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Alzheimer’s disease (AD) is the leading neurodegenerative pathology in aged
individuals, but many questions remain on its pathogenesis, and a cure is still not
available. Recent research efforts have generated measurements of multiple
omics in individuals that were healthy or diagnosed with AD. Although
machine learning approaches are well-suited to handle the complexity of
omics data, the models typically lack interpretability. Additionally, while the
genetic landscape of AD is somewhat more established, the proteomic
landscape of the diseased brain is less well-understood. Here, we establish a
deep learning method that takes advantage of an ensemble of autoencoders
(AEs) — EnsembleOmicsAE–to reduce the complexity of proteomics data into a
reduced space containing a small number of latent features. We combine brain
proteomic data from 559 individuals across three AD cohorts and demonstrate
that the ensemble autoencoder models generate stable latent features which are
well-suited for downstream biological interpretation. We present an algorithm to
calculate feature importance scores based on the iterative scrambling of
individual input features (i.e., proteins) and show that the algorithm identifies
signaling modules (AE signaling modules) that are significantly enriched in
protein–protein interactions. The molecular drivers of AD identified within the
AE signaling modules derived with EnsembleOmicsAE were missed by linear
methods, including integrin signaling and cell adhesion. Finally, we characterize
the relationship between the AE signaling modules and the age of death of the
patients and identify a differential regulation of vimentin and MAPK signaling in
younger compared with older AD patients.
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1 Introduction

Alzheimer’s disease (AD) is a degenerative disease of the brain that presents with
decline of multiple cognitive areas including memory, language, spatial recognition,
sociality, behavior, and motor functions (Scheltens et al., 2021). The majority of AD
cases occur in individuals over the age of 65 that do not carry predisposing mutations
(sporadic, late-onset AD, about 99% of the reported cases) (AD facts and figures, 2024). As
life expectancy grows across the globe, increasing numbers of individuals are developing AD
(Hou et al., 2019) and a cure is direly needed. Several factors are known to contribute to the
progression of AD, including alterations of the brain cells (De Strooper and Karran, 2016)
and vasculature (Sweeney et al., 2018), inflammation (Sweeney et al., 2018), accumulation of
amyloid beta and hyperphosphorylated tau (Long and Holtzman, 2019), and genetic
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predisposition (Gatz et al., 2006; Jansen et al., 2019). However, the
causes underlying the disease are still not known (Breijyeh
et al., 2020).

In recent years, comprehensive genomics, epigenomics,
transcriptomics, proteomics (Higginbotham et al., 2020), and
metabolomics profiles of postmortem brain and liquid biopsy
samples have been obtained from large cohorts of AD and
control individuals (Allen et al., 2016; Bai et al., 2020; Bennett
et al., 2018; Wang M et al., 2018). The analysis of large-scale
molecular data can provide important insights on drivers of AD.
Machine learning methods are particularly well-suited for the
analysis of complex data and have been shown to be able to
identify distinct signaling nodes compared with linear methods
(Beebe-Wang et al., 2021). Important advances have been made
in the field of analyzing brain images with the aid of deep learning
(Jo et al., 2019), including the recent development of a model that
can distinguish abnormal brain connections occurring at earlier or
later stages of AD from magnetic resonance images (Zuo et al.,
2021). More recently, the same authors presented a unified
framework to integrate structural and functional brain images to
predict the stage of AD with high accuracy (Zuo et al., 2023). In
terms of the applications of deep learning to the analysis of
molecular expression data, the models typically suffer from poor
interpretability, which makes it difficult to understand the
underlying biology (Ching et al., 2018; Panizz, 2023).
Additionally, previous studies focused primarily on the analysis
of RNA-sequencing data (Beebe-Wang et al., 2021), while an effort
to integrate and interpret proteomics data from postmortem brain
samples across multiple patient cohorts is, to date, lacking.

Since protein levels can be regulated independently from their
transcripts (Aebersold et al., 2018; Li and Vacanti, 2023), protein
abundances offer a functional snapshot of cellular states. Here, we
focused on the study of the brain proteome to gain insights into the
cellular functions that are affected in AD. We present
EnsembleOmicsAE, a deep learning-based framework to integrate
multiple AD datasets and identify the biological nodes that drive the
disease phenotype. Our model relies on a type of neural network
called an autoencoder, which is well-suited to identify important
signaling nodes as it learns a condensed representation of the data
(Simidjievski et al., 2019). Autoencoders include several layers each
containing multiple computational units or “neurons.” The layers
are arranged to form an “hourglass” architecture, which includes
two identical mirror-imaged components called the encoder and the
decoder, connected by a small central layer termed the latent layer
(Y. Wang et al., 2016). In the latent layer, the model learns a set of
“latent features,” which are a condensed representation of the data,
holding the key information for reconstructing the input in the
decoder. Studies on neural networks in the field of image recognition
have clarified that neurons within shallower layers are able to detect
simple features, while neurons within deeper layers learn to detect
progressively more complex features (Lee et al., 2009). Therefore, we
reasoned that each neuron within the latent layer should learn to
detect high-level biological features that are important for describing
the difference between the control and the AD brain proteomes. For
this reason, we set out to develop an algorithm to quantify the
contributions of individual proteins relative to each latent feature
learned by the neurons in the latent layers. This aspect of our
algorithm is innovative because it identifies features that are

important for individual neurons, as opposed to existing
methods, which identify features that are important for the
model as a whole (Ching et al., 2018). Finally, our analysis
identifies a signaling hub that is over-activated in younger
compared with older AD patients and involves a regulation of
the cellular differentiation process operated by the protein
vimentin (VIM) and the mitogen-activated protein kinases
MAPK1 and MAPK3.

2 Materials and methods

2.1 Bioinformatic analyses, statistics, and
data visualization

All analyses were conducted using Python (Rossum and Drake,
2009). Plots were generated using the libraries Seaborn (Waskom,
2021) and Matplotlib (Hunter, 2007). GO enrichment analysis was
performed using the package GOATOOLs (Klopfenstein et al.,
2018), and Fisher’s exact test was employed to evaluate the
significance of the enrichment. The web-based Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING; https://
string-db.org) (Szklarczyk et al., 2017) was employed for
protein–protein interaction analysis. Details on applied statistical
analyses are specified in the figures and corresponding legends.

2.2 Data processing

To develop the EnsembleOmicsAE model, we used the
following proteomics datasets available through the AD
Knowledge Portal (https://adknowledgeportal.synapse.org/
Explore/Data). The first dataset is the tandem mass tag (TMT)
proteomics data (syn22277191) from the Banner Sun Health
Research Institute (Banner) study. The second dataset is the
TMT proteomics data (syn26051803) from the Religious Orders
Study and Memory and Aging Project (ROSMAP) study. The third
dataset is the TMT proteomics data (syn24983526) from the Mount
Sinai Brain Bank (MSBB) study. To pre-process the data, we
performed the following steps. First, protein abundances
represented as TMT ratios were log2-transformed, if they were
not already. Proteins that had more than 20% missing expression
values were removed. In the cases where Ensemble gene IDs or
UniProt IDs were provided, the identifiers were converted to gene
symbols. When multiple proteins corresponded to the same gene
name, we collapsed them to a single gene-centric feature by taking
their median expression value representing more robust
quantifications, as well as to facilitate downstream biological
interpretation. The lists of all genes mapping to multiple
identifiers are provided in Supplementary Tables S1–S3. Protein
abundances were normalized to the median expression value of all
proteins for each patient, to assume an equal amount of total protein
analyzed for each sample. Protein abundances were further
normalized relative to the median expression value of all patients
for each protein, to adjust for differences in baseline protein
abundance and facilitate the identification of group of proteins
that follow similar patterns of regulation. Outlier samples were
identified using the Mahalanobis distance, and samples with a
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distance greater than one standard deviation over the mean distance
were removed. After data pre-processing, the datasets were
combined and the features that were common across the three
datasets were kept (Supplementary Figure S1A). This yielded a
dataset containing 673 samples and 6,362 features, including
6,360 quantified proteins and two clinical features, age at death,
and sex. The labels were the diagnosis of the patients, which was
either control, mild cognitive decline (MCI), or AD. The three
datasets contributed respectively: Banner: control, 89; AD, 86;
ROSMAP Round 1: control, 151; AD, 101; MCI, 91; MSBB: AD,
106; control, 26; MCI, 23. After combining all datasets, the protein
abundances were standardized to have similar distribution in the
three sets, by subtracting the median value from each individual
feature value and dividing by the standard deviation of the values for
the same feature. Then, all values were normalized to the median
value for each sample, to assume equal sample loading. The median
values were used for the standardization and normalization steps, to
obtain robust estimates of protein abundance that are less influenced
by outliers. Finally, each clinical feature was transformed to
numerical values with a distribution similar to that of the protein
expression data. Specifically, z-score normalization was applied to
the values for patients’ age at death. Sex was encoded as the negative
inter-quartile range value for male subjects and the positive inter-
quartile range value for female subjects (Supplementary Figure S1E).
UMAP analysis highlighted a poor separation between the three
sample groups (silhouette score of the UMAP embedding was 0.01,
Supplementary Figure S1B), while removal of the MCI samples
yielded a UMAP silhouette score of 0.15 and a visually clear
separation of the control and AD samples (Supplementary Figure
S1C). The MCI samples were therefore removed from subsequent
analysis, and the final combined dataset contained 559 samples
described by 6,362 features, including 6,360 quantified proteins and
2 clinical features, namely, age at death and sex.

2.3 Feature selection

Feature selection was performed independently on the female
and male datasets to preserve sex-specific molecular events linked
with AD. Additionally, we applied two approaches, i.e., the
f-statistic and the mutual information algorithm, to select
features that are associated with the outcome (control or AD)
both in a linear and non-linear manner. After separating the
combined dataset into a female and a male set, we applied the
ANOVA F-test to rank the proteins based on the extent to which
their expression levels are statistically different between the control
and diseased groups. Additionally, the mutual information (MI)
score (Kraskov et al., 2004) between each individual features and
the label (control or AD) was used to rank the features in the
female and male datasets. To test what would be an optimal
number of features to select, we created sets of selected features
of different sizes ranging from 7 to 6,360. For each set, 5% of the
total number of features selected comprised the top-ranking
features using the MI score in the female dataset, and another
5% comprised the top-ranking features using the MI score in the
male dataset; the rest of the features were selected using the
ANOVA F-test statistic. For each of the selected features of
different size, we calculated 1) the cumulative variance

explained by the first two principal components based on PCA
and 2) the UMAP silhouette score describing the separation
between the control and the AD groups described by the set
being analyzed (Figure 1D; Supplementary Figure S2D). The set
of 1,080 features selected for subsequent analyses is the union of
the top 585 proteins selected with the ANOVA F-test for the male
and female datasets and the top 54 (5% of 1,080) features ranked by
their MI score in the male and female datasets separately.

2.4 Training and evaluation of the
autoencoder models

All autoencoder models were built using the TensorFlow (Abadi
et al., 2016) and Keras packages. We constructed our network to
include an encoder and a decoder, which are identical mirror copies of
each other. The decoder contains the input layer, two hidden layers,
and a latent layer. The latent layer is both the last layer for the encoder
and the first layer of the decoder. The decoder then mirrors the
encoder, i.e., it contains two hidden layers and an output layer which
have the same number of neurons as those in the encoder (Figure 2A).
The neurons in the network layers are loaded with rectified linear unit
(ReLU) activation functions (Agarap, 2018). Each model was trained
for a maximum of 300 epochs with early stopping set to a value for
patience of 10 and the option to restore the best weights. The batch
size was set to 16, and we applied the Adam optimizer (Kingma and
Ba, 2014), with the option to clip gradients at the value of 0.1. These
settings were selected because they provided a good level of stability of
the models, allowing for the extensive hyperparameter tuning process
described in the Results section (Figure 2A). For all models, the
reconstruction loss is measured as the mean squared error of the
reconstructed data generated by the output layer compared to the
original data that were used as the input. The UMAP embedding of
the latent layer extracted from training on the whole training set is
recorded for each set of hyperparameters that are tested. The ensemble
models are constructed by combining 10 individual encoder models.
To generate the ensemble latent features, the latent features
generated with each individual encoder model are averaged with
the keras.layers.Average () function. This function computes the
element-wise average of the latent representation and
produces a single averaged tensor which contains the ensemble
latent features.

2.5 Feature importance scores and
generation of AE signaling modules

To calculate the importance of the input features (i.e., the
proteins) relative to each neuron in the latent layer, we devised
the following algorithm:

Perturbed data and score calculation:

for n ∈ 0, . . . ,N − 1{ }, for i ∈ 0, . . . , I − 1{ }, for j ∈ 0, . . . , J − 1{ }:
perturbed latenti,n,j � ensemble encoder.predict shuffle datavalues: ,i( )( ),

(1)
scoresi,n,j � mutual info regression original latent: ,n , perturbed latenti,n,j( ).

(2)
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Original mutual information, median score, and score variability
calculation:

for n ∈ 0, . . . ,N − 1{ }, for i ∈ 0, . . . , I − 1{ }:
original MIi,n � mutual info regression data values: ,i , original latent: ,n( ),

(3)
median scorei,n � median scoresi,n,j | j ∈ {0, . . . , J − 1{ }( ), (4)

score variabilityi,n � IQR scoresi,n,:( ). (5)

Feature selection criteria:

selected features � i | score variabilityi,n > 0, median scorei,n{
≤ quantile median score, 0.3( ), original MIi,n
≥ quantile original MI, 0.6( )}.

(6)

ensemble_encoder: the encoder model generated by combining
10 individual encoder models.

data_values: matrix of input data where each column represents
an input feature (i.e., a protein) and each row represents a sample.

original_latent: matrix of latent features generated by the
encoder part of the autoencoder. Each column represents a latent
feature, and each row represents a sample.

i: index for input features in data_values. It ranges from 0 to
number of input features—1.

n: index for latent features in original_latent. It ranges from 0 to
number of latent features—1.

j: index for the number of perturbation iterations (1≤j ≤ 20).
I, N, and J: ranges representing the total number of input

features (I = 1,080), latent features (N = 7), and iterations (J =
20), respectively. The shuffle () function is applied to the ith column
in each iteration (j) for each latent feature (n).

perturbed_latent: 3D array of perturbed latent features, with the
same structure as original_latent, plus a third dimension
corresponding to the iterations of perturbation (j).

scores: 3D array containing the mutual information scores,
where the third dimension corresponds to iterations of
perturbation (j).

mutual_info_regression (): function from the library scikit-learn
(Pedregosa et al., 2011) which estimates mutual information (MI)
(Kraskov et al., 2004) between two continuous variables. MI is a
non-negative value which measures the degree of dependency
between the variables. It equals to zero when the two variables
are independent, while the higher the value, the higher the
dependency.

shuffle (): function from the library NumPy
(numpy.random.shuffle) (Harris et al., 2020), which shuffles the
content of an array.

median (): function from the library NumPy (numpy.median)
(Harris et al., 2020), which computes the median of the
provided data.

To calculate the importance of each protein in determining
the condensed data representation (i.e., the latent features), we
applied the following approach for each of the proteins that are
used as an input for the model. The expression values for one
protein were randomly scrambled across the 559 samples, in
order to alter the relation between protein expression levels and
diagnosis. The scrambled values were re-positioned within the set
of all proteins (1,080 protein expression values, across the
559 samples). Then, the ensemble encoder was used to predict

new latent features (perturbed_latent, Equation 1). A score was
calculated as the MI value between the original and the perturbed
latent features; the lower the score, the greatest the impact of
shuffling a particular feature (Equation 2). The original MI value
was calculated between the expression values for the protein
being examined (not shuffled) and the original latent features
(the higher the score, the more important the input feature,
Equation 3). The shuffling operation was iterated 20 times for
each protein, and the median score was calculated as the median
of the scores calculated at each iteration (Equation 4). For each
protein, the score variability was calculated as the inter-quartile
range of the score values across the 20 iterations of shuffling
(Equation 5). Finally, proteins were selected as important if their
median score is below or equal to the 30th percentile of all
median score values; their original MI value is above or equal to
the 60th percentile of all original MI values; and their score
variability is greater than zero (Equation 6; Supplementary Figure
S5B). The proteins that were selected as important within each
latent features were included in the respective AE signaling
modules. The ≈100 top-ranking proteins for each AE signaling
module, which were used for the protein–protein interaction
analysis, were obtained by applying the following conservative
thresholds: the median score is below or equal to the 20th
percentile of all median score values; their original MI value is
above or equal to the 80th percentile of all original MI values; and
their score variability is greater than zero.

2.6 Linear measures of similarity
and distance

To obtain the protein clusters based on linear methods
(Figure 3B), the dataset containing the 1,080 selected protein
features and 559 samples was clustered using Pearson
correlation, Spearman correlation, and Euclidian distance with
Ward linkage. The dendrograms were cut into seven clusters (to
match the number of AE signaling modules) using the ‘fcluster’
and ‘maxclust’ methods from the SciPy package. Then, up to the
top-189 proteins (matching the average size of the AE signaling
modules) from each cluster were selected based on their
correlation or distance. The proteins within each AE signaling
module (Supplementary Figure S6) were clustered using
Euclidian distance with Ward linkage. The dendrogram was
separated into four clusters using the ‘fcluster’ and ‘maxclust’
methods from the SciPy package, and the resulting cluster maps
were visualized. The dataset containing the 1,080 selected protein
features and 559 samples was also clustered using weighted
correlation network analysis (WGCNA) (Langfelder and
Horvath, 2008). WGCNA, similar to the Multiscale Embedded
Gene Co-expression Network Analysis (MEGENA) (W. M. Song
and Zhang, 2015), employs a network approach to identify hubs
driving protein signaling. The value for the power used to
determine adjacency was selected using the pickSoftThreshold
function and a range between 1 and 10 for the powerVector. After
constructing a topological overlap matrix, hierarchical clustering
with method ‘average’ was applied to identify modules. Finally,
the strength of the correlation with the modules’ Eigengenes
was used to rank genes within each module, and up to the
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top-189 proteins from each module were selected for comparison
with the AE signaling modules.

2.7 RNA-seq data

RNA-sequencing data for VIM expression were obtained from
theMayo clinic and ROSMAP studies. RNA-seq data from theMayo
study represented both the cerebellum (syn5201007) and the
temporal cortex (syn4650265), while data from the ROSMAP
study were for the bulk brain (syn3505720). For each data set,
relative RNA abundance was calculated by normalizing individual
FPKM values to the median value for each protein, before log2
transforming them. The three datasets were then combined, and the
RNA abundances were normalized to the median of the combined
data for each protein. Relative RNA abundances were then plotted
over patients’ age (Supplementary Figure S11A).

2.8 External validation: cross-referencing
with healthy aging data

Plasma protein abundances over healthy aging were obtained
from Oh et al. (2023) and are available at the public site: https://twc-
stanford.shinyapps.io/aging_plasma_proteome_v2/. The data
represent the changes over age of 5,000 proteins measured in
plasma across multiple patient cohorts. For each protein, ‘Age_
beta’ represents the change in the expression level over age, and
‘Age-qval’ represents the significance of the change. The dataset was
filtered to keep only the proteins that overlap with those in the set of
1,080 proteins that are used as input for the autoencoder
(401 overlapping proteins). For each protein, an aging score was
calculated as the sum of their rank based on ‘Age_beta’ (descending)
and their rank based on ‘Age_qval’ (ascending). In practice, the
aging score ranks the proteins based on having a larger and more
significant change over age. A normalized aging score was then
calculated by transforming all aging score values to be between 0 and
1, where values that are ranked higher are closer to 1 and values that
are ranked lower are closer to 0. The normalized aging score is
plotted on the x-axes of Figure 4C; Supplementary Figure S10B.

3 Results

3.1 EnsembleOmicsAE provides a framework
to summarize omics data from
multiple cohorts

The EnsembleOmicsAE model takes as input brain protein
abundances and patients’ clinical data to generate a condensed
representation of the data to be used for biological
interpretation. The model is trained with data from the
Banner Sun Health Research Institute (Banner) Study (Bai
et al., 2020), the Religious Orders Study/Memory and Aging
Project (ROSMAP) (Bennett et al., 2018), and the Mount Sinai
Brain Bank (MSBB) study (Wang M et al., 2018), including
6,360 protein expression values over 514 distinct individuals
(Figure 1A; Supplementary Figure S1A). The individuals were

either healthy (control samples) or had been diagnosed with
AD, while data from patients with mild cognitive decline (MCI)
were excluded because they contribute negatively to sample
separation (Supplementary Figures S1B and S1C). The
protein expression values were normalized for study batch
before combining the data and performing scaling and
normalization (as detailed in the Methods section). Data for
the two shared clinical features (i.e., age at death and sex) were
transformed into numerical values with a distribution similar to
that of the molecular expression data (Supplementary
Figures S1D, S1E).

Prior to training, we performed feature selection to retain
only the most relevant information describing the separation
between the control and the AD samples and to generate a robust
model. First, we evaluated whether there would be a reason to
perform feature selection separately on data from male and
female individuals since AD presents differently in these two
groups. In fact, two-thirds of AD patients are women (Snyder
et al., 2016; Y; Song et al., 2020; Subramaniapillai et al., 2021).
Furthermore, women have a significantly longer lifespan
compared to men (Austad and Fischer, 2016). We found that
the age at death of women with AD is slightly higher than that of
healthy women (Figure 1B). On the contrary, the age at death of
men with AD was slightly lower than that of healthy men
(Figure 1C). Since our analysis indicated that there is a
difference in the distribution of age at death in male and
female individuals, we performed feature selection separately
on the female and male sets to retain potential information on
sex- and age-specific disease drivers. In order to achieve a more
complete representation of the original data, we employed a
combination of linear (F-statistic) and non-linear (mutual
information) (Kraskov et al., 2004) statistical methods for
feature selection (Supplementary Figures S2A–S2C). We then
generated 27 datasets of different sizes by selecting different
numbers of features (ranging between 7 and 6,360 features
selected) and tested the ability of each dataset to represent the
separation between the control and diseased sample groups. The
separation between the sample groups (measured as the UMAP
silhouette score) decreases as the number of selected features
increases (Figure 1D), and the decrease markedly slows down at
1,080 selected features (Supplementary Figure S2D). This
indicates that the 1,080 top features retain most of the
information in the data, which separates the control and AD
samples, while including additional features provides limited
additional information. Consequently, we selected the
1,080 top features as input for the autoencoder model.

Overall, the framework for EnsembleOmicsAE (Figure 2A)
includes four main components: 1) feature selection, which
retains the proteins the abundance of which better describes
the healthy or diseased brain; 2) the ensemble autoencoder model
(including optimization, ensembling for model stability and
reproducibility, and generation of extracted features), which
takes as input the selected proteins and returns seven concise
features from the model’s latent layer; and 3) the algorithm for
calculating feature importance, which identifies signaling
modules driving disease by iteratively perturbing the model to
identify input features that are of most importance to the latent
representation.
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3.2 An ensemble of models generates stable
latent representations

To identify an appropriate set of hyperparameters which would
enable good model performance and avoid overfitting to the training
data, we applied k-fold cross-validation (CV) to each one of five
independent sets extracted from the whole dataset (Supplementary
Figure S3). Specifically, the dataset was split into five sets, and each time
a different one was held out for testing, while the remaining four sets
were pooled (the training set). For every training set, we applied five-
fold CV to test 40 different combinations of hyperparameters using the
library Optuna, which efficiently navigates the hyperparameter space
(Akiba et al., 2019). This approach identifies sets of hyperparameters
that consistently perform well, regardless of how the data are split and
are particularly adept at optimizing models which rely on a relatively
small number of samples (Beebe-Wang et al., 2021;Wong, 2015). A first
round of hyperparameter tuning was performed by setting up an
Optuna study with the objectives of minimizing reconstruction loss
and maximizing the separation of sample groups in the autoencoder
latent layer (measured with the UMAP silhouette score of the
embedding extracted from the autoencoder latent layer). The ranges
for the hyperparameters were as follows: number of neurons in the first
hidden layer (between 128 and 512); number of neurons in the second
hidden layer (between 32 and 256); number of neurons in the latent
layer (between 4 and 10); learning rate (between 5e-5 and 1e-3); lambda
regularization L1 (between 1e-6 and 1e-3); and lambda regularization
L2 (between 1e-5 and 1e-3). In total, the study was set to conduct
1,000 trials across the five data splits and the iterations of 5-fold CV
within each. Up to the top-three Pareto-optimal solutions (Jin and
Sendhoff, 2008) for each data split were selected, for a total of
13 solutions, and used to train on the full data set (Supplementary
Table S4).When the resultingmodels were examined, somewere found
to be overfit to the training data despite the fact of having low
reconstruction errors (Supplementary Figures S4A and S4B). We
therefore selected new ranges of hyperparameter values to be
employed for a second round of optimization based on the models
that were not overfitting (Supplementary Figure S4C).

The second round of hyperparameter tuning was conducted as
described above, but the ranges for the hyperparameter values were as
follows: number of neurons in the first hidden layer (between 192 and
512); number of neurons in the second hidden layer (between 32 and
128); number of neurons in the latent layer (between 4 and 7); learning
rate (between 1e-4 and 1e-3); lambda regularization L1 (between 2e-5
and 1e-4); and lambda regularization L2 (between 1e-4 and 1e-3). As
before, we trained on the full dataset with the top solutions for each data
split (18 solutions, Supplementary Table S5), and the top-performing
set of hyperparameters was selected for the final model
(Supplementary Table S6).

The architecture of the autoencoder model consists of
225 neurons in the first hidden layer, 128 neurons in the second
hidden layer, and 7 neurons in the latent layer (Figure 2A).
Individual models trained with the chosen set of hyperparameters
were shown to not overfit to the training data (Figure 2B). Finally, we
wanted to determine the ability of individual models compared with
ensemble models to generate a stable latent representation, which is
necessary for deriving a consistent biological interpretation. To this
end, we trained and predicted using 100 individual models and
10 ensemble models, each derived from combining 10 individual

models. We found that the sets of latent features extracted from the
ensemble models are significantly more reproducible across models
than those extracted from the individual models (Figure 2C;
Supplementary Figure S5A). These results indicate that the
ensemble models generate a stable set of latent features and are
well-suited for downstream biological interpretation.

3.3 Features that are important for the
model’s latent representation are enriched
in biologically relevant networks

In neural networks, shallower layers detect simple features and
feed them to deeper layers, which then detect increasingly complex
features. This concept was first established in the dominion of image
recognition, where pixels are used as inputs, and the neurons within
increasingly deep layers detect simple lines and edges first, then
object parts (eyes, ears, wheels, etc.), and then whole objects (faces,
bikes, cars, etc.) (Lee et al., 2009). The input of EnsembleOmicsAE
includes 1,080 protein expression features, so we hypothesized that
the neurons within progressively deeper layers of the decoder learn
to detect increasingly complex combinations of proteins.
Specifically, shallower layers would learn to detect small networks
of proteins that function together and feed them to deeper layers,
which, in turn, would learn to detect more complex biological
features. Accordingly, the neurons within the deepest layer of the
decoder (i.e., the latent layer) (Figure 2A) should be learning to
detect high-level biological features, which are relevant in
reconstructing the input and that which can explain the
separation between the control and AD brain proteome.

To test this hypothesis, our first goal was to identify the sets of
proteins (i.e., the input features) that are important for describing
the high-level biological features in the latent layer of our model
(i.e., the latent features). Although existing methods rank the
importance of input features only in relation to the model as a
whole (Ivanovs et al., 2021), our goal was to identify proteins that are
important for each neuron in the latent layer and test whether they
each have a distinct biological identity. To do so, we devised and
implemented a method which calculates importance scores by
iteratively scrambling every individual input feature and
estimating the impact on each one of the latent features (see
Methods section). Proteins which impacted most of the model’s
latent features were labeled as important (Supplementary Figure
S5B). The sets of important proteins were found to be significantly
enriched in biologically relevant protein–protein interactions.
However, no enrichment was found in sets of proteins of similar
size that were selected at random from the same data (Figure 3A).
Given the significant enrichment in the protein–protein interaction
within the sets of proteins identified using our algorithm, we
reasoned that such sets of proteins have a functional significance
in cellular signaling and will refer to them as autoencoder (AE)
signaling modules (Figure 2A; Supplementary Table S7).
Importantly, the feature importance algorithm identifies several
well-studied drivers of AD within the AE signaling modules,
including the protein Tau (MAPT) which is hyperphosphorylated
and deposits intracellularly to form neurofibrillary tangles in AD
(Naseri et al., 2019); the glial fibrillary acidic protein (GFAP), one of
the primary intermediate filament proteins in astrocytes, which is
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highly increased in AD and is a marker for neuroinflammation and
abnormal astrocyte activation in response to neuronal damage
(Abdelhak et al., 2022); and several proteins that contribute to
synaptic alterations, including the intermediate filament moesin
(MSN), which promotes neurotoxicity mediated by Tau
(Rayaprolu et al., 2020), among others (Supplementary Figure S5B).

To determine whether our method for feature importance
identifies different proteins compared with those that would be
found when using linear methods (i.e., correlation and distance
metrics), we applied clustering analysis on the set of 1,080 proteins
that were used as inputs for the autoencoder. We found a
significantly lower overlap between the AE signaling modules and
the clusters obtained using linear methods, compared with the
overlap between the clusters obtained with different linear
methods, including correlation, distance, and the network-based
approach WGCNA (Langfelder and Horvath, 2008) (Figure 3B).
Using Gene Ontology, we found that distinct biological processes are
enriched across the AE signaling modules (Supplementary Figure
S5C, D; Supplementary Figure S5D; Supplementary Table S8).
Furthermore, the AE signaling modules include mostly distinct
sets of proteins (Supplementary Figure S5E). Processes related to
integrin signaling, cell adhesion, synaptic changes, oxidative stress,
and altered splicing are over-represented in the AE signaling
modules (Figure 3D) but not in the correlation-based clusters

(Supplementary Figure S5F; Supplementary Tables S9, S10).
Specifically, modules 1 and 3 are enriched in synaptic proteins
involved with reduced synaptic plasticity, facilitating tau-induced
neurotoxicity and promoting cognitive decline (Beckmann et al.,
2023; Bereczki et al., 2016; Tucsek et al., 2017). Module 4 comprises
proteins involved with the de-regulation of apoptosis, including the
glycogen synthase kinase-3 (GSK3B), which has been shown to
enhance apoptosis in areas of the brain that are crucial to memory
and learning (Llorens-Martín et al., 2014). Modules 5 and 6 are
broadly involved with changes in the response to oxidative stress and
mitochondrial metabolism (Singh et al., 2019). Module 7 includes
several proteins involved with altered splicing regulation, which has
been shown to lead to the formation of disease-promoting isoforms
of Tau (Qian et al., 2011) and of the myeloid cell surface antigen
CD33 (van Bergeijk et al., 2019). Intriguingly, module 2 is enriched
in integrin signaling, the alteration of which has so far not been
extensively linked with AD, warranting further investigations. In
contrast, the correlation-based clusters are enriched in processes
that are mostly distinct from those highlighted by the autoencoder
model, including transcriptional and mitochondrial regulation, the
proteasome, the ribosome, and glutamatergic signaling
(Supplementary Figure S5F; Supplementary Table S10).

Altogether, these findings demonstrate that the feature
importance algorithm within DeepOmicsAE identifies biologically

FIGURE 1
(A) Schematic overview of samples available from each cohort, split by sex and diagnosis. (B)Density plots representing the distribution of the age at
death for female donors, broken down by diagnosis. **: Student’s t-test p-value <5*10−3. (C)Density plots representing the distribution of the age at death
for male donors, broken down by diagnosis. *: Student’s t-test p-value <1*10−2. (D) Silhouette scores of the UMAP embedding for datasets of different
sizes, as indicated on the x-axis. The vertical dashed line corresponds to 1,080 features.
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FIGURE 2
(A) Schematic representation of the workflow employed for EnsembleOmicsAE. For the calculation of the feature importance scores, the number of
input protein features is indicatedwith i (ranging between 1 and 1,080); the number of latent features is indicatedwith n (ranging between 1 and 7); and the
number of iterations to generate the perturbed input features is indicated with j (ranging between 1 and 20) (seeMethods). (B) Training and validation loss,
measured as the reconstruction error, of a representative autoencoder trained using the set of hyperparameters selected after the two optimization
rounds. (C) Box plot representing the median Euclidian distance between every pair of latent features extracted using individual models and ensemble
models. ****: Student’s t-test p-value <1*10−99.
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relevant sets of proteins that are specific to each neuron in the latent
layer, demonstrating that each neuron in the latent layer has learned
distinct biological features. We represent the biological features
learned by the autoencoder as AE signaling modules show that
they are distinct from the clusters derived from the application of
linear methods and that they identify both established drivers of AD
and provide novel insights for further investigations.

3.4 AD is characterized by divergent cellular
processes compared with healthy aging

AD is classified into early onset or late onset based on an age cut-
off, typically set at 65 years, and the presence of specific mutations.
In fact, most of the cases of early-onset AD are due to genetic causes
(mutations in the amyloid precursor protein, APP, and the

FIGURE 3
(A) Negative logarithm of the protein–protein interaction (PPI) enrichment values for the top genes for the AE signaling modules identified with
EnsembleOmicsAE (78 < n < 102), compared with size-matched sets of genes selected at random (n = 80). ***: Student’s t-test p-value <1*10−4. (B) Box
plots representing the protein expression levels of AD driver proteins in healthy (blue) or AD (orange) samples. **: Student’s t-test p-value <5*10−3. ***:
Student’s t-test p-value <1*10−4. MAPT, microtubule-associated protein tau; GFAP, glial fibrillary acidic protein; MSN, moesin; RAB3A, Ras-related
protein Rab-3A; HOMER1, Homer protein homolog 1. (C) Percent of overlapping proteins between the AE signaling modules and the clusters obtained
with linear methods. All pair-wise overlaps between clusters and/or AE signaling modules were calculated, as detailed on the x-axis. The top seven
overlap values (sorted in descending order) for each comparison are plotted. (D) GO terms that are enriched in no more than two of the AE signaling
modules. For each module, terms are ranked based on their fold enrichment and p-value, and up to the top-three are listed. The size of the bubble is
proportional to the negative logarithm of the false discovery rate of the enrichment, and the color represents the AE signaling module, in which each GO
term is enriched.
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presenilins 1 and 2, PSEN1 and PSEN2 genes) (Cacace et al., 2016),
while a minority has been categorized as non-Mendelian (Reitz et al.,
2020). On the other hand, late-onset AD is considered a sporadic
disease with a heterogeneous etiology and lower heritability.

Late-onset AD has been described as a single category of disease;
however, a precise molecular characterization of the disease in
different age groups is lacking and it is not clear whether
different signaling nodes may be activated depending on age

FIGURE 4
(A) Relative importance of age at death in relation to each of the AE signaling modules, measured as the normalized average difference between the
log2 (AD/control) in the older and in the younger age groups (≥80 years old compared with <70 years old). The patient number per age group is age at
death <70, n = 10 patients; age at death <80, n = 84 patients; age at death ≥80, n = 465. (B) Line plots of the three clusters in the AE signalingmodule no. 4,
displaying differential regulation of protein expression levels in AD over patients’ age. The y-axes represent the log2 (protein abundance). (C)
Differential regulation of the protein expression level over age in AD and healthy aging. Proteins overlapping between the AE signaling module no. 4 and
the proteins identified by Oh et al., are represented (Oh et al., 2023) (57 proteins). The x-axis represents the normalized difference in protein expression
levels between the older and the younger individuals in the healthy aging dataset. The y-axis represents the normalized difference in protein expression
levels (AD/control) between the older and the younger age groups in the AD datasets. The gray area represents the proteins that change over age in AD
and healthy aging in a similar manner (−/+ 0.2 diagonal line). The proteinsmarkedwith green dots within the green area belong to the “Bergmann glial cell
differentiation” process. (D) Vimentin plasma protein expression levels over age in 3,800 healthy individuals (data from https://twc-stanford.shinyapps.io/
aging_plasma_proteome_v2/), (Oh et al., 2023). The change in expression levels over age is 0.007, and the adjusted significance of the change is 0.08
(not significant). (E) Vimentin (VIM) protein expression levels in control and AD brain samples. ***: Student’s t-test p-value <1*10−4. (F) Vimentin protein
expression levels over age. The scatter plot represents the expression levels in control samples (in blue) and AD samples (in orange), over age as a
continuous variable on the x-axis. The line plot represents the average protein expression levels (AD/control) over the age groups asmarked on the x-axis.
The plot represents data on 559 patients in the combined set from the ROSMAP, Banner, and MSBB cohorts, including six patients between 61 and
65 years of age; five patients between 66 and 70 years of age; 33 patients between 71 and 75 years of age; 71 patients between 76 and 80 years of age;
110 patients between 81 and 85 years of age; and 334 patients 86 years and older. ***: Student’s t-test p-value <1*10−4.
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within the group of late-onset AD patients. About 99% of all AD
cases are classified as late-onset AD (AD facts and figures, 2024) and
the data analyzed in the present study are uniquely derived from
late-onset AD cases. In our analysis, we found a difference between
the age at death in female and male AD patients (Figures 1B, C),
suggesting that distinct regulatory patterns may indeed be involved
in the progression of AD depending on the patients’ age and sex. To
determine the relation between each AE signaling module and the
patients’ sex and age groups, we first visualized the modules using
heatmaps based on hierarchical clustering. We found that each AE
signaling module includes both up- and downregulated proteins
when comparing the expression levels in the AD versus the control
subjects (Supplementary Figure S6). Therefore, we applied
hierarchical clustering to group the proteins within each AE
signaling module into four clusters (Supplementary Figure S6),
before examining their expression levels over the patients’ sex
and age groups (Supplementary Figure S7). We found that sets of
proteins in AE signaling module no. 7 are differentially regulated
depending on the individuals’ sex (Supplementary Figures S8A,
S8B). GO terms related to mRNA splicing are highly enriched
within this set of proteins (Supplementary Figures S9A, S9B), in
line with existing reports on differential regulation of splicing in
female compared with male AD patients (Olesnicky et al., 2023).
Regarding the association of age with signaling in AD, we found that
the proteins in the AE signaling module nos 4 and 6 are differentially
regulated in AD versus control brain samples depending on the age
of the individuals they were derived from Figure 4A. In particular,
clusters 1, 2, and 4 in the AE signaling module no. 4 and clusters
1 and 3 in the AE signaling module no. 6 show the most differential
patterns of regulation over age when comparing the control and AD
samples (Figure 4B; Supplementary Figure S10A). Recent studies
have shown that plasma protein expression levels change during
aging and identified protein signatures that predict health and
disease in older age (Oh et al., 2023; Walker et al., 2023).
Therefore, we reasoned that it would be important to
discriminate between changes that are specific to the AD brain
and those that are part of healthy aging. To do so, we compared the
relative protein expression level changes over aging in healthy and
AD subjects and identified a subset of proteins within the AE
signaling module nos 4 and 6, for which the changes over age
are primarily occurring in AD but not in healthy individuals (AD-
dominant effect) (Figure 4C; Supplementary Figure S10B). This
analysis highlighted a larger set of proteins regulated over age with
an AD-dominant effect in the AE signaling module no. 4, and we
therefore focused on this module for the subsequent analyses. We
found that the Bergmann glial cell differentiation process is
significantly enriched within the proteins regulated over age with
an AD-dominant effect in the AE signaling module no. 4
(Supplementary Figure S10C). Conversely, multiple metabolic
functions including the pyruvate metabolic process and the
pentose phosphate shunt are enriched within the set of proteins
that are regulated more prominently during healthy aging (aging-
dominant effect) (Supplementary Figure S10D).

Among the proteins in the AE signaling module no. 4 that are
regulated in an AD-dominant manner and involved in a cellular
differentiation process, we identify vimentin (VIM) and the
mitogen-activated protein kinases 1 and 3 (MAPK1 and MAPK3)
(Figure 4C). VIM is a component of the intermediate filaments and a

marker of the reactive astrocytes which surround amyloid plaques in
AD (Hol and Pekny, 2015). VIM and MAPK1 and MAPK3 act
coordinately in adult neurons to mediate neurite extension during
repair of nerve damage (Levin et al., 2009; Perlson et al., 2005). VIM
is also expressed by differentiating neurons in the human fetal brain
(Ho and Liem, 1996), where it cooperates with the MAPKs to
facilitate neurite extension and establish new synaptic
connections (Boyne et al., 1996). VIM levels slightly increase
during healthy aging, however, not significantly (Figure 4D). In
AD, we found that VIM expression levels are elevated compared
with healthy samples (Figure 4E) and that the difference is greater in
younger compared with older individuals both at the protein level
(Figure 4F) and at the transcript level in a larger cohort of samples
(Supplementary Figure S11A). The same trend is observed for
MAPK1 and MAPK3 (Supplementary Figures S11B and S11C).
Finally, we found that the pathological staging and cognitive
function is similar between the AD patients that died at a
younger age and those that died at an older age (Supplementary
Figure S11D), indicating that the two subsets are pathologically
undistinguishable.

4 Discussion

The analysis and interpretation of large sets of omics data offers
the opportunity to gain a holistic understanding of molecular
regulation dynamics and their contribution to disease
progression. Autoencoders are a powerful tool for reducing the
dimensionality of omics data, thereby facilitating the extraction of
key biological information. They comprise multiple layers of
neurons, each containing a non-linear activation function, which
allows them to capture non-linear, hierarchical, and multi-modal
relationships within the data (Bank et al., 2023). However, the
biological interpretation of complex models based on neural
networks such as the Autoencoders has proved to be challenging
(Ching et al., 2018). Broadly, approaches for determining feature
importance can be classified as perturbation-based or
backpropagation-based. Such methods include permutation
feature importance (PFI) (Altmann et al., 2010), SHapley
Additive exPlanations (SHAP) (Antwarg et al., 2019), and
integrated gradients (IGs) (Sundararajan et al., 2017), all of
which rank feature importance relative to the entire model. Here,
we introduce a perturbation-based approach that outputs feature
importance relative to individual neurons in the autoencoder latent
layer. Previously, efforts in this direction include the development of
an approach to identify the components of an image that each
neuron is detecting, based on the generation of visual inputs that
would maximally activate specific neurons in the network (Bengio
et al., 2009; Erhan et al., 2009). In the biomedical field, this method
was applied to identify transcription factor-binding motifs when
analyzing genomic sequencing data (Finnegan and Song, 2017).
Here, we sought to interpret the contributions of individual neurons
in order to characterize whether they detect distinct signaling units
driving disease. We demonstrate that our approach identifies
biologically relevant sets of proteins (Figure 3A) that are not
found using linear methods such as the correlation or distance
metrics (Figure 3B). Several known AD drivers were identified
within the AE signaling modules, including the protein Tau
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(MAPT), GFAP, MSN, and other proteins involved with synaptic
alterations (Figure 3D; Supplementary Figure S5B). Other proteins
that are well-studied in the context of AD, however, were not
identified, including the apolipoprotein E (APOE) and the
amyloid precursor protein (APP). In humans, there are three
common alleles for the gene encoding the apolipoprotein E
(APOE2, APOE3, and APOE4). These alleles give rise to six
possible genotypes, namely, APOE2/2, 2/3, 2/4, 3/3, 3/4, and 4/4,
of which APOE3/3 is the most common (about 62% of the
population) (de-Almada et al., 2012) and is known to not affect
the risk for AD. Instead, carrying one or two APOE2 alleles protects
from developing AD (Reiman et al., 2020), whereas
APOE4 increases the risk to develop AD, with each additional
APOE4 copy increasing the risk and reducing the age at onset of
the disease (APOE4 homozygotes, which are less than 2% of the
population, have a 60% chance of developing AD by the age of 85)
(Fortea et al., 2024; Genin et al., 2011). In other words, the risk to
develop AD is modified by the allelic makeup of the APOE gene
rather than based on its protein expression levels. Additionally, the
cohort examined in the study reflects the general population
heterogeneity for APOE, with 59% of the individuals being
APOE3 homozygotes, 26% carrying one APOE4 allele, and only
1.7% APOE4 homozygotes (Supplementary Table S11). APOE was
not necessarily expected to be identified by the model as one of the
drivers since EnsembleOmicsAE is trained on protein abundances
and not genetic information. The amyloid precursor protein (APP),
which is proteolytically cleaved to form beta-amyloid that
accumulates in AD brains, was also not identified as one of the
drivers within the signaling modules. One possibility is that while
EnsembleOmicsAE is adept at identifying signaling modules of
proteins that are functionally associated (Figure 3A), APP is not
as strongly functionally associated with other proteins in AD, and
for this reason, it may not have been selected. Specifically, functional
association includes either proteins that contribute to the same
biological process or pathway, are associated via transcriptional
regulation (i.e., a transcription factor and its targets), are co-
expressed, or are part of the same protein complex. However, the
pathogenic role of beta-amyloid accumulation has been linked to a
plethora of factors that are not necessarily linked with the functional
roles of APP itself, such as brain inflammation, defective clearance,
and alterations in the blood–brain barrier (Hampel et al., 2021).
Furthermore, transcriptional or translational de-regulation of APP
expression levels is not a universal feature of AD. Although AD
patients who carry the APOE4 allele have an increased expression of
APP due to transcriptional upregulation (Huang et al., 2017), most
AD patients in the examined cohort do not carry APOE4 (>60%).
Additionally, while approximately 16% of the healthy individuals
did carry the APOE4 allele, leading to transcriptional upregulation
of APP, they did not develop the disease. Therefore, rather than APP
directly participating in regulatory networks, multiple factors affect
the extent to which beta-amyloid is toxic in the brain, and
additionally, the regulation of APP transcription is not strongly
associated with disease status. Collectively, there are multiple
opportunities for improving on the framework presented in this
study. One is that of expanding its applicability to include genetic
data and molecular expression data, to more comprehensively
capture key drivers of disease. Additionally, while we have
previously presented a first attempt to integrate clinical

information into the model (Panizza, 2023), we believe that
improvements will be necessary for the feature importance
algorithm to better perform with the wide variety of value
distributions that are characteristics of clinical features. Finally,
we show that EnsembleOmicsAE contributes novel information
as the AE signaling modules are distinct from the clusters based
on linear methods (Figure 3D; Supplementary Figure S5E) and are
enriched in cellular processes that have not previously been linked
with AD, namely, cell adhesion mediated by integrins and the
integrin complex (Figure 3D), thus expanding the current
narrative on the molecular determinants of AD progression.

In our study, we then related the AE signalingmodules with the age
at death of the patients (Supplementary Figure S7). When looking at
changes in protein expression levels over age in AD compared with
healthy aging, we found an enrichment of genes involved with the
differentiation process (Figure 4C). In particular, younger AD patients
have a greater increase in the levels of VIM compared with older AD
patients (Figure 4E; Supplementary Figure S11A). The same trend is
observed for MAPK1 and MAPK3, which are also part of the same
signaling network involved with cellular differentiation (Supplementary
Figures S11B, S11C). VIM, MAPK1, and MAPK3 work in concert to
mediate neurite extension during nerve repair and during early
development (Pebworth et al., 2021), and VIM is a marker of neural
precursor cells (Levin et al., 2009). Levin et al., performed
immunohistochemical staining to show that VIM is expressed in
AD brains but not in the same regions of healthy brains. In their
analysis, VIM is mainly present in dendrites and its expression level
correlated with the extent of local pathology. VIM is also a
mesenchymal marker, and it has been shown to cooperate with
MAPK1 to regulate epithelial-to-mesenchymal transition (EMT) (Xu
et al., 2018). We indeed find that multiple mesenchymal markers
(Beckmann et al., 2023; Lamouille et al., 2014) are upregulated in
the AD compared with the control samples, while the expression of
epithelial markers was undetectable (Supplementary Figure S11E).
Additionally, the expression of the transcription factor SOX2, which
is a key marker for neuronal progenitor, and especially radial glia cells
together with VIM (Pebworth et al., 2021), is also upregulated in the
same set of younger AD patients (Supplementary Figure S11F), further
substantiating the signature as marking a progenitor-like state.
Accordingly, previous reports implicate MAPK1/3 and SOX2 in
mediating EMT (Wang K et al., 2018), as well as neuronal loss and
cognitive impairment in mouse models of AD (Kim et al., 2023).
Altogether, our findings suggest that a potential reactivation of a
developmental program involving VIM, MAPKs, SOX2, and EMT
may play a role in driving AD in younger patients. Our findings open
multiple questions including whether this program may lead to the de-
differentiation of neurons into precursor cells, whether it might
contribute to AD onset and progression, and how aging may
influence the activation of this program. Further studies will be
needed to determine the exact role of these events in the
pathogenesis of AD. The role of VIM in triggering astrocyte over-
reactivity in AD also needs to be further elucidated (Kamphuis et al.,
2015). Our hypothesis that the activation of the VIM-SOX2 axis might
have a differential effect on AD progression depending on the
individuals’ age carries similarities with the way other pathways have
been described to be differentially activated over age. One example is the
expression of the genes encoding for the triggering receptor expressed
on myeloid cells (TREM) that play important roles in both the innate
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and adaptive immunity and for which specific polymorphisms have
been shown tomodify the risk to develop AD. Chan et al., reported that
a polymorphism of TREM1 leads to increased AD pathology and
cognitive decline by raising the cell surface expression levels of the anti-
inflammatory TREM2 in younger but not in older individuals (Chan
et al., 2015). Another example is the finding by Lo et al. that a cluster of
genes located on chromosome 19, which includes the APOE gene, has a
greater ability to promote AD in younger compared with older
individuals (Lo et al., 2019). Altogether, while important questions
remain to be addressed, the idea that the activation of specific disease
pathways may depend on the individuals’ age (Guerreiro and Bras,
2015) carries the potential in discovering novel drivers of disease and
developing tailored therapeutic approaches.

In our study, we resolved the complex molecular inter-
relationships learned by EnsembleOmicsAE over the age of the
patients, to refine and expand our understanding of the AD
pathogenesis. The combination of these two approaches
(i.e., machine learning and age-differential analysis) led to
identifying signaling nodes that are over-activated in younger
compared with older individuals, in the context of both healthy
aging and AD (Figure 4C). Our combined approach provides a
framework for the age-differential analysis of large-scale data, which
will be applicable as new data become available. Such time-resolved
analyses will be of value not only to further characterize the
differences between younger and older AD patients but also to
resolve earlier versus later signaling events, leading to the onset and
progression of AD. This is of particular relevance since AD initiates
in the brain several years or even decades before clinical symptoms
appear (the so-called preclinical or cellular stage) (Counts et al.,
2017; De Strooper and Karran, 2016; Petersen, 2018; Preische et al.,
2019; Sperling et al., 2012). Therefore, the understanding of the first
steps leading to the pathology would be of great importance for
preventing AD, an approach that is gaining increasing attention
(Frisoni et al., 2023; Niotis et al., 2022).

In sum, the current work contributes a novel algorithm for scoring
feature importance that discriminates which features are more relevant
to each neuron within the latent layer of the autoencoder. It further
provides an expanded understanding of molecular drivers of AD which
are missed by linear methods. Finally, our work highlights age-specific
relationships between the regulation of a differentiation program and
AD progression and contributes to our understanding of AD
pathogenesis at different ages.
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