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The growing understanding of the role of extracellular vesicles (EVs) in embryo-
maternal communication has sparked considerable interest in their therapeutic
potential within assisted reproductive technology, particularly in enhancing
implantation success. However, the major obstacle remains the large-scale
production of EVs, and there is still a gap in understanding how different culture
systems affect the characteristics of the EVs. In the current study, trophoblast
analogue human chorionic carcinoma cell line was cultivated in both conventional
monolayer culture (2D) and as spheroids in suspension culture (3D) and how the cell
growth environment affects the physical, biochemical and cellular signalling
properties of EVs produced by them was studied. Interestingly, the 3D system was
more active in secreting EVs compared to the 2D system, while no significant
differences were observed in terms of morphology, size, and classical EV protein
marker expression between EVs derived from the two culture systems. There were
substantial differences in theproteomic cargoprofile andcellular signallingpotencyof
EVs derived from the two culture systems. Notably, 2D EVs were more potent in
inducing a cellular response in endometrial epithelial cells (EECs) compared to 3DEVs.
Therefore, it is essential to recognize that the biological activity of EVs depends not
only on the cell of origin but also on the cellular microenvironment of the parent cell.
In conclusion, caution is warranted when selecting an EV production platform,
especially for assessing the functional and therapeutic potential of EVs through
in vitro studies.
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1 Introduction

Extracellular vesicles (EVs) have emerged as important
mediators of intercellular communication in both humans and
animals (Pitt et al., 2016; Gurunathan et al., 2022). The inherent
properties of EVs in cellular communication hold great potential for
diagnostic and therapeutic applications across a spectrum of
diseases, including cancer (Bell et al., 2016), regenerative
disorders (Ramasubramanian et al., 2019), cardio vascular
(Chong et al., 2019), and infectious diseases (Kumar et al., 2020)
etc. The growing recognition of the role of EVs in the process of
embryo implantation has presented promising prospects for their
potential utility in improving pregnancy rates in assisted
reproduction technologies (ARTs) (Poh et al., 2023).

Embryo implantation is a highly co-ordinated process that initiates
with molecular signalling from the embryo, followed by its apposition,
attachment, and invasion in to the receptive uterine epithelium (Kim
and Kim, 2017). Despite rapid advances in ARTs and reproductive
medicine, the inability of the embryo to implant remains the bottleneck
to successful pregnancy (Ma et al., 2023). Evidently, success of embryo
implantation depends on three main factors, namely, the quality of the
embryo (della Ragione et al., 2007; Ahlstrom et al., 2011; Oron et al.,
2014), the endometrial receptivity (Achache and Revel, 2006) and the
synchronized crosstalk between the two (Idelevich and Vilella, 2020).
Despite the presence of a good quality embryo and an optimally
receptive endometrium, inadequate communication between these
two can result in pregnancy failure. This reciprocal communication
between conceptus and endometrium is now widely believed to be
facilitated by paracrine signalling (Guzeloglu-Kayisli et al., 2009; Yockey
and Iwasaki, 2018). While soluble factors such as cytokines and growth
factors have been critical in this interplay, the role of EVs is also starting
to come to light (Godakumara et al., 2021; Hart et al., 2023;
Muhandiram et al., 2023). EVs are a heterogeneous group of nano-
sized particles (30–5,000 nm in size) secreted by almost all cell types into
the extracellular environment. They play vital functions, including the
maintainance of cellular homeostasis (Takahashi et al., 2017; Raposo
and Stahl, 2019), and intercellular signalling in different physiological
and pathological conditions. EVs carry a range of bioactive cargoes
including proteins, lipids, and nucleic acids, to neighbouring or distant
recipient cells (Raposo and Stahl, 2019; Cocks et al., 2021). EV
molecular cargo is known to exert various functions within recipient
cells. Recent studies propose that EVs secreted by the embryo might
alter the uterine epithelium rendering it more receptive (Latifi et al.,
2018; Kurian and Modi, 2019; Godakumara et al., 2021; Hart et al.,
2022) and endometrial cell derived EVs in turn can affect the growth
and development of the embryo (Mishra et al., 2021; Segura-Benítez
et al., 2022; Aguilera et al., 2024). These unique characteristics of EVs
hold great potential for both diagnostic and therapeutic applications in
contemporary assisted reproductive practices, encompassing both
human and livestock (Dissanayake et al., 2020).

Investigating the in vivo human embryo implantation process
poses significant challenges due to the inaccessibility to the real in vivo
environment and ethical concerns related to obtaining biological
samples. The outer most layer of the pre-implanting embryo
(blastocyst) consists with a layer of trophectoderm cells
(responsible for blastocyst hatching, endometrial attachment and
placentation) and the quality of these cells are known to correlate
highly with the pregnancy progression in humans (Garcia-Belda et al.,

2024). The EVs derived from trophoblast cells have shown to support
endometrial receptivity and embryo attachment (Es-Haghi et al.,
2019; Godakumara et al., 2021; Muhandiram et al., 2023).
Trophoblastic EVs also play a role in facilitating epithelial-to-
mesenchymal transition of endometrial cells and modulating
inflammation during the pre-implantation period (by interacting
with immune cells to mitigate maternal rejection of the embryo)
(Shi et al., 2021). On the other hand, EV-encapsulation with specific
molecules can be utilized to exert diverse effects in the endometrium
(Taravat et al., 2023). Therefore, the characteristics of EVs derived
from trophectoderm cells in their natural form or as engineered
vesicles are of interest in investigating potential clinical interventions
for implantation failure. Despite the substantial interest in EVs as a
therapeutic and diagnostic modality, the large-scale generation of
natural EVs remains a significant challenge (Syromiatnikova
et al., 2022).

Cell lines are an attractive option for producing trophoblastic EVs
on a large scale due to their ease of manipulation and ready availability.
One of themost commonly utilized immortalized cell lines serving as an
analogue of trophoblast cells is the human choriocarcinoma JAr cell line
(Weber et al., 2021). JAr cells demonstrates significant similarities to
human trophoblast cells in terms of hormone production and their
morphology in general. The cell line is known to produce placental
human chronic gonadodrophin (hCG), estrogen, and progesterone
hormones in both monolayer and spheroid culture mimicking a
pre-implanting embryo (White et al., 1988; King et al., 2000). For
studies involving EVs, cells can be cultivated using three different
culture techniques: 2D monolayer culture, 3D culture with scaffolds,
and 3D culture without scaffolds (Langhans, 2018; Chen and Wang,
2020). The choice of cell culture method depends on the specific
application. The trophectoderm of the pre-implantation embryo can
be easily mimicked using simple spheroids generated from JAr cells
(3D) in suspension culture (Ho et al., 2013; Weimar et al., 2013; Green
et al., 2015; Li et al., 2017). In general, the scalability of 3D culturemakes
it easily adaptable for large-scale production of EVs as well. The 3D
cultures are also known to better mimic cell-cell and cell-extracellular-
matrix (ECM) interactions in vivo while replicating nutrient and waste
disposal in cells in a spatio-temporal manner (Huh et al., 2011;
Syromiatnikova et al., 2022). The main differences between 2D and
3D cell culture systems can be seen in cell shapes, nutrient distribution,
formation of cellular junctions, cell proliferation rates, responsiveness to
stimuli, and gene or protein expression profiles. Moreover, variations
can occur in the culture duration and reproducibility (Vantangoli et al.,
2015). These differences can affect the cellular functions as well. On the
other hand, EVs also exhibit remarkable heterogeneity, with their
molecular characteristics predominantly shaped by the originating
cells, cellular microenvironment, and the metabolic state of the
parent cells (Riazifar et al., 2017; Kalluri and LeBleu, 2020). Hence,
it is critical to exam how the culture conditions (static or flow culture),
fluid flow dynamics in suspension cultures, and the pattern of cell-
matrix interactions affect the production of EVs. These factors may
influence not only the cells themselves but also the EVs they produce,
ultimately affecting their ability to modulate recipient cell functions. To
study this, we first evaluated the impact of 2D and 3D cell culturemicro-
environment on the physico-chemical characteristics and proteome
composition of EVs released by trophoblast cells.

However, there are no proper indicators to evaluate the
functionality of trophoblastic EVs in embryo implantation. In a
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previous study, we demonstrated that increased secretion of Milk fat
globule-EGF factor 8 protein (MFGE8 or human lactadherin) serves
as a cellular response of EECs to trophoblast-derived EVs
(Muhandiram et al., 2023), thereby functioning as a marker for
EV signalling during embryo implantation. MFGE8 is a glycoprotein
rich in cysteine (Wang, 2014). Interestingly, it displays changes in
expression in the endometrium during the menstrual cycle and
appears to be associated with endometrial receptivity (Bocca et al.,
2012). MFGE8 in EECs is also known as required for embryo
attachment to the endometrium demonstrating its functional
significance in embryo implantation (Schmitz et al., 2014).
Therefore, we used MFGE8 to examine the impact of 2D and 3D
EVs on cellular signalling in EECs. Hence, in the current study we
further evaluated the biological implications of JAr-EVs produced in
2D and 3D culture systems and their differences in function in an in
vitro embryo implantation model.

2 Materials and methods

2.1 Cell culture and spheroid formation

The human choriocarcinoma cell line (JAr) and human
endometrial adenocarcinoma cell line (RL95-2) were purchased
from the American Type Culture Collection (HTB-144™,
Teddington, United Kingdom). JAr cell line was originally
established from the trophoblastic tumour of the placenta of a
24 year old woman and the cell line is from a male fetus
(passage 55). JAr cells (HTB-144™, Teddington, UK) were
cultured in T75 flasks with RPMI 1640 medium supplemented
with 10% Fetal Bovine serum (FBS), 1% Penicillin Streptomycin
(P/S) and 1% L-glutamine in 5% CO2 at 37°C. The media was
changed every second day until the cells reached 80% confluency.
For 2D monolayer culture, cells were harvested and 1 × 106 cells
were cultured in 5 mL of supplemented RPMI 1640 medium in
60 mm petri dishes for 48 h. Next, the cells were washed with
Dulbecco’s phosphate-buffered saline without Ca+2 and Mg+2

(DPBS, Verviers, Belgium) and changed to FBS free medium.
Cell culture conditioned medium (CM) was collected after 6 h.

JAr spheroids were formed as described previously with some
modifications (Es-Haghi et al., 2019). In brief, JAr cells at 80%
confluency were washed with DPBS, harvested using trypsin-EDTA
(Gibco® Trypsin, New York, United States) and pelleted by
centrifugation at 250 g for 5 min. Next, 1 × 106 cells were cultured
in 5 mL of supplemented RPMI 1640medium in 60 mmpetri dishes on
a gyratory shaker (Biosan PSU-2T, Riga, Latvia), set at 295 rotations per
minute (rpm) at 5% CO2 at 37 °C for 48 h to form spheroids
(Supplementary Figure S1A). Then, spheroids were washed, replaced
with FBS free media and CM was collected after 6 h. The spheroid
viability was confirmed using Live/dead® viability/cytotoxicity assay kit
(Molecular Probes, Eugene, Oregon, United States), according to the
manufacturer’s instructions (Supplementary Figure S1B).

RL95-2 cells were used as an analogue of receptive endometrial
epithelial cells (EECs). Cells were maintained in Dulbecco’s Modified
Eagles medium F12 (DMEM 12-604F, Lonza, Verviers, Belgium)
supplemented with 10% FBS (Gibco™, 10500064), 1% P/S (Gibco™,
15140122, Bleiswijk, Netherlands), and 5 μg/mL insulin (human
recombinant insulin, Gibco™, Invitrogen,Denmark) in 5%CO2 at 37°C.

2.2 EV isolation and characterization

EV isolation was carried out using methods described previously
(Es-Haghi et al., 2019; Godakumara et al., 2021). EVs were harvested
from CM collected from both 2D monolayer culture and 3D JAr
spheroids (100 mL each). Soon after collection, CM was centrifuged at
400 g for 10 min. The resulting supernatant was further centrifuged at
4,000 g for 10 min and thereafter at 10,000 g for 10 min to remove cell
debris and apoptotic bodies. Samples were then directly processed for
EV isolation. CM was concentrated to 500 µL using Amicon® Ultra-15
centrifugal filter devices (10 kDa cut-off). Next, EVs were purified using
size exclusion chromatography (SEC). A gel filtration medium
consisting of 4%–6% agarose matrix was used in 15 cm length
columns to separate EV fractions from contaminating proteins.
Fractions 7–10 were collected (each fraction was 500 µL in volume)
and concentrated again to a total volume of 500 µL using a Amicon®
Ultra centrifugal filter device with a 10 kDa cut-off and stored in −80°C
until further analysis. Characterisation of the isolated EVs was carried
out using methods described in detail elsewhere (Es-Haghi et al., 2019;
Midekessa et al., 2020; Godakumara et al., 2021). In summary, the
nanoparticle size and concentration in EV fractions were measured
using Nano Particle Tracking Analyser (NTA) (Particle Metrix GmbH,
Inning am Ammersee, Germany). Transmission electron microscopy
(TEM)was used for the physical characterization of EVs. Enrichment of
EV protein markers was confirmed by label free proteomic analysis of
2D and 3D EVs. EVs derived from JAr 2Dmonolayer are referred to as
2D EVs. EVs from JAr spheroids are referred to as 3D EVs.

2.3 Fluorescence–nanoparticle tracking
analysis (FL-NTA)

FL-NTA of 3D and 2D JAr EVs was carried out to measure the
size and concentration of EVs following staining them with the
flouroscent stain CMG (CellMask™ Green Plasma Membrane
Staining, Thermo Fisher Scientific, Waltham, MA, United States),
as described previously, with some modifications (Midekessa et al.,
2021). In summary, JAr EVs purified in SEC were diluted separately
in 1 × PBS to a particle concentration of about 1 × 1010 particles/mL.
Before incubating EVs with CMG dye molecules, 1 µL of 5 mg/mL
CMG stock (CellMask™ Green Plasma Membrane Staining,
Thermo Fisher Scientific, Waltham, MA, United States) was
added to 50 µL of PBS. Then, 1 µL of CMG in 1 × PBS was
added to 10 µL diluted EVs and incubated at RT for an hour on
a shaker at 350 rpm. All experimental tubes were covered with
aluminium foil during incubation. After the incubation, the
incubated samples were added to 990 µL of 1 × PBS suspension
medium to achieve a final volume of 1 mL with a pH value of 7.2.
The size and concentration profiles of both 2D and 3D JAr EVs were
measured in the fluorescence mode using a ZetaView PMX
120 V4.1 instrument (Particle Metrix GmbH, Ammersee, Bavaria,
Germany). Before the measurements, auto-alignment of the
Instrument was performed using a known concentration of
100 nm polystyrene (PS) and fluorescent Yellow Green (YG)
nanoparticles (Applied Microspheres B.V., Leusden, Utrecht, The
Netherland). Subsequently, the particle concentration and size
distribution were measured in triplicate with the following
settings; Sensitivity:72, shutter: 100 and frames per cycle: 11.
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Number of particles were reported in both scatter mode (t-NPs) and
florescent mode (Fl-NPs). PBS buffer-only and dye control were
used to detect labelling artefacts before measurements.

2.4 Measurement of Zeta Potential (ZP)

EVs carry a net negative charge on the surface, and the ZP is a
measure of the surface potential. Importantly, ZP is an indicator of
colloidal stability and nanoparticle stability which are important
parameters for EV pharmacokinetics. The zeta potential of EV
preparations was measured using methods described previously with
slight modifications (Midekessa et al., 2020, 2021). The zeta potential
(ZP) of EVs was measured using ZetaView PMX 110 V3.0 instrument
(Particle Metrix GmbH, Germany), three times at 25°C under the
following scatter and fluorescent settings: Sensitivity was set at 72,
shutter value at 100, and frame rate at 30 frames per second. For the size
and ZP measurement of fluorescently labelled EVs, the sensitivity was
set at 90. Data were analyzed by ZetaView NTA software. PBS buffer
control was used to eliminate artefacts.

2.5 Sample preparation for protein
quantification with liquid chromatography-
tandem mass spectrometry (LC-MS/MS)

EV or conditioned media samples were precipitated with
trichloroacetic acid deoxycholate (TCA-DOC) precipitation
overnight. Approximate protein quantities were estimated based on
the size of the pellets. The pellets were then solubilized in 7M urea, 2 M
thiourea, 100 mM ammonium bicarbonate (ABC), 20 mM
methylamine buffer. Protein reduction was performed with 5 mM
dithiothreitol (DTT) by incubating 1 h at room temperature. Protein
alkylation was performed with 10 mM chloroacetamide by incubating
1 h at room temperature in the dark. Next, protease LysC (Wako) was
added to an enzyme:substrate ratio (E:S) of 1:50, and the samples were
incubated for 1 h at room temperature. Samples were then diluted five
times with 100 mMABC, trypsin (SigmaAldrich) was added to 1:50 E:S
ratio and incubated overnight at room temperature. After digestion,
samples were acidified with trifluoroacetic acid (TFA) to a
concentration of 1%, and samples were desalted using in-house
made C18 StageTips. Samples were reconstituted in 0.5% TFA and
peptide concentrations were determined with a Pierce colorimetric
peptide assay (Thermo Fisher Scientific).

For MS analysis, 1 µg of EV peptides was injected to an Easy-
nLC 1000 system (Thermo Scientific). The sample was eluted at
250 nL/min from the trap to a 75 µm ID ×50 cm emitter-column
(New Objective) packed with C18 material (3 μm, 300 Å particles,
Dr Maisch). The separating gradient was 2%–35% B 60 min and
40%–100% B 5 min [A: 0.1% formic acid (FA), B: 80% ACN + 0.1%
FA]. Eluted peptides were sprayed onto a Q Exactive Plus (Thermo
Fisher Scientific) quadrupole-orbitrap mass spectrometer (MS)
using nano-electrospray ionization at 2.4 kV (applied through
liquid-junction). The MS was operated with a top-5 data-
dependent acquisition strategy. Briefly, one 350–1,400 m/z MS
scan at a resolution setting of R = 70,000 at 200 m/z was
followed by five higher-energy collisional dissociation
fragmentation (normalized collision energy of 26) of five most

intense ions (z: +2 to +6) at R = 17,500. MS and MS/MS ion
target values were 3e6 and 5e4 with 50 m injection time. Dynamic
exclusion was limited to 40 s.

2.6 Database searching and protein
identification

Mass spectrometric raw files were processed using the
MaxQuant software package (versions 1.6.15.0 and 2.0.3.0) to
identify proteins with their respective label-free quantification
values. Methionine oxidation, asparagine and glutamine
deamidation and protein N-terminal acetylation were set as
variable modifications, while cysteine carbamidomethylation was
defined as a fixed modification. Label-free protein quantification
(LFQ) was enabled with LFQ and protein minimum ratio count was
set to 1. The search was performed againstHomo sapiens, Bos taurus
reference proteomes, using the tryptic digestion rule. Peptide-
spectrum match and protein false discovery rate (FDR) were kept
below 1% using a target-decoy approach. All other parameters were
set to default. The mass spectrometry data are available in the
ProteomeXchange Consortium via the PRIDE with the dataset
identifier PXD048789.

Differential protein analysis on the identified proteins was carried
out in LFQ-analyst (Shah et al., 2020) platform. Data were normalized
based on the assumption that the majority of proteins do not change
between conditions. In summary, contaminated proteins, proteins
identified “only by site” and reverse sequences were filtered out.
Proteins identified only by a single peptide and those not consistently
identified/quantified in the same condition were also removed. The LFQ
protein intensity values were log2 transformed, and missing values were
imputed using “missing not at random” method. Protein-wise linear
models, combined with empirical Bayes statistics were used for the
differential expression analyses. A cutoff of the adjusted p-value of 0.05
(Benjamini-Hochberg method), along with a log2 fold change of 1 was
applied to determine significantly up and downregulated proteins
between 3D and 2D EVs. Differentially expressed proteins in the
heatmap were clustered using k-means clustering.

2.7 Functional annotation and pathway
enrichment analysis

Biological significance of differentially expressed protein list was
determined by performing functional annotation, Gene Ontology (GO),
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis using the Database for Annotation, Visualization and Integrated
Discovery (DAVID) online platform (Huang et al., 2009; Sherman et al.,
2022). DAVIDdetermined the proportion of genes with a specific GOor
KEGG functional annotation in the differentially expressed gene list
relative to the proportion of those genes in the genome. All relevant
differentially enriched gene IDs were submitted to the DAVID
Bioinformatics platform for GO and KEGG pathway enrichment
analysis. Gene set enrichment analysis of KEGG pathways were
performed using the clusterProfiler package in R (Yu et al., 2012;
Wu et al., 2021). A complete protein list with log2 fold change and
FDR was submitted to clusterProfiler to perform gene set enrichment
analysis and visualization. FDR significance cut off was ≤ 0.05.
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FIGURE 1
Characterization of nanoparticles derived from trophoblast cells grown in 3D and 2D cell culture systems as EVs (A). Total particle count of nanoparticles
released by 3D vs. 2D EVs (B). The number and size profile of both 3D vs. 2D EVs exhibited a typical distribution of particles mainly less than 200 nm in size (C).
Mean size of nanoparticles released by 3D vs. 2D EVs (D). Distribution of size and concentration of fluorescent nanoparticles released by 3D vs. 2D EVs (E). Mean
size of fluorescent nanoparticles released by 3D vs. 2D EVs. t-NPs: total nanoparticles, fl-NPs: florescent nanoparticles. (F). Zeta potential of nanoparticles
and fluorescently labelled nanoparticles in 3D vs. 2D EVs. tNPs: total nanoparticles, flNPs: florescent nanoparticles. EV morphology was assessed using TEM
images of isolated EVs secreted from (G). 2D and (H). 3D cell culture systems. Scale bar: 1,000 nm. Black arrow shows EVswith typical characteristics (I). The heat
map illustrates the presence and enrichment of specific proteins in 2D EVs compared to 2DCM (2D_CM) and 3DEVs compared to 3DCM (3D_CM). The proteins
reported in the heat map show enrichment of standard EV markers in 2D and 3D EV preparations. The mean LFQ value for each protein corresponding to each
sample typewas log transformed and re-scaled before visualization in the heatmap. All the experiments were conducted in biological triplicate (n= 3), data were
presented as mean ± SD, and p < 0.05 considered statistically significant.
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2.8 MFGE8 enzyme linked
immunosorbent assay

Cell culture supernatants (1 mL of media) were centrifuged at 400 g
for 10 min to remove any contaminating cells, followed by centrifugation
at 4000 g for 10 min and 10,000 g for 10 min to remove other cellular
debris and apoptotic bodies. Samples were snap frozen in liquid nitrogen
before storing in −80°C. MFGE8 protein concentration was measured in
cell culture supernatants using a commercially available ELISA kit
(Human MFGE8 Quantikine ELISA Kit, R&D systems) according to
the manufacturer’s instructions. The optical density of each well was
measured using a microplate reader set to 450 nm (Multiskan FC
microplate photometer, Life Technologies, China).

2.9 Preparation of EV depleted cell
culture media

EV depletion in FBS was carried out using methods described
previously (Godakumara et al., 2021). FBS was filtered using
Amicon ultra-15 centrifugal filters (100 kDa, MERCK KGAA,
Darmstadt, Germany) at 3,000 g for 55 min and then used as a
10% supplementation to prepare RL95-2 cell culture media.

2.10 Statistical analysis

The size and concentration of EVs were expressed as mean ± SD.
Statistical analysis was performed using One-way ANOVA (for multiple
comparisons) or unpaired t-test. p-values < 0.05 were considered
statistically significant marked with an asterisk (*) symbol. All the
experiments were performed in three biological replicates.

2.11 Experimental design

2.11.1 Determining the EV secretion from 2D vs 3D
JAr culture

JAr cells were seeded in 1 × 106 cells in 5 mL of supplemented RPMI
1640medium in 60mmpetri dishes. Cells were kept on a gyratory shaker
(Biosan PSU-2T, Riga, Latvia), set at 295 rotations per minute (rpm) at
5% CO2 in 37°C for 48 h to form spheroids (3D culture). Similarly JAr
cells were grown monolayer culture by growing 1 × 106 cells in 5 mL of
supplemented RPMI 1640medium in 60mmPetri dishes (2D culture) at
5% CO2 in 37°C for 48 h. AAfter 48 h, the JAr spheroids and monolayer
cultures were washed with FBS-free complete medium. Next, the cell
culture medium was replaced with FBS-free medium, and cells or
spheroids were incubated for another 6 h before collecting the cell
culture conditioned medium. Finally, cell culture supernatants were
collected (100mL each) and EVs were isolated. Particle concentration
in EV samples were determined using nanoparticle tracking analysis.

2.11.2 Determining the physico-chemical
characteristics of the EVs derived from 2D vs
3D culture

EVs from JAr cells grown in 3D and 2D microenvironments
were isolated using sequential centrifugation followed by SEC. Then
the physical and biochemical characteristics (size, concentration,

zeta potential) of the EVs were further analysed using NTA and LC-
MS/MS. The protein cargo of 2D EVs was compared with 3D EVs
using LC-MS/MS.

2.11.3 Determining the MFGE8 secretion from
receptive endometrial epithelial cells in response
to 2D and 3D JAr EVs

MFGE8 secretion from EECs in response to 2D and 3D JAr EVs
was determined using RL95-2 cells. The cells were seeded in 12 well
plates (1 × 105 cells/mL) and grown until they reached 85%
confluency. After reaching the desired confluency, the cells were
washed with DPBS, and EVs derived from 2D and 3D JAr cells were
supplemented at a concentration of 1 × 109 particles/mL in EV
depleted medium and incubated for 24 h. Cell culture supernatants
were collected at both 0 h and 24 h, and MFGE8 protein secretion
from RL95-2 cells in response to 2D and 3D JAr EVs within 24 h was
determined.

2.11.4 Determining the functional implications of
2D and 3D JAr EVs

Finally protein cargo of 3D and 2D JAr EVs were compared with
proteins secreted by human embryos (proteins in human blastocoels)
prior to implantation (Poli et al., 2015) and proteins related to embryo
implantation (Díaz-Gimeno et al., 2011; Enciso et al., 2018).

3 Results

3.1 Isolation and characterization of 3D and
2D EVs from human trophoblast cells

EVs from 3D and 2D trophoblast cells were isolated and
characterized using the methods described above. Total particle
count was significantly higher in 3D EVs compared to 2D EVs
(Figure 1A). The normalized EV size distribution graph illustrated
that the majority of EVs produced by the two culture systems were
predominantly in the 100–200 nm size range (Figure 1B). However,
mean particle size was higher in 3D EVs compared to 2D EVs
(Figure 1C). Next, membrane labelling of the nanoparticles was
performed with CMG dye to characterize the EV population more
specifically. The lipophilic membrane dye labelled a total of 55.81%
of nanoparticles in the 3D EV samples and 53.77% in the 2D EV
samples, respectively (Figure 1D). However, the average size of the
labelled particles did not exhibit significant differences between 3D
and 2D EVs (Figure 1E). The zeta potential of the 3D and 2D sample
nanoparticles were similar. Interestingly, the zeta potential of the
fluorescently labelled nanoparticles in 3D vs. 2D EVs was
significantly different with 3D EVs having a more negative zeta
potential (Figure 1F). TEM analysis demonstrated that both 3D and
2D nanoparticles were less than 200 nm in diameter and uniform in
nature with typical EV characteristics such as dual membrane, cup
shape, and circular cross section (Figures 1G,H). Mass spectrometry
analysis of EV samples and their respective conditioned media
samples showed that classical EV protein markers such as CD9,
CD81, CD63, FLOT1, and TSG101 were enriched in both 3D and 2D
EVs samples compared to their respective CM samples
(Supplementary Table S1). Enrichment of EV protein markers in
3D and 2D EVs and CM samples were semi quantitatively visualized
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in the heat map (Figure 1I). In total 11 EV protein markers and
1 purity marker (LDHA) were shown in the current analysis,
confirming that our EV samples are enriched with the majority
of known EV proteins. LDHA did not show significant enrichment,
suggesting the EV preparations mainly consists of EVs, with limited
non EV protein contaminations. EV protein markers were selected
according to the five-component framework of MISEV guidelines
for reporting protein composition of EVs (Welsh et al., 2024).

3.2 Proteomic composition of 3D vs 2D EVs

To gain insight in to whether the cell culture growing conditions
affected the protein expression in 3D and 2D cell derived EVs, we
analysed their protein cargo profile using label-free mass
spectrometry. A total of 1,313 proteins were confidently detected
with FDR< 0.01 in at least one of the three replicates of the 3D and
2D EV groups, where 1,204 proteins were detected in 3D EV and
1,159 proteins in 2D EV group, respectively. The principle
component analysis and hierarchical clustering separated EVs
derived from specific cell types, indicating global proteomic
changes based on cell culture conditions (Figures 2A,B). Total of
1102 proteins were found to be common to both EV types.
Interestingly, 102 proteins were uniquely detected in 3D EVs,
whereas 57 proteins were uniquely detected in the 2D EV
group. Of the 1,102 proteins that were common to both EV
types, 80 were common with the top 100 EV proteins reported in
Vesiclepedia database (Figure 2C). The 3D and 2D EV proteomic
profile shared significant similarity with previously reported
proteins profile of human trophectoderm stem cell derived EVs
as well (Figure 2D). The commonly shared proteins included
antioxidants (PRDX2, PRDX6), adhesion molecules (ITGB1,
ITGB5) and cytoskeleton regulators (RAC1 and RHOA) etc.
These proteins can play roles in antioxidant defences, cell
adhesion and signal transduction processes which are considered
important in embryo implantation (Poh et al., 2021). Differential
expression analysis of the protein composition between 3D and 2D
EVs resulted in 153 differentially expressed proteins (DEP). Of the
153 proteins (Supplementary Table S2), 120 proteins were
upregulated, and 33 proteins downregulated. Among the
153 protein changes, 11 proteins are known to be classical EV
proteins according to vesiclepedia (ANXA2, GNB1, SLC3A2, BSG,
GNAS, RAB5C, RAC1, GNB2, ATP1A1, RAP1B, and RALA)
(Figures 2E,F).

GO and KEGG pathway analysis provided insight in to the
biological background of the DEP (Figures 3A,B). The significantly
enriched (FDR< 0.05) GO biological terms (BP) revealed that cell-
cell adhesion, protein localization to plasma membrane, and cell
migration were enriched in EVs from 3D cells compared to 2D cells.
For molecular function (MF), pathways such as GDP binding,
cytoskeleton protein binding, and cadherin binding were
enriched. The differentially expressed protein list was mapped to
the KEGG database, and it was found that the identified proteins
were enriched in 25 pathways (FDR< 0.05). Taken as a whole,
pathways like ECM receptor interaction, adherens junctions, Ras
signalling pathway, focal adhesion, regulation of actin cytoskeleton,
and P13K-Akt signalling pathways were highly enriched in 3D EVs
compared to 2D EVs (Supplementary Tables S3, S4).

The gene set enrichment analysis of KEGG pathways
(Supplementary Table S5) revealed pathways such as regulation
of actin cytoskeleton, adherent junctions, Ras signalling and Rap
signalling were profoundly upregulated in 3D EVs compared to 2D
EVs, whereas pathways like cholesterol metabolism and galactose
metabolism were downregulated (Figure 4).

3.3 Endometrial epithelial cells sense the
trophoblastic EV cargo changes

The MFGE8 secretion was increased in both 3D and 2D EV
treated RL95-2 cells compared to its control. Increased
MFGE8 secretion was seen in 2D EV treated RL95-2 cells
compared to 3D EVs suggesting that 3D and 2D EVs have
different potencies in trophoblast EV mediated cellular
signalling (Figure 5).

3.4 Trophoblast cell derived extracellular
vesicles may have the potential to prepare
endometrium for embryo implantation

Trophoblasts cells are critical cellular players of embryo
implantation. Here, we investigated whether the trophoblast
analogue JAr cell derived EVs resemble the embryo secretions
in humans (blastocoel proteome from embryos produced for
in vitro fertilization). We identified around 115 proteins that are
commonly found within embryo secretions and EVs secreted by
trophoblastic cells (Supplementary Table S6). However, a total
of 120 proteins were shared between 3D EVs and embryo
secretions, whereas 117 proteins were shared between 2D EVs
and embryo secretions. (Figure 6A). Among them, 115 proteins
common to 2D EVs, 3D EVs and human embryo secretions.
Some of these proteins were known to play roles in endometrial
receptivity (ANXA2, CALR, STMN1) (Cheng et al., 2009; Gou
et al., 2015; Yoshie et al., 2021), antioxidant defence (PRDX1,
PRDX2) (Wu et al., 2017), trophoblast attachment and invasion
by actin polymerization (TAGLN2) (Liang et al., 2019)
etc. (Figure 6B).

Through manual searching of the list of proteins (115) that
were common to both trophoblast EVs and human embryo
secretions, we discovered additional proteins that may play a
role in the process of embryo implantation (Table 1). The
common proteins for EVs and embryo secretions have been
indicated in the process of embryo implantation and hence
may have a therapeutic value in preparing the endometrium
for embryo implantation.

4 Discussion

Both 3D and 2D cultures are recognized as having
applications in cancer research, drug discovery and in
understanding physiological and pathological processes within
biological systems. Three dimensional cultures are becoming
more attractive in the field of drug discovery and tissue
engineering owing to their ability to better mimic the in vivo
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cellular microenvironment. While the majority of EV studies have
been conducted using EVs from 2D cell cultures, there is evidence
suggesting that 2D and 3D cell secretomes and EV compositions
differ. With the increasing interest in EVs as a therapeutic
modality to improve the embryo implantation process,
standardized production of EVs remains a challenge. While 3D
cultures offer opportunities to scale up EV production, how the
cellular micro-environment could affect EV production,
bioactivity, and molecular composition remain elusive.

Therefore, we studied whether the composition of EVs derived
from cells grown in 3D and 2Dmicroenvironment is different and
how this affects the EVmediated cellular communication using an
embryo implantation model. In the current study, we show that
EV signalling can be tuned based on the proteomic composition of
the EVs, which seems to depend on the cellular
microenvironment where the donor cells were grown.

There are limited availability in primary tissues to isolate fresh
trophoblast cells, therefore cell line derived from normal placenta,

FIGURE 2
Proteomic profile of 3D vs 2D EVs. (A) Principle component analysis of protein composition of 3D vs. 2D EVs showing distinctive proteomic profiles.
(B)Heat map of clustering among samples based on differentially enriched proteins between 3D and 2D EVs. (C) Venn diagram displaying the number of
proteins identified in EVs derived from cells grown in 3D and 2D conditions and vesiclepedia most common proteins (top 100 proteins). (D) Venn diagram
displaying the number of proteins identified in EVs derived from JAr cells grown in 3D and 2D conditions and proteins enriched in human
trophectoderm stem cell derived EVs (Poh et al., 2021). (E) Venn diagram of EV proteins differentially expressed between 3D and 2D culture conditions
and vesiclepedia top most common proteins (top 100 proteins). (F) Volcano plot showing differential expressed proteins between 3D and 2D EVs.
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embryonal carcinomas and malignant tissue with evidence of
trophoblast differentiation are imperative for EV production and
functional studies. Some cell lines used as mimics of trophoblast
cells are JAR, BeWo, and JEG-3, and these cell lines produce
hormones and show cell growth similar to normal trophoblast cells
(Grummer et al., 1994). These cell lines can be far from perfect,
however, they can be used to generate significant interventional
targets for clinics that can be later validated for more appropriate
source materials or used for EV engineering purposes. Additionally,
obtaining enough material for EV isolation from cell culture is
challenging. EV studies typically employ three cell culture
techniques, which includes, monolayer 2D culture, scaffold-based 3D
culture, and scaffold-free 3D culture (Langhans, 2018; Chen andWang,
2020). EV production can be scaled up using cell growth in bioreactors,
induction of EV secretion from cells using stressors (by modulation of
culture conditions, or by using physical and chemical stimulants) and
by cell fragmentationmethods (Syromiatnikova et al., 2022). The choice
of cell culture method mostly depend on the specific application. In 2D
monolayer cultures, cells grow flat in shape and are in contact with their
neighbouring cells, cell culture media, and the culture vessel. However,

they lack spatial polarization and cell-extracellular matrix (ECM)
interactions (Kapałczyńska et al., 2016). In scaffold based 3D
cultures, cells are basically in contact with the neighbouring cells,
scaffold and cell culture media. In scaffold-free 3D cultures, cells are
in contact with neighbouring cells and the culture medium. Non-
scaffold-based 3D cultures are suspension cultures grown non-
adherently to the culture surface such as hanging drop cultures,
magnetic levitation and rotary cell cultures. Scaffold-based 3D
cultures have concerns regarding biocompatibility and utility in
clinical applications as they use non-human material. The cells in
scaffold free culture self-assemble and secrete their own ECM, therefore
allow more accurate cell-cell interactions, special organization and
physiological responses (Vu et al., 2021). In general 3D culture can
be easily scaled up for the large production of EVs, and rotary-shaker
base suspension culture is an easy way of producing trophoblast
spheroids for EV isolation (Huh et al., 2011; Syromiatnikova
et al., 2022).

In the current study, we isolated EVs from trophoblast CM,
comparing cells grown as a monolayer and spheroids from rotary
shaker-based suspension culture. EVs can be isolated from

FIGURE 3
GO and KEGG pathway analysis of differentially expressed proteins between 3D and 2D EVs. (A) GO analysis of biological pathways (BP), cellular
components (CC) andmolecular function (MF). (B) KEGG enrichment pathways of differentially expressed proteins between 3D and 2D EVs. The colour of
the bubble chart show the adjusted p. value and gene count in each term is represented by bubble size.
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source materials using different EV isolation techniques such as
SEC, ultracentrifugation (UC), filtration, and precipitation
methods (Welsh et al., 2024). Methods such as filtration and
precipitation result in more protein contaminants and non EV
particles in EV preparations. Therefore, the SEC and UC are
common methods of EV isolation and can separate EVs from
non EV particles and proteins to greater extent. Emerging
evidence suggest that EVs produced by SEC has more intact
biophysical properties and higher functionality compared to EVs
from UC (Mol et al., 2017), therefore we used SEC to isolate EVs.
Then, the physical and biochemical properties of the 3D and 2D
EVs were characterized according to the guidelines of the
Minimal information of Studies of EVs (Théry et al., 2018;
Welsh et al., 2024). The secretion dynamics of EVs secreted
by 2D vs 3D cells showed that 3D cells secreted more EVs
compared to 2D cells, when the similar number cells and time
in culture were used for producing EVs. The observed

discrepancy in EV production rates between the two culture
systems may stem from differences in cell proliferation or how
cells are distributed within each culture model. These findings
are consistent with the previous reports that suggested active
secretion of EVs from 3D culture compared to 2D culture
(Villasante et al., 2016; Rocha et al., 2019; Sun et al., 2023).
This suggest the possibility of scaling up 3D cell culture for
standardized and effective EV production (Guerreiro et al.,
2018). While studying real-time EV secretion over extended
periods could offer a more comprehensive understanding of
EV production efficiency, current technological limitations
hinder such investigations. Moreover, spheroids in culture for
extended periods of time may start to develop a necrotic core
that pose the risk of dying cells releasing EVs mainly consisting
of apoptotic bodies rather than exosomes or microvesicles
(Abdollahi, 2021). Majority of the EVs derived from both
culture systems fell within the size range of 100–200 nm that

FIGURE 4
Gene set enrichment analysis (GSEA) of KEGG pathways. The colour of the bubble chart show the adjusted p. value and gene count in each term is
represented by bubble size.
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is typical for small EVs, and TEM images showed that the EVs
had a typical cup-shaped morphology. There were slight
differences in the size of the particles derived from 2D culture
vs 3D culture, where 3D-derived particles were slightly larger
than the 2D derived particles. Previous reports also suggest that
there can be size differences in EVs of 2D and 3D cell origin
when measured with NTA (Thippabhotla et al., 2019; Clément
et al., 2022). NTA used to measure the EV size and concentration
is based on the principle of light scattering and Brownian
motion; however, it is incapable of avoiding any non EV
particles from their analysis. Techniques to more specifically
label EVs based on antibodies or lipid membrane dyes have been
emerged during recent years. To differentiate between EVs and
non-EV particles, EVs can be labelled with lipid membrane dyes
and then detected under fluorescent mode of the NTA
(Midekessa et al., 2021). In contrast to the NTA results,
fluorescent NTA showed that the size of the nanoparticles of
EV origin derived from both 2D and 3D cells were not different.
However, it is also important to keep in mind that this
techniques can introduce labelling artefacts leading to over or
underestimating the real EV numbers (Welsh et al., 2024). The
zeta potential of fluorescent-labelled nanoparticles were
different between 2D and 3D EVs, where 3D EVs showed a
more negative charge. ZP is one of the most useful tool to
investigate the colloidal stability of the nanoparticles, and this
characteristics is important in nanoparticle stability and in
understanding their pharmacokinetics while preparing
nanomedicines (Midekessa et al., 2020). The EVs generated
from 3D cells seem more stable compared to 2D EVs, further
encouraging their suitability as an EV bio-manufacturing

platform. Both 2D EVs and 3D EVs were enriched with
classical EV protein markers such as CD9, CD81, CD63, and
ITGB. Altogether, this confirmed that EVs could be isolated from
both culture conditions and both EV types were of a typical cup
shaped with similar mean size range and enriched with classical
EV markers.

We next examined the effect of cell culture growth
conditions on EV protein cargo composition. The cell growth
conditions impacted the proteomic composition of EV cargo.
Overall protein secretion was more active in 3D culture
compared to 2D culture (more proteins identified in 3D EVs
compared to 2D EVs), which was consistent with previous
findings (Kusuma et al., 2022). The 2D and 3D EV proteome
were clearly distinguishable, with around 153 proteins
differentially expressed in 3D EVs compared to 2D EVs.
Among the proteins identified, classical EVs proteins were
also found. Both the 3D and 2D EV proteomic profiles shared
proteins with those previously identified in human
trophectoderm stem cell-derived EVs, indicating that the
samples were indeed enriched with EVs. Among the
differentially expressed proteins, 11 proteins were among the
top most common EV proteins, suggesting that, EV cargo
protein loading was different in 3D EVs compared to 2D
EVs. Interestingly, among these proteins ANXA2 (Garrido-
Gómez et al., 2012; Wang and Shao, 2020), SLC3A2 (Poh
et al., 2021), and RAC1 (Tu et al., 2016) were identified as
critical for embryo adhesiveness to the human endometrium.
The key processes of proteins specially enriched in 3D EVs
compared to 2D EVs were involved in cell-cell adhesion, cell
migration, ECM receptor interaction, regulation of actin-

FIGURE 5
MFGE8 secretion from RL95-2 cells in response to 3D vs 2D EVs.
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cytoskeleton and the Ras signalling pathway among others.
These pathways were previously highlighted as enriched in
3D culture derived EVs (Kusuma et al., 2022). There is no
clear consensus on the exact mechanisms of EV secretion,
however, cytoskeleton components play important role in EV
secretion (Holliday et al., 2019). EV formation and release from
a cell involve changes in actin polymerization followed by
changes in contraction proteins, and fusion machineries
(Rädler et al., 2023). Therefore, we can postulate that
morphological changes in cells in spheroid form compared to
a monolayer might affect cytoskeleton proteins, leading to
changes in EV protein cargo as well. The characteristics of

the cellular microenvironment can vary based on several
factors, including the properties of the extracellular matrix,
the nature and physical properties of the cells themselves
(whether they are of the same origin or not), the presence of
bioactive molecules like chemokines, cytokines and growth
factors secreted by cells, and mechanical forces exerted by the
surrounding fluid (Barthes et al., 2014). Consequently, cells
cultivated in 2D and 3D environments are expected to exhibit
different physiochemical properties. For instance, in 3D rotary
culture, the movement of cell culture media generates variations
in fluid shear stress on cells compared to the static environment
of 2D culture. Fluid shear stress can be transmitted to the cell

FIGURE 6
Common proteins between trophoblastic EVs and human embryo secretions. (A) Comparison of 3D and 2D trophoblast cell derived EVs with
secretions of human embryos prior to implantation (Poli et al., 2015). (B) Comparison of proteins common to trophoblast EVs and human embryo
secretions to known endometrial receptivity markers (Díaz-Gimeno et al., 2011; Enciso et al., 2018).
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plasma membrane, potentially influencing tension at cell-cell
junctions and subsequently altering the proteins associated with
these junctions (White and Frangos, 2007). The spheroid
formation take few steps. In the first step cadherin-cadherin
and integrin binding to ECM form a loose cellular aggregate
which is further compacted over time. After the cellular re-
organization period cell aggregate morphologically transit in to
spheroids and this is mainly mediated by cadherins (Egger et al.,
2018). Interestingly the trophoblast EVs generated in 3D culture
compared to 2D culture also seems to reflect these changes as
shown in the pathway analysis.

The functional effects of 2D and 3D EVs were assessed in
relation to EV-mediated embryo-maternal communication. We
previously identified that the MFGE8 protein secretion increases in
receptive endometrial epithelial cells in response to trophoblast-
derived EVs, suggesting it as a potential marker of EV mediated
intercellular communication between the embryo and the
endometrium. To gain insight into the effects of molecular
cargo differences on EV signalling, we assessed
MFGE8 secretion from EEC in response to 2D and 3D EVs,
respectively. MFGE8 secretion was increased in EECs treated
with both 2D and 3D EVs. Nevertheless, the data suggested that
there are distinct differences in the activity of 2D and 3D EVs in
tuning MFGE8 secretion from endometrial cells. Interestingly, the

effects of 2D EVs on the increase in MFGE8 secretion was higher
than that of 3D EVs showing differences in EV potency. Increased
potency of 2D EVs compared to 3D EVs has been reported
previously in mesenchymal stem cell derived EVs as well (Sun
et al., 2023). It can be postulated that the tuning of paracrine EV
signalling depends up on their parent cell characteristics and
microenvironment in which they were grown. MFGE8 protein
expression is required for embryo attachment (Schmitz et al.,
2014). Additionally, MFGE8 can influence endometrial stromal
cell apoptosis, thereby facilitating embryo invasion (Riggs et al.,
2012). Therefore it can be postulated that 2D and 3D EVsmay have
different potencies in mediating embryo implantation process.
Previous literature suggest that molecular changes between 3D
and 2D EV preparations may be implicated in other cellular
processes such as the immunological processes, extracellular
matrix or membrane re-organization or cell proliferation and
migration processes (Thippabhotla et al., 2019). However, there
are also instances where the molecular cargo differences between
2D and 3D EVs do not translate into functional disparities
(Kusuma et al., 2022). So more studies are required in this
context for different cell types and culture conditions.

Finally, the 2D and 3D EV protein cargo composition was
compared with secretions from the single human embryo prior to
implantation and with known endometrial receptivity markers.

TABLE 1 Proteins commonly shared among pre-implanting single embryo secretions, 3D and 2D trophoblast EVs and their known role in the process of
embryo implantation.

Protein
symbol

Protein name Implications in embryo implantation,
embryo development and endometrial
receptivity

References

S100A14 S100 calcium binding protein A14 Highly enriched in trophectoderm and have a role in trophoblast
invasion during embryo implantation

Munch et al. (2016)

LDHA Lactate dehydrogenase A Maintain trophoblast cell cycle and proliferation via PI3K/AKT/
FOXO1/CyclinD1 pathway

Gardner, 2015; Zhu et al. (2023)

PGK1 Phosphoglycerate kinase 1 Plays a role in endometrial decidualization Tong et al. (2018), Long et al. (2023)

G6PD Glucose-6-phosphate dehydrogenase G6PD deficiency induced disruption of redox balance leads to
diminished NADPH and elevated lipid peroxidation in embryo
causing embryo lethality

Nicol et al. (2000)

ALDOA Aldolase, fructose-bisphosphate A Known exosome protein originated from conceptus and found
within uterine fluid of cows and play a role in embryo endometrial
interactions during embryo implantation. Increased in Ishikawa
cells treated with trophectoderm derived EVs and known to be
responsible for Neutrophil activation and immune response

Nakamura et al. (2016), Poh et al.
(2021)

NASP Nuclear autoantigenic sperm protein Shown as required for bovine pre-implantation embryonic
development and is associated with cell proliferation, DNA
replication

Nagatomo et al. (2016)

PDIA4 Protein disulfide isomerase family A
member 4

PDI is known to regulate expression of implantation related
molecules and PDI4 is specifically altered in receptive
endometrium and plays a role in embryo attachment

Fernando et al. (2021)

PPIA Peptidylprolyl isomerase A PPIA is found in uterine fluid EVs isolated from fertile female and
known to be associated with success of implantation

Rai et al. (2021)

PDIA3 Protein disulfide-isomerase A3 PDIA3 is known to regulate the proliferation and apoptosis
through MDM2/p53 pathway

Mo et al. (2020)

BASP1 Brain acid soluble protein 1 Epithelial loss of progesterone receptor (PGR) resulted in
downregulation of BASP1 along with impaired progesterone
(P4) signalling, altered cell differentiation, and disrupted
signalling pathways, leading to embryo implantation failure

Gebril et al. (2020)
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The majority of those proteins common to trophoblast EVs and
human embryo secretions were implicated to be involved in the
processes of embryo development, endometrial receptivity, and
implantation suggesting the potential value of trophoblastic EVs
as a therapeutic tool to facilitate embryo implantation process.
Trophoblast cells undergo a transformation into a significant
portion of the placenta, an essential fetal organ that facilitates the
connection between the fetus and the maternal bloodstream.
Within this structure, they release a substantial number of
vesicles into the maternal bloodstream (Tong and Chamley,
2015). This vesicle transfer plays a crucial role in facilitating
feto-maternal communication, aiding in fetal development,
mediating maternal immune tolerance, and sustaining the
pregnancy (Buca et al., 2020; Martin et al., 2022).

Less standardized protocols for EV production hinders
progress in their clinical translation. Although 3D culture is
recognized for better mimicking the in vivo cellular status
compared to 2D culture, there remains a gap in understanding
EV characteristics, composition, and signalling in relation to cell
growth conditions. According to previous reports multiple factors
can affect EV production from cells. For example, mesenchymal
stem cells cultured in both 2D and 3D environments cell culture
conditions exhibited variations in cell secretome and EVs, thereby
impacting cellular functionality (Carter et al., 2019; Kusuma et al.,
2022). Additionally, cell culture media composition (such as
presence of FBS, EV depleted FBS or serum starved media) may
also affect the EV production and their characteristics (Lehrich
et al., 2021). Interestingly, bidirectional fluidic flow in primary
liver cell cultures has been shown to alter cellular metabolic activity
significantly compared to 2D static culture, potentially due shear
stress sensing, increased metabolic and gas exchange, or through
accumulation of growth factors (Esch et al., 2015). Therefore, it is
crucial to consider factors such as culture status (static or flow
culture) or composition, fluid flow rate, fluid flow direction and
pattern of cell-matrix interactions when producing EVs, as these
can impact not only the cells but also the EVs they generate,
leading to changes in cellular signalling. In conclusion, this study
provides compelling evidence of how changes in the cellular
microenvironment are reflected in the protein cargo of EVs,
subsequently affecting EV-mediated intercellular
communication. Nevertheless, the EV characteristics,
composition and potency may also vary depending on the cell
type from which they originate. Therefore, it would be valuable to
investigate these aspects in primary trophoblast cells or other cell
lines of trophoblastic origin. Future studies should focus on
investigating the potential effects of each of the above factors
on EV production in different culture systems to establish
standardized protocols for EV production for translational or
other purposes.

5 Conclusion

In conclusion, the role of EVs in embryo maternal
communication is beginning to be unveiled, opening new
avenues for the development of diagnostics and therapeutics.
However, this is largely limited by a lack of standardized bio-
manufacturing methods for EV mass production. While 3D

cultures offers opportunities to scale-up EV production, how
the cellular microenvironment could affect EV production,
bioactivity and molecular composition remained elusive. Our
comparison of EVs generated by 2D and 3D cells showed a
remarkable variation between the trophoblast EVs cargo
proteome and functionality within the embryo implantation
model. The findings suggest that there is an effect of cellular
architecture on EVs generated from them, which then probably
has an effect on the potency of EV signalling at the recipient cell
level. As a whole, caution is warranted when selecting an EV
manufacturing platform, especially for assessing the functional and
therapeutic potential of EVs.
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