessel
branching and chronic activation of the endothelium in response to
the initial vasculature reprogramming factors (Ceradini et al., 2004;
Potente et al., 2011). These proangiogenic chemokine and
chemokine receptors promote tumor cell dissemination (Guo
et al., 2016) and regulate the entry and function of
immunosuppressive cells. CXCL12 recruits regulatory B cells into
the tumor which can exacerbate tumor progression via IL-10 and
TGF-β expression (Qin et al., 2015). These recruited regulatory
B cells also induce CXCR4 expression on tumor cell to promote
cancer cell metastasis to the lymph node by increase the
responsiveness to the pro-metastatic chemokine CXCL12 (Gu
et al., 2019). Moreover, CXCL12 released by TECs and BoxA, a
fragment of HMGB1, can engage the CXCR4-CD47 complex and
trigger CD47 internalization to release a phagocytosis signal by the
tumor cells and attract macrophages (Mezzapelle et al., 2021). While
this machinery may elicit antitumor immunization via antigen
presentation on macrophages, the phenotype polarization of the
CXCL12/CXCR4 recruited TAMs can be immunosuppressive and
needs to be further characterized.

To selectively recruit immunosuppressive cells, TECs secrete IL-
8 (CXCL8, receptor CXCR1/2) to induce EC proliferation in an
autocrine manner, which also results in disrupted EC intercellular
junctions (Dwyer et al., 2012). The high level of IL-8 activates

Frontiers in Cell and Developmental Biology frontiersin.org03

Xu et al. 10.3389/fcell.2024.1387198

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1387198


β2 integrins (CD18) to arrest neutrophils during transmigration
(DiVietro et al., 2001), attracts immunosuppressive CXCR2+ N2-
phenotype tumor-associated neutrophils (Alfaro et al., 2016), and
stimulates the formation of neutrophil extracellular traps. It also
preferentially recruits MDSCs and promotes M2-phenotype
polarization (Ostrand-Rosenberg and Fenselau, 2018). Aside from
IL-8, additional factors including IL-1β, CCL2, CXCL5, IL-17 and
IL-18 also selectively recruit subsets of MDSCs from the vasculature
into renal cell carcinoma (Najjar et al., 2017; Guan et al., 2018) while
CCL3 and CCL5 are important for the retention of MDSCs in
tumors (Kumar et al., 2016). The soluble pro-angiogenic molecule
VEGF-A also acts as an atypical chemoattractant to facilitate MDSC
recruitment (Wang et al., 2019). The hypoxic TME also induces the
upregulation of CCL22 and CCL28 from TECs, which preferentially
recruit Tregs into solid tumors (Curiel et al., 2004; Facciabene et al.,
2011). Moreover, semaphorin 3A is another non-canonical
attractant induced by hypoxia and promotes the retention of
TAMs in lung cancer (Casazza et al., 2013). On the opposite
side, VEGF-A suppresses pro-inflammatory T-cell infiltration
into the tumor through inhibition of NF-κB and TNF-α-induced
downregulation of CXCL10 and CXCL11 (Huang et al., 2015).
Moreover, chemokines secreted by TECs can be post-
translationally modified to preferentially recruit
immunosuppressive cells. The nitration of CCL2 in tumors can
suppress T cell infiltration, while macrophages and MDSCs can still
be recruited by nitrated CCL2 (Molon et al., 2011).

On the step of extravasation, the tumor vasculature has
developed strategies to break the balance of tumor cell metastasis
and leukocyte infiltration. The dysfunctional and leaky tumor
vasculature that promotes fluid extravasation, high IFP, and
eventual tumor metastasis also inversely correlates with the
accumulation of tumor-infiltrating lymphocytes (TILs) in the
TME (Park et al., 2016). VE-cadherin (cadherin-5, CD144) is an
adherence junction protein ensuring proper barrier function and
primarily mediates the paracellular route of leukocyte
transmigration (Gavard, 2013) and tumor cell metastasis by
forming cell-cell junction gaps. TECs downregulate the
expression of VE-cadherin resulting in a disrupted endothelial
barrier with reduced functional CD8 T cell infiltration routes
into tumor (Zhao et al., 2017). Yet studies have demonstrated
that metastatic tumor cells can induce local gap formation by
activating Src to subsequently phosphorylate VE-cadherin (Potter
et al., 2005; Aragon-Sanabria et al., 2017), providing a route for
tumor cells to pass through the endothelial cell layer into the
vessel lumen.

Antigen presentation and survival pathways

TECs are known to regulate T cell activation pathways by
altering the expression of antigen-presentation complexes or
inhibitory molecules that deactivate T cell function when
entering the TME. T cell receptor signaling is the key pathway to
elicit an anti-tumor T cell response. Although ECs are atypical
antigen-presenting cells: they constitutively express major
histocompatibility complex (MHC) class I and II but in general
have limited co-stimulatory CD80 and CD86 expression which are
required for naïve T cell activation (Denton et al., 1999; Xu et al.,

2024). It has been reported that the TECs downregulate MHC I and
II molecules which negatively impacts T cell priming (Lambrechts
et al., 2018). Importantly, the tumor vasculature and angiogenic
factors modulate the activated T cell functions by expressing a wide
range of co-inhibitory and co-stimulatory molecules that foster
anergy in the TIL. While the expression of cell-surface
programmed death ligand one and 2 (PD-L1 and PD-L2) on
tumor blood and lymphatic ECs controls vessel damage from the
activated and extravasating T cells (Rodig et al., 2003), they also
contribute to TIL anergy and foster an immunosuppressive
microenvironment. VEGF-A can upregulate the expression of
PD-1, TIM-3, and CTLA-4 on tumor-infiltrating CD8+ T cells
(Voron et al., 2015) via the VEGFR2-PLCγ-calcineurin-NFAT
pathway. This machinery explains the synergistic effect of tumor
growth suppression when administering anti-PD-1 therapy together
with anti-VEGF-A. CD137 (4-1BB) is a TCR signaling co-
stimulatory molecule expressed by ECs that induces adhesion
molecule expression. Tumor cells enhance the expression of
soluble CD137 that competes with the membrane bound
CD137 as an antagonist of T cell co-stimulation and activation
(Hentschel et al., 2006).

TECs also directly regulate immune cell survival and
differentiation. Indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1) is
predominantly expressed in TECs. The depletion of L-arginine and
L-tryptophan in tumors mediated by IDO1 directly inhibits
proliferation and promotes apoptosis of CTLs (Mondanelli et al.,
2017). The product of IDO1, l-kynurenine, activates the
arylhydrocarbon receptor which promotes the differentiation of
effector T cells into Tregs and upregulates IDO1 expression in
DCs (Grohmann and Puccetti, 2015). Moreover, VEGF-A, IL-10
and PGE2 induce the death mediator Fas ligand (FasL) expression in
TECs. FasL selectively induces apoptosis in CTLs but not Tregs
because of high c-FLIP expression in Tregs (Motz et al., 2014).
Galectin-1 (GAL1) reprograms the TECs to upregulate PD-L1 and
death signal GAL9 and therefore drives T cell exclusion from the
TME and is shown to exacerbate immunotherapy resistance in head
and neck cancer (Nambiar et al., 2019). For NK cells, TECs
upregulate RAE-1ε expression to internalize NKG2D that
desensitizes the antitumor response of NK cells (Thompson
et al., 2017). Recent data have shown that disarming of NK cells
and monocytes happens rapidly and TECs may provide an
explanation for this observation (Figure 2, created with
BioRender.com).

Signaling from immune cells to TECs

TAMs

Perivascular TAMs are a highly specialized TAM subset that
reside proximal, within 1 cell thickness, to the blood vasculature
and can collaborate with MDSCs to form a multicellular pre-
metastatic niche (Wang et al., 2017). These Tie2+ TAMs express
angiogenic genes including VEGF-A, MMP9, PGF, SPP1, and
CATHD (Movahedi et al., 2010) and have superior
proangiogenic activity. The release of VEGF-A from these
Tie2+ TAMs can induce endothelial tip cell formation and
facilitate blood vessel anastomosis (the joining of two blood

Frontiers in Cell and Developmental Biology frontiersin.org04

Xu et al. 10.3389/fcell.2024.1387198

https://biorender.com/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1387198


vessels) (Fantin et al., 2010). Moreover, perivascular TAMs often
accumulate after irradiation (Kioi et al., 2010) and
chemotherapy and stimulate transient vascular permeability
via VEGF-A and promote tumor cell dissemination and
tumor relapse (Harney et al., 2015). The secretion of the
growth factor PDGF-C from perivascular TAMs also
promotes pericyte expansion through PDGFRα on a
population of pericyte-like mesenchymal cells (Opzoomer
et al., 2021). TAMs can also activate TECs via tenascin C
stimulation of Toll-like receptor four and trigger the
formation of pro-metastatic vasculature and the
dissemination of cancer cells (Hongu et al., 2022). M2d-
phenotype TAMs also promote tumor-associated vessel
growth by secreting miRNAs containing macrophage-derived
exosomes (MDEs). It has been shown that these MDEs have an
altered miRNA cargo profile (Binenbaum et al., 2018) in tumors
that promote the proliferation of endothelial cells and increase
tumor-associated vascular density. MDEs can transport miR-
155-5p and miR-221-5p to induce angiogenesis in pancreatic

ductal adenocarcinoma by inhibiting E2F2 in ECs (Yang
et al., 2021).

MDSCs

CD11b+Gr1+ MDSCs are another major source of soluble
VEGFs promoting angiogenesis in tumors (Shojaei et al., 2009).
MDSCs interact with TAMs to orchestrate the formation of
dysfunctional TECs (Fang et al., 2023). Both TAMs and MDSCs
can render tumors non-responsive to VEGF/VEGFR inhibition
therapy (Rivera and Bergers, 2015) and lead to tumors
reinitiating angiogenesis. Aside from VEGF-mediated
angiogenesis, polymorphonuclear MDSCs express abundant
amounts of MMP2, MMP8, MMP9, MMP13, and MMP14
(Binsfeld et al., 2016) to remodel the ECM. This process
facilitates tumor intravasation as well as angiogenesis in
collaboration with TAMs and NK cells (Binsfeld et al., 2016).
MDSCs also produce TGF-β to induce tumor angiogenesis by

FIGURE 2
Signaling from immune populations to TECs. Blue, pro-angiogenic signaling. Red, anti-angiogenic signaling. Created with BioRender.com.
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activating fibroblasts to produce ECM adhesion molecules and
stimulate blood vessel anastomosis (van Meeteren et al., 2011).
S100 calcium-binding protein A9 (S100A9) secreted mainly via
MDSCs can promote the angiogenesis of multiple myeloma (De
Veirman et al., 2017). Importantly, these soluble factors are enriched
in the exosomes derived from MDSCs, which is an important
transporter to deliver pro-angiogenic signals to TECs (Zoller, 2018).

Neutrophils

Tumor-associated neutrophils (TAN) can secrete proangiogenic
or antiangiogenic factors. The hypoxic TME tunes the TANs to an
anergic N2-phenotype in response to TGFβ (Fridlender et al., 2009)
and induces them to secrete the pro-angiogenic factors IL-1β,
VEGF-A, FGF2, TGFα and ANG1 (De Palma et al., 2017). N2-
TANs lack expression of TIMP1 and as a consequence they express
high level of free MMP9 as a catalytic angiogenesis driver and ECM
remodeler in the TME (Ardi et al., 2007). On the contrary, TANs can
release the antiangiogenic factor thrombospondin-1 regulated by
peroxisome proliferator-activated receptor α (PPARα), preventing
tumor growth (Kaipainen et al., 2007).

NK cells

Although NK cells are primarily defined as a population of
innate lymphoid cells with cytotoxic and cytokine-producing ability,
their function in tumors expands well beyond their cytolytic
potential. A specialized subset of decidual NK (dNK) cells has
been discovered to promote vascularization during embryonic
and placental development (Zhang et al., 2011). In tumors, the
anergic dNK-like CD56hiCD16- NK cells with low degranulation
capacity also develop pro-angiogenic phenotypes (Albini and
Noonan, 2021). NKs are also another major source of soluble
VEGFs (Gaggero et al., 2020), IL-8 and PLGF (Bruno et al.,
2013). STAT3/STAT5 activation in tumor-infiltrating NKs also
enhances the expression of ANG1/2, MMP-2, and tissue inhibitor
of MMP (TIMP) in patients with colorectal cancer (Bruno et al.,
2018). A study in renal cell carcinoma demonstrated this large group
of CD56hiCD16- NK cells express an array of pro-angiogenic factors
including VEGF-A, VEGF-B, ANG-2, IL-6, IL-8, CCL3, CXCL1,
CCR7 and CD146 receptor (Guan et al., 2020). On the contrary, the
cytotoxic NK cells together with CTLs produce IL-12 and IFN-γ that
are key factors to suppress neovascularization in tumors (Yao et al.,
1999). Yet the IFN-γ signaling has a controversial role in
neovascularization. It has also been demonstrated that IFN-γ
produced by NK cells and T cells during transmigration can
escalate the angiogenesis potential by downregulating anti-
neovascularization factor TNFSF15 expression in TECs (Lu
et al., 2014).

T cells

High Treg density has been associated with high intratumoral
vessel density in renal cell carcinoma (Zhan et al., 2012) and
endometrial adenocarcinoma (Giatromanolaki et al., 2008). Our

recent study demonstrated preferential firm adhesion of Tregs onto
TEC layers from clear cell renal cell carcinoma tumors compared
with NECs (Xu et al., 2023). Recruited by hypoxia-induced
chemokine CCL28 secreted by TECs, Tregs are reported to
enhance VEGF-A levels in acute lymphoblastic leukemia (Li
et al., 2018) and ovarian cancer (Facciabene et al., 2011). Tregs
can also indirectly promote angiogenesis by modulating the function
of other immune cells. Tregs inhibit activation of tumor-primed
CD4 T cells, therefore suppressing IFN-γ-dependent antiangiogenic
pathways (Casares et al., 2003). Of note, IFN-γ mainly secreted by
Th1 CD4 T cells is known for inducing endothelial cell destruction
(Beatty and Paterson, 2001). Moreover, it has been reported that the
tumor-infiltrating γδT17 subset mediating pro-angiogenic IL-17
thereby inducing the expression of VEGF-A, CXCL8, GM-CSF,
and TNFα release, can actively participate in the angiogenic process
and the recruitment of MDSCs (Wu et al., 2014). IL-17 also
indirectly promotes angiogenesis by activating the expression of
CCL17 and CCL22 and facilitates Treg cell migration to tumor
(Shibabaw et al., 2023).

Conclusion and future perspectives

TECs have emerged as a signaling hub within the TME
orchestrating a range of pro-tumoral functions. TECs have dual
functions to diminish anti-tumor immune cell infiltration at the
same time enhance immunosuppressive lymphocyte recruitment
andmetastatic tumor cell intravasation in the same tumor. Although
many studies have been conducted to better understand TEC
phenotypes, the spatial-temporal regulation of these dual
functions remains an open research question. ECs are polarized
cells with distinct molecular expression on the luminal and basal side
regulating distinct biological processes. Microenvironmental cues
such as hypoxia and nutrient gradients cues can lead to spatial
heterogeneity in gene expression among TECs located in different
regions of the tumor. The functional adaptation of TECs in
subregions of solid tumors, and high-resolution dissection of
signaling pathways on basal and lumen side of TECs remains to
be elucidated. Moreover, the conventional concept of cell-cell
interactions involves 2 cells: the signal receiver and deliverer.
However, TECs can receive signals from different cell types such
as immune cells, pericytes, tumor cells and stromal cells. Different
cell types can enhance the signal in TECs through the same or
synergistic molecules or attenuate the signal through counteracting
signaling molecules. For example, VEGF-A is secreted by tumor
cells, TECs, CAFs, MDSCs, TAMs, TANs and NKs, promoting
neovascularization in tumor, while cytotoxic T cells and NK cells,
although their entries are limited in tumor microenvironment,
secrete the pro-inflammatory vessel activator IFN-γ to TECs. At
the same time, immune cells secrete VEGFs, FGF2 to TECs to foster
anergic ECs with dampened expression of ICAM-1 or VCAM-1.
Throughout tumor progression and metastasis, TEC gene
expression may be further altered by evolving tumor-stroma
interactions, changes in tumor perfusion, and adaptation to
therapeutic interventions. Studying only the paired interactions of
two model cell types in vitro can greatly bias the conclusion. To date,
few studies have analyzed the multi-cell type interactions
surrounding TECs at a series of therapeutically critical time-
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points in solid tumors. Therefore, the relative signal intensities and
outcomes in a spatial-temporal regulated manner need further
exploration to facilitate the design of therapeutic agents targeting
the key molecules that correct the overall phenotype of the TECs.

New technologies can empower future studies to better
investigate these topics. Current single-cell sequencing and
protein probing techniques are empowering studies to investigate
the phenotypes and transcriptomic gene expression in all cell types
with single-cell resolution in the TME to gain a complete picture of
signaling from and toward TECs. Single-cell studies focused on
TECs from different solid tumors have identified functional TEC
subpopulations specific and common to certain types of tumors as
well as the distinct adhesive interaction of TECs with immune cells
within tumor (Sharma et al., 2020; Geldhof et al., 2022; Xu et al.,
2024). Spatial genomics at a single-cell level, multiplex IHC, and
high resolution in situ imaging can also now be deployed to examine
the adhesion molecules and chemokine disposition on the luminal
and basal side in relation with the presence of other cell types.
Furthermore, vascularized microfluidic 3D chips can be used to
model multi-cellular interactions using tumor spheroids to depict a
road map of immune cell infiltration from TECs to tumor cells
across the ECM (Miller et al., 2018; Miller et al., 2023). Future
studies are expected to use these technologies to unravel the
dynamics between TECs and immune responses in solid tumors,
to discover and model therapeutical targets that involves multiple
cell types.

In conclusion, TECs influence the function and recruitment of
different immune cell populations shaping the TME. Yet the
immune populations exert pro or antiangiogenic function
inextricably linked to the TME with complex cell components.
Research on the phenotype of TECs and the dissected
interactions between TECs and immune components have
depicted TECs as a signaling hub in promoting tumor
pathogenesis. Meanwhile, the precisely regulated pro-angiogenic
mechanisms by which immune cells exert to the TECs remain to
be fully elucidated. Further investigations dissecting the spatial-
temporal immunoregulatory function of TECs and the pro-
angiogenic functions of TILs will be critical to establish the

effective therapeutic targets that normalize pathologic
neovascularization and counteract anergic immune functions in
solid tumors.
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