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Introduction: The aim of the current study was to test normobaric 100% oxygen
(NBO) (PiO2 = 713 mmHg) for stem cell mobilization and cytokine modulation.
Although current oxygen therapy (PiO2 = 1,473–2,233 mmHg) is well known to
mobilize stem cells and modulate cytokine, little is known about NBO and its
place on the low dose stimulation phase of the hormetic dose curve of oxygen.
We asked the question, will NBO mobilize stem cells and modulate cytokines. A
positive outcome presents the potential to create and refine oxygen treatment
protocols, expand access, and optimize patient outcomes.

Methods: Healthy 30–35-year-old volunteers were exposed to 100%
normobaric oxygen for 60 min, M-F, for 10 exposures over 2 weeks. Venous
blood samples were collected at four time points: 1) prior to the first exposure
(serving as the control for each subject), 2) immediately after the first exposure (to
measure the acute effect), 3) immediately before the ninth exposure (to measure
the chronic effect), and 4) three days after the final exposure (to assess durability).
Blinded scientists used flow cytometry to gate and quantify the Stem Progenitor
Cells (SPCs).

Results: CD45dim/CD34+/CD133+ and CD45+/CD34+/CD133+ were
significantly mobilized following nine daily one-hour exposures to normobaric
100% oxygen. Conversely CD45−/CD34+/CD133+, CD45-/CD34+/CD133− and
CD45−/CD34−/CD133+ phenotypes were downregulated suggesting
differentiation into more mature phenotypes. The CD133+ phenotype
exhibited a maturing from CD45− to CD45dim stem cells. CD45−/CD34,
CD45−/CD31 and CD45−/CD105 were downregulated with no changes in
related CD45dim and CD45+ phenotypes. The cytokines “macrophage
migration inhibitory factor” (MIF) and “a proliferation inducing ligand” (APRIL)
were significantly upregulated.
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Conclusion: This study demonstrates that 100% normobaric oxygen mobilizes
stem cells and upregulates the expression of the inflammatory cytokines marking a
new point on the low dose stimulation phase of the hormetic dose curve of oxygen.

KEYWORDS

oxygen therapy, stem cell mobilization and homing, inflammatory cyotokines,
macrophage migration inhibition factor, hematopoietic (stem cell) transplant (HSCT),
proangiogenic, A proliferation inducing ligand (APRIL), hemangioblast differentiation

Introduction

Since the first use of oxygen for respiratory support in 1885, the
utility of oxygen has continually evolved concurrently with the
evolution of our understanding of the mechanisms and biological
effects of oxygen dose. One of these biological effects, stem cell
mobilization, provided a critical mechanism on the role that cellular
oxygen tension plays in tissue healing and regeneration (Thom et al.,
2006). Subsequent research established a direct relationship between
oxygen dose and stem cell mobilization (Heyboer et al., 2014). The
mechanism of stem cell mobilization by oxygen dose is increased
nitric oxide in the bone marrow (Goldstein et al., 2006) resulting in
accelerated blood vessel formation and wound healing (Gallagher
et al., 2006; Milovanova et al., 2008). These papers established two
points on the dose stimulation phase of the hormetic dose curve of
oxygen to be at 2.0 atm absolute breathing 100% oxygen (PiO2 =
1,426 mmHg) and 2.4 atm absolute breathing 100% oxygen
(PiO2 = 1,777 mmHg).

The low dose stimulation phase of the hormetic dose curve of
oxygen, however, has not been fully elucidated. The minimal dose
required to initiate stem cell mobilization and cytokine modulation
was first investigated in 2018 in an experiment done in our lab. This
experiment demonstrated that stem cells are mobilized by 42%
normobaric oxygen (PiO2 = 300 mmHg) in a rat model
(MacLaughlin et al., 2019). A subsequent experiment also done
in our lab in 2022 established a new low dose stimulation point of
1.27 atm absolute hyperbaric air (PiO2 = 189 mmHg). That
investigation resulted in mobilized stem progenitor cells (SPCs)
by two-fold following nine exposures to 1.27 ATA hyperbaric air,
further increasing to a three-fold increase 72 h post the tenth
exposure, indicating not only an immediate but also a durable
effect (MacLaughlin et al., 2023).

In an effort to further elucidate the low dose stimulation phase of
the hormetic dose curve of oxygen, in the present experiment we test
NBO (100% normobaric medical oxygen) (PiO2 = 713 mmHg) for
stem cell mobilization and inflammatory cytokine modulation.

The COVID-19 pandemic at first overwhelmed the manufacture
and supply channels of oxygen, but eventually resulted in
improvements and as a result its world wide availability has
increased (Organization, 2021). Although oxygen was used
during the COVID-19 pandemic mainly for its ability to provide
supplemental oxygen to the lungs helping to maintain adequate
blood oxygen levels, it was unknown if there were other mechanisms
involved (i.e., stem cell mobilization and cytokine modulation).

Recent studies have demonstrated that relatively low oxygen
tensions (PiO2’s) can yield significant biological responses
(MacLaughlin et al., 2019; MacLaughlin et al., 2023; Miller et al.,
2015; Cifu et al., 2014). These findings support the idea that low
oxygen levels can substantially impact stem cell dynamics and

inflammatory processes. The current study aims to build upon
this knowledge by examining the effects of a nearly 5-fold
increase in oxygen partial pressure within a normobaric setting,
potentially informing the standard of care by demonstrating
significant biological responses to NBO, hypothetically refining
treatment protocols and optimizing patient outcomes.

The results from the present study may also help to understand a
recent case report of normobaric 100% oxygen effectively
ameliorating the anoxic injury following near drowning. The
two-year-old child, who exhibited no speech, gait, or
responsiveness to commands on the 48th day post-hospital
discharge, showed remarkable improvement following daily
treatments of normobaric 100% oxygen (administered at 2 L/min
for 45 min via nasal cannula, twice daily). The treatment was
administered over a period of 23 days, after which the patient’s
condition had stabilized sufficiently to allow for transfer to a
hyperbaric oxygen therapy center. There, the patient made a very
substantial recovery (Harch and Fogarty, 2017).

We asked the question: Will 100% oxygen, without added
hyperbaric pressure, mobilize stem cells and modulate
inflammatory cytokines? We hypothesized that it would do both.

Materials and methods

Design and subjects

This study is a prospective, randomized, single-blind study
conducted at the University of Wisconsin–Madison Clinical
Sciences Center between 1 May 2021, and 31 August 2021. This
study was approved by the Institutional Review Board of the
University of Wisconsin–Madison under UW IRB ID: 2020-
0293-CR001. All participants provided written informed consent.
We recruited healthy adults 35 and under for participation in this
study. Six (6) women and eight (8) men participated in this study
(n = 14). Five subjects dropped out of the study prior to
completion (Table 1).

TABLE 1 Anthropometric data of subjects in this 100% oxygen
concentration study.

N Mean Standard deviation

Age 14 32.86 years 3.7 years

Height 14 173.79 cm 7.0 cm

Weight 14 77.62 kg 12.7 kg

BMI 14 25.26% 2.8%
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Exclusions included the following; Standard contraindications
to Hyperbaric Oxygen, pregnancy, nicotine use/addiction, active
smoking or vaping within 1 month, inability to equalize inner ear
pressure, acute hypoglycemia, uncontrolled diabetes mellitus,
confinement anxiety, previous barotrauma, pregnant or intending
to become pregnant, or currently nursing, medical or psychological
conditions which might create undue risk to the subject or interfere
with the subject’s ability to comply with the protocol requirements,
diagnosed sleep apnea, previous or active COVID-19 infection,
emphysema with CO2 retention, subjects with “high” exercise
scores using the Global Exercise Score index.

Normobaric 100% oxygen concentration exposure
Subjects breathed normobaric 100% medical grade oxygen

(>99%) (AirGas Products–Radnor, PA) through a tight-fitting
mask with two one-way non-rebreather valves (Hans Rudolph,
Shawnee, Kansas) attached. Subjects visited the lab 11 times over
the course of 15 days for exposure and/or sample collection. We
accounted for circadian cell cycle variations including acrophase by
providing all exposures and collecting all blood samples at the same
time of day over the 15-day experiment. All subjects were
diurnally active.

Sample collection
A 21- or 23-gauge BD Vacutainer Safety-Lok Blood Collection

Set (Becton, Dickinson and Company, Franklin Lakes, NJ
United States) into a Cyto-Chex BCT tube (Streck Inc NE

United States) was used to collect peripheral venous blood.
Collected blood was stored according to the manufacturer’s
instructions. Venous blood samples were collected with subjects
sitting or supine. The study protocol in graphic format is included
in Figure 1.

Flow cytometry
Flow cytometry was performed as previously described

(MacLaughlin et al., 2023). All samples were prepared for flow
cytometry by placing prepared human samples into flow cytometry
tubes appropriately labeled for fluorescence minus one (FMO) tubes,
rainbow bead tubes, and single antibody tubes to be used as gating
references. Antibodies were pipetted intoflow cytometry tubes according
to the manufacturer’s instructions. Antibodies used include CD34 =
Brilliant Violet 421 (BioLegend San Diego, CA United States), CD45 =
Alexa Fluor 488 (BioLegend San Diego, CAUnited States), CD133 = PE
(Miltenyi Biotec, North Rhine-Westphalia, Germany) CD31 = Brilliant
Violet 605 (BioLegend San Diego, CA United States), CD105 = PE-Cy7
(BioLegend San Diego, CA United States), Ghost Dye Red 780 = Tonbo
Biosciences, San Diego, CA.

A ThermoFisher Attune NxT (Waltham, MA United States) for
Flow cytometry and FlowJo software (FlowJo, Ashland, OR,
United States) was used to gate the results. All gating was
performed by blinded scientists at the University of Wisconsin
Carbone Cancer Laboratory (Madison, WI United States).
Lymphocytes were gated by forward and side scatter and
doublets were excluded. CD45 positive, negative, and dim cells

FIGURE 1
Frequency of stem cell phenotypes at four time points after 100% oxygen exposure detected by flow cytometry. Control = immediately prior to first
exposure, post t × 1 = immediately after the first exposure, Pre T × 10 = immediately prior to exposure 10, 72 h Post T × 10 = 3 days after final exposure 10.
(A) CD45dim/CD34+/CD133+ (B) CD45+/CD34+/CD133+, (C) CD45−/CD34+/CD133+ (D) CD45−/CD34+/CD133− (E) CD45−/CD34−/CD133+ (F)
CD45−/CD34−/CD133−.
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were selected for further analysis of the expressions of CD34,
CD133, CD105, and CD31.

Enzyme-linked immunosorbent assay

As previously described the Invitrogen ProcartaPlex™
Human Immune Monitoring Panel 65-Plex (Invitrogen,
Waltham, MA, United States) was utilized to evaluate
changes in cytokines, chemokines, and growth factors. The
Invitrogen ProcartaPlex™ Human Immune Monitoring Panel
65-Plex includes tests for a wide range of cytokines,
chemokines, and growth factors using sandwich ELISA
principles with two specific antibodies binding to different
epitopes of a protein, allowing simultaneous quantitation of
all protein targets with a Luminex instrument. The targets
analyzed are listed below:

Cytokines: G-CSF, GM-CSF, IFN alpha, IFN gamma, IL-1 alpha,
IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8 (CXCL8), IL-9, IL-
10, IL-12p70, IL-13, IL-15, IL-16, IL-17A, IL-18, IL-20, IL-21, IL-22,
IL-23, IL-27, IL-31, LIF, M-CSF, MIF, TNF alpha, TNF beta, TSLP.

Chemokines: BLC (CXCL13), ENA-78 (CXCL5), Eotaxin
(CCL11), Eotaxin-2 (CCL24), Eotaxin-3 (CCL26), Fractalkine
(CX3CL1), Gro-alpha (CXCL1), IP-10 (CXCL10), I-TAC
(CXCL11), MCP-1 (CCL2), MCP-2 (CCL8), MCP-3 (CCL7),
MDC (CCL22), MIG (CXCL9), MIP-1 alpha (CCL3), MIP-1 beta
(CCL4), MIP-3 alpha (CCL20), SDF-1 alpha (CXCL12).

Growth Factors/Regulators: FGF-2, HGF, MMP-1, NGF beta,
SCF, VEGF-A.

Soluble Receptors: APRIL, BAFF, CD30, CD40L (CD154), IL-2R
(CD25), TNF-RII, TRAIL (CD253), TWEAK.

This panel allows for the simultaneous analysis of these
65 protein targets, providing a comprehensive profile of immune
responses2. All tests were conducted by blinded scientists at the
University of Wisconsin Non-Human Primate Research Center
(Madison, WI, United States).

Statistical analysis

All statistical analyses were calculated using Graph Pad Prism
9.0.0 (GraphPad Software, San Diego, CA, United States). All
calculations utilized the Wilcoxon matched-pairs signed-rank
test. Comparisons between all-time points were performed. A
priori at the 0.05 level was used to indicate the significance level
and all tests were 2-tailed. Statistical analyses were calculated using
Graph Pad Prism (GraphPad Prism 9.0.0 Software, San Diego, CA,
United States).

Results

In this study 9 humans were exposed to normobaric 100%
oxygen (NBO) 10 times (Monday-Friday) over the course of
15 days. To determine whether stem progenitor cells (SPCs) are
mobilized by normobaric 100% oxygen concentration, blinded
scientists used flow cytometry to survey SPC expression using
Clusters of Differentiation (CD) cell surface markers at 4 time

points. Blinded scientists also used the Invitrogen ProcartaPlex™
Human Immune Monitoring Panel 65-Plex (Invitrogen, Waltham,
MA, United States) to evaluate changes in cytokines, chemokines,
and growth factors.

CD34/CD133

Both CD45dim/CD34+/CD133+ and CD45+/CD34+/CD133+ were
significantly mobilized just prior to the 10th exposure of normobaric
100% oxygen exposures (p = 0.02) (Figures 1A, B respectively), while the
frequency of CD45−/CD34+/CD133+ was significantly decreased just
prior to the 10th exposure to normobaric 100% oxygen exposures
(p = 0.02) (Figure 1C). CD45−/CD34+/CD133−, CD45−/CD34−/
CD133+, and CD45−/CD34+/CD133+ were significantly decreased
(Figures 1D–F respectively).

CD133

CD45dim/CD133+ stem cells were significantly mobilized between
the end of the first exposure and just prior to the 10th exposure (p =
0.02) and remained significantly increased for 72 h following the 10th
and final exposure (p = 0.03) while CD45−/CD133+ stem cells
decreased significantly (p = 0.004) and remained decreased for
72 h following the 10th and final exposure (p = 0.0008). CD45+/
CD133+ was unchanged (Figures 2A–C respectively).

CD34

CD45−/CD34+ decreased significantly prior to the 10th exposure
(p = 0.03) and remained decreased for 72 h after the 10 and final
exposure (p = 0.03) (Figure 2D). CD45dim/CD34+ and CD45+/CD34+

stem cells remained unchanged (Figures 2E, F respectively).

CD31

CD45−/CD31+ decreased significantly prior to the 10th exposure
(p = 0.04) and remained decreased for 72 h after the 10 and final
exposure (p = 0.008) (Figure 3A). CD45dim/CD31+ and CD45+/
CD31+ stem cells remained unchanged (Figures 3B, C respectively).

CD105

CD45−/CD105+ decreased significantly prior to the 10th
exposure (p = 0.04) (Figure 3D). CD45dim/CD105+ and CD45+/
CD105+ stem cells remained unchanged (Figures 3E, F
respectively).

A proliferation-inducing ligand (APRIL)

AProliferation-Inducing Ligandwas very significantly increased prior
to the 10th exposure (p = 0.007) and remained significantly increased
for 72 h following the 10 and final exposure (p = 0.004) (Figure 4A).
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Macrophage migration inhibitory
factor (MIF)

Macrophage migration inhibitory factor significantly increased
prior to the 10th exposure (p = 0.001) and remained significantly
increased for 72 h following the 10 and final exposure (p =
0.04) (Figure 4B).

Discussion

It is well established that Hyperbaric oxygen therapy mobilizes
stem cells (Thom et al., 2006; Heyboer et al., 2014; Thom et al., 2011)
and modulates inflammatory cytokines (Hedetoft et al., 2021;
Benson et al., 2003; Feng et al., 2016). Stem cells are mobilized
by hyperbaric oxygen therapy at 2.0 atm absolute (PiO2 =
1,426 mmHg) and 2.4 atm absolute (PiO2 = 1,711 mmHg) in a
dose dependent manner (Heyboer et al., 2014).

Conversely, it is unknown if normobaric 100% oxygen therapy
with a PiO2 of 713 mmHg will mobilize stem cells or modulate
cytokine expression.

We previously demonstrated that 1.27 ATA hyperbaric air with
increased barometric pressure only (PiO2 = 190 mmHg) mobilized
stem cells and modulated cytokines in humans (MacLaughlin et al.,
2023). We also demonstrated that a 42% oxygen concentration
without increased barometric pressure (PiO2 = 299 mmHg) did the
same in a rat model (MacLaughlin et al., 2019).

In the present investigation, we tested 100% oxygen concentration
without added barometric pressure (PiO2 = 713 mmHg) in humans.

We asked the question, will daily exposures to normobaric 100%
oxygen mobilize stem cells and modulate cytokines in humans? We
used a randomized, single-blind study design to test this question.
Our hypothesis proposed that stem cells would be mobilized and
inflammatory cytokines would be modulated. Our findings did
indeed demonstrate significant stem cell mobilization/
differentiation and cytokine modulation. These findings suggest a
new point on the low dose stimulation phase of the hormetic dose
curve of oxygen.

This study provides a new perspective on oxygen dose,
mechanism and function. Normobaric 100% oxygen potentially
provides a viable option for many pathologies including
hematopoietic stem cell repopulation and conditions associated
with diminished endothelial function.

The increase in the inflammatory cytokines MIF and APRIL was
unexpected and the implications are intriguing. APRIL is crucial to
maintain and proliferate some B cells and plasmacytes. MIF is
essential in the tissue repair and regeneration process and has
been shown to promote the regeneration of peripheral nerves
resulting in beneficial axonal growth.

Critical analysis and major findings

In this experiment, blinded scientists utilized flow cytometry to
profile stem cell mobilization and cytokine expression in four
chronological peripheral venous blood samples, The major
finding of this study is the novel demonstration that daily 60-
minute exposures to normobaric 100% oxygen mobilizes and

FIGURE 2
Frequency of stem cell phenotypes at four time points after 100% oxygen exposure detected by flow cytometry. Control = immediately prior to first
exposure, post t × 1 = immediately after the first exposure, Pre T × 10 = immediately prior to exposure 10, 72 h Post T × 10 = 3 days after final exposure 10.
(A) CD45dim/CD133+ (B) CD45−/CD133+, (C) CD45+/CD133+ (D) CD45−/CD34+ (E) CD45dim/CD34+ (F) CD45+/CD34+.
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differentiates stem cells and modulates inflammatory cytokines in
humans. Following ten consecutive weekdays of daily 60-minute
exposures, we observed a significant mobilization of CD45dim/
CD34+/CD133+, and CD45+/CD34+/CD133+ stem progenitor
cells (SPCs) with corresponding reductions in the populations of

CD45−/CD34+/CD133+, CD45−/CD34+/CD133−, and CD45−/
CD34-/CD133+ and no change in CD45−/CD34−/CD133−
(Figure 1A through Figure 1F respectively). The mobilization of
CD45dim/CD34+/CD133+ cells coupled with reductions in CD45−/
CD34+/CD133+, CD45−/CD34+/CD133−, and CD45−/CD34−/

FIGURE 3
Frequency of stem cell phenotypes at four time points after 100% oxygen exposure detected by flow cytometry. Control = immediately prior to first
exposure, post t × 1 = immediately after the first exposure, Pre T × 10 = immediately prior to exposure 10, 72 h Post T × 10 = 3 days after final exposure 10.
(A) CD45−/CD31+ (B) CD45dim/CD31+, (C) CD45+/CD31+ (D) CD45−/CD105+ (E) CD45dim/CD105+ (F) CD45+/CD105+.

FIGURE 4
Levels of “a proliferation inducing ligand” (APRIL or TNFSF13) and “macrophage migration inhibitory factor” (MIF) at four time points after 100%
oxygen exposure. Control = immediately prior to first exposure, post t × 1 = immediately after the first exposure, Pre T × 10 = immediately prior to
exposure 10, 72 h Post T × 10 = 3 days after final exposure 10. (A) a proliferation-inducing ligand (APRIL or TNFSF13) (B)macrophage migration inhibitory
factor (MIF).
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CD133+, may hypothetically be attributed to the differentiation of
primitive CD133+ hemangioblast cells into more mature CD34+

proangiogenic progenitor cells (Friedrich et al., 2006) occurring
simultaneously with the progression of CD45− to CD45dim. Other
hypothetical mechanisms may explain these outcomes, including
homing of CD45dim/CD34+/CD133− stem cells to sites of
endothelial repair and angiogenesis (Van Craenenbroeck et al.,
2013; Kwon et al., 2014) or differentiation of CD45dim/CD34−/
CD133+ cells into hematopoietic (Gordon et al., 2003; Miraglia et al.,
1997) or endothelial cells (Gehling et al., 2000).

The mechanism responsible for mobilizing SPCs in this
experiment is beyond the scope of this study but may be similar
to that found in higher dose oxygen therapy (HBOT), which
activates nitric oxide synthase and plays a key role in initiating
SPCmobilization (Aicher et al., 2003; Thom and Buerk, 2003; Thom
et al., 2003). Cellular oxygen partial pressure regulates Hypoxia-
Inducible Factor 1 (HIF1), which consists of HIF1-α and HIF1-β
subunits (Forsythe et al., 1996; Jiang et al., 1996; Semenza et al., 1997;
Semenza, 1999; Semenza, 2020; Sunkari et al., 2015). A prominent
theory, known as the Hyperoxic Hypoxic Paradox (HHP) or the
Normobaric Oxygen Paradox (NOP), suggests that hyperoxia may
stabilize HIF proteins through the induction of endogenous
antioxidants (Salvagno et al., 2022; Fratantonio et al., 2021;
Balestra et al., 1985; Burk, 2007; Hadanny and Efrati, 2020; De
Bels et al., 2012; Rocco et al., 2014). The HHP/NOP begins with an
elevation in cellular oxygen tension resulting from breathing an
increased partial pressure of oxygen, leading to a rise in reactive
oxygen species (ROS) as a result of oxygen metabolism within the
mitochondrial electron transport complex subunits (Brueckl et al.,
2006; Waypa et al., 2016). The increase in ROS leads to hormetic
stress, which upregulates the production of endogenous antioxidants
(Godman et al., 2010). The endogenous antioxidants persist for
several hours (Suzuki et al., 2008; Broeyer et al., 2008) and
accumulate in the cell. Upon return to normoxic conditions
following hyperoxic exposure, the heightened levels of
endogenous antioxidants reduce the number of ROS molecules
lower than what is found in typical normoxic conditions. This
results in a relative hypoxia at the cellular level, thereby
stabilizing HIF1α. Stabilized HIF1α then translocates to the
nucleus, where it dimerizes with the HIF1-β subunit to form the
HIF complex, initiating downstream genetic transcription
(Semenza, 2001). Leading to the activation of eNOS in the bone
marrow parenchyma (Goldstein et al., 2006; Aicher et al., 2003;
Thom et al., 2003; Thom et al., 2002) and stem cell mobilization.

CD45dim/CD34−/CD133+ cells are primitive blast and stem cells
with the ability to differentiate into multiple cell lines including
CD45dim/CD34+/CD133+ and CD45dim/CD34+/CD133−. These
primitive stem cells are functionally potent with respect to
homing and vascular repair (Friedrich et al., 2006).

CD45dim/CD34+/CD133+ stem cells are less primitive than
CD45−/CD34−/CD133+ stem cells. The increase in CD45dim/
CD34+/CD133+ stem cells (Figure 1A) found in our data may be
related to the differentiation from CD45−/CD34−/CD133+ stem
cells (Figure 1E) as a progression toward maturation and
hypothetical endothelial repair although other explanations exist.
A decrease in CD45dim/CD34+/CD133+ has been inversely
correlated with both aging and chronic heart failure (CHF)
(Fritzenwanger et al., 2009). Both experimental and clinical data

support this (Andreou et al., 2006). The increase in CD45dim/
CD34+/CD133+ (Figure 1A) following normobaric 100% oxygen
exposures holds promise for both CHF and managing the
progression of executive function, cognitive decline, Alzheimer’s
and dementia, and possibly other diseases that correlate with
decreased endothelial function.

CD133

We also found a significant increase in CD45dim/CD133+ stem
cells between the first and 10th exposure, with a corresponding
decrease in CD45-/CD133+ and no change in CD45+/CD133+
(Figures 2A–C respectively). One explanation may be that
CD45dim/CD133+ SPC’s (Figure 2A) were mobilized from the
bone marrow stroma following repeated NBO exposures but it is
also possible that CD45-/133+ (Figure 2B) cells matured or
differentiated into CD45dim/CD133+ SPC’s leading to a decrease
in the former and an increase in the latter. CD45dim/CD133+ are
primitive stem progenitor cells expressed on hematopoietic (Gordon
et al., 2003), endothelial (Gehling et al., 2000) and neural stem cells
(Uchida et al., 2000). They are capable of differentiation into
hematopoietic and endothelial cells and are sometimes classified
as endothelial progenitor cells (EPC’s) depending on downstream
differentiation. CD133+ cells originate in the bone marrow
(Goldstein et al., 2006; Gallagher et al., 2006) and are involved in
hematopoiesis, wound healing, and endogenous endothelial repair.
They can proliferate, migrate and differentiate into several cell
phenotypes (Luttun et al., 2002; Szmitko et al., 2003) and can
also be angiogenic (Prater et al., 2007).

CD34

The CD45-/CD34+ population was significantly reduced to
almost zero while both CD45dim/CD34+ and CD45+/CD34+
were unchanged (Figures 2D–F respectively). This progression
did not follow the pattern previously exhibited in CD45/CD133+
stem cells. The fate of the CD45−/CD34+ cells (Figure 2D)
remains unclear but may be attributed to differentiation into
another hematopoietic cell phenotype (Anjos-Afonso and
Bonnet, 2023) or participation in angiogenesis (Siemerink
et al., 2012).

Adult stem cells are a group of specific cell phenotypes that
possess the abilities of self-renewal, multipotent differentiation, and
repair after injury. Breathing 100% oxygen at hyperbaric levels
activates nitric oxide synthase which plays a prime role in
initiating CD34+ SPC mobilization (Goldstein et al., 2006; Aicher
et al., 2003; Thom et al., 2003; Thom et al., 2002). CD133+ are
hematopoietic precursors to CD34+ and almost all hematopoietic
pluripotent and committed stem cells in colony-forming assays
express CD34+ (Faramarz et al., 2018). In this study, we found
that CD45dim/CD133+ SPCs were mobilized while at the same
time, CD45dim/CD34+ SPCs were unchanged. We hypothesize that
the exposure to intermittent hyperbaric air may mobilize CD133+
from bone marrow and also play a role in the differentiation of the
CD133+ primitive hematopoietic precursor into mature
hematopoietic cells or remain unchanged in their primitive state.
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It is also possible that CD45−/CD133+ cells differentiated into
CD45dim/CD133+ SPC’s in response to repeated NBO exposures.

CD31+

CD31 responded to normobaric oxygen (NBO) similarly to
CD34, with a significant reduction in the CD45− phenotype and
no change in CD45dim and CD45+ phenotypes (Figure 3A through
Figure 3C respectively). Although the changes in CD31+ are beyond
the scope of this investigation, it is plausible that they may have
participated in angiogenesis (Yang et al., 1999). It is not surprising
that CD31+ was increased by NBO as CD31+ is known to be
mobilized by hyperbaric oxygen (Chen et al., 2021). The
CD31 phenotype is known to participate in angiogenesis and is a
therapeutic target in experimental treatments for atherosclerosis
(Caligiuri, 2020).

CD105+

CD105 like CD34 and CD31 responded to NBO with a
downregulation in the expression of the CD45− phenotype and
no change in either the CD45dim or CD45+ phenotypes (Figure 3D
through Figure 3F respectively). CD105 is also associated with
angiogenesis (Nassiri et al., 2011) and is more highly expressed
in micro-vessels of diabetic patients (Fukumitsu et al., 2013).
Although it is beyond the scope of this project to determine the
outcome of CD105 phenotypes, these novel findings may be worth
further investigation.

A proliferation-inducing ligand (APRIL)

A proliferation inducing Ligand (APRIL) was significantly
upregulated over the course of 9 days of NBO (p = 0.007) and
remained significantly increased for 72 h after the final exposure (P =
0.004). This novel finding is important as it may help develop the
genetic and physiological cascade resulting in stem cell mobilization
following oxygen therapy.

APRIL, which is also known as tumor necrosis factor ligand
superfamily member 13 (TNFSF13) and CD256, APRIL is a protein
that is part of the tumor necrosis factor (TNF) family. TNF family
members induce pleiotropic biological responses, including cell
differentiation, growth, and apoptosis. APRIL is involved in the
regulation of immune responses and is crucial in long-term survival
of plasma cells in the bone marrow (Belnoue et al., 2008), in the
development and survival of bone marrow derived B-cells and acts
as a co-stimulator in the proliferation of B and T cells (Stein
et al., 2002).

APRIL is also involved in the production of inflammatory
cytokines and chemokines (van Deventer, 1999). However its
importance in the proliferation and survival of a subset of B cells
has been shown to have an anti-inflammatory effect (Kumar and
Axtell, 2023), exposing a nuanced dual role both inflammatory and
ant-inflammatory.

In a 2020 study, whole exome sequencing was completed on
primary cells and plasma in one patient with Common Variable

Immunodeficiency analyzing TNFSF13 mRNA expression in vitro
using flow cytometry and next-generation sequencing. Results
indicated that APRIL mRNA were completely absent in the
monocytes and iPSC-moDCs of the patient (Yeh et al., 2020). A
deficiency in APRIL can significantly impact the human immune
system. APRIL is crucial for the maintenance of plasmacytes,
which are cells responsible for producing immunoglobulins
(antibodies). Without sufficient APRIL, the development and
maintenance of these plasmacytes are disrupted, leading to a
condition known as common variable immunodeficiency
(CVID). This condition is characterized by an increased
susceptibility to infections due to reduced levels of
immunoglobulins.

Macrophage migration inhibitory
factor (MIF)

Macrophage migration inhibitory factor (MIF) was significantly
upregulated over the course of 9 days of NBO (p = 0.007) and
remained significantly increased for 72 h after the final exposure (P =
0.004). This novel finding, like the similar finding of increased
expression of APRIL following oxygen therapy, may be an
important piece of the puzzle that leads to stem cell mobilization
following oxygen therapy. These cytokine findings are interesting
subjects for future investigations.

MIF is an inflammatory cytokine that plays a critical role as a
regulator of innate immunity by inhibiting the random
movement of macrophages and promoting their accumulation
at sites of inflammation and triggering various
immune responses.

MIF regulates the immune response and is associated with many
diseases including autoimmune diseases, cancer, metabolic
disorders, and sepsis. MIF also regulates adaptive immune
responses. MIF is released by immune cells and activated
leukocytes and binds to CD74 receptors on other immune system
cells. MIF is also known as glycosylation-inhibiting factor (GIF),
phenylpyruvate tautomerase, and L-dopachrome isomerase.

MIF is known for its proinflammatory effects and is also
implicated in the reparative process. Combined with CD74, MIF
has been shown to promote wound healing in inflammatory bowel
disease (Farr et al., 2020). Most interestingly MIF signaling via
CD74 triggered the proliferation and differentiation of progenitor
cells into epithelial like cells in the lung possibly participating in the
alveolar barrier restoration (Marsh et al., 2009).

Very importantly the inflammatory response is one of most
significant biological processes following sciatic nerve injury. MIF
has been shown to promote the regeneration of peripheral nerves
and Schawnn cells by inducing an inflammatory state in the
Schawnn cells via CD74 receptor, providing beneficial axonal
regrowth (Nishio et al., 2002; Song et al., 2019). These studies
challenge the simplistic view that MIF is solely a pro-
inflammatory or anti-inflammatory cytokine. Instead, they
suggest that MIF may play a dual role, both contributing to
tissue damage and aiding in injury repair.

The increase in both APRIL and MIF was unexpected as HBOT,
a much higher dose of oxygen including an increase in barometric
pressure, is known to have anti-inflammatory effects (Wang et al.,
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2024; Vlodavsky et al., 2006; Mrakic-Sposta et al., 2023; Capó et al.,
2023; Lippert and Borlongan, 2019).

Limitations

Our study is limited by a relatively small sample size. We were
also limited to 10 hyperbaric air exposures in this experiment due to
COVID-19 restrictions. This study should be repeated increasing the
sample size and the exposures to 40 which is the standard number of
exposures used in hyperbaric studies. We hypothesize that
increasing the number of exposures will result in an increased
number of statistically significant findings and will increase the
magnitude of significance in existing findings. This study was also
limited by a relatively small age range and the lack of a pathology.
Future research should include expanded age range and include a
specific pathology.

Conclusion and impact

In this study, we demonstrate for the first time, that daily exposures
to normobaric 100% Oxygen mobilize and differentiate proangiogenic
and hematopoietic stem cell phenotypes and modulates inflammatory
cytokines. These novel findings have many implications in the field of
medical gas therapy. Although leading oxygen therapymedical societies
have not included normobaric 100% oxygen in their repertoires at this
time, these findings lay the foundational knowledge for them to include
NBO in the future.
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