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Pregnancy is a complex process involving complex molecular interaction
networks, such as between miRNA–protein, protein–protein,
metabolite–metabolite, and protein–metabolite interactions. Advances in
technology have led to the identification of many pregnancy-associated
microRNA (miRNA), protein, and metabolite fingerprints in dairy cows. An
array of miRNA, protein, and metabolite fingerprints produced during the early
pregnancy of dairy cows were described. We have found the in silico interaction
networks between miRNA–protein, protein–protein, metabolite–metabolite,
and protein–metabolite. We have manually constructed
miRNA–protein–metabolite interaction networks such as bta-miR-423-
3p–IGFBP2–PGF2α interactomes. This interactome is obtained by manually
combining the interaction network formed between bta-miR-423-
3p–IGFBP2 and the interaction network between IGFBP2–PGF2α with
IGFBP2 as a common interactor with bta-miR-423-3p and PGF2α with the
provided sources of evidence. The interaction between bta-miR-423-3p and
IGFBP2 has many sources of evidence including a high miRanda score of 169,
minimum free energy (MFE) score of −25.14, binding probability (p) of 1, and energy
of −25.5. The interaction between IGFBP2 and PGF2α occurs at high confidence
scores (≥0.7 or 70%). Interestingly, PGF2α is also found to interact with different
metabolites, such as PGF2α–PGD2, PGF2α–thromboxane B2, PGF2α–PGE2, and
PGF2α–6-keto-PGF1α at high confidence scores (≥0.7 or 70%). Furthermore, the
interactions between C3–PGE2, C3–PGD2, PGE2–PGD2, PGD2–thromboxane
B2, PGE2–thromboxane B2, 6-keto-PGF1α–thromboxane B2, and PGE2–6-keto-
PGF1α were also obtained at high confidence scores (≥0.7 or 70%). Therefore, we
propose that miRNA–protein–metabolite interactomes involving miRNA, protein,
andmetabolite fingerprints of early pregnancy of dairy cows such as bta-miR-423-
3p, IGFBP2, PGF2α, PGD2, C3, PGE2, 6-keto-PGF1 alpha, and thromboxaneB2may
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form the key regulatory networks and players of pregnancy regulation in dairy cows.
This is the first study involving miRNA–protein–metabolite interactomes obtained in
the early pregnancy stage of dairy cows.

KEYWORDS

dairy cow early pregnancy stage, miRNA–protein interaction, protein–metabolite
interactions, protein–protein interaction, metabolite–metabolite interaction,
miRNA–protein–metabolite interaction

1 Introduction

Pregnancy in dairy cows enables calf production used for
breeding development and herd repair, along with milk
maintenance for the dairy industry. The first 3 weeks after
insemination comprise the most important phase of
pregnancy as many lactating cows suffer from the loss of
embryos before implantation, which escalates the economic
burden on dairy farmers. Generally, early embryonic
mortality may happen before the day 16 of gestation when
corpus luteum life is not extended with the return to the
estrus cycle (Szenci, 2021). During placentation, the
pregnancy retention varied with progesterone and estradiol
concentration, cow’s age, body condition, and service sire
(Starbuck et al., 2004). The pregnancy retention decreased in
cows with increased age and high body condition. Most of the
pregnancies are maintained in cows with an average body
condition (Starbuck et al., 2004). The lower rate of pregnancy
retention has been detected in one service sire between 5 and
9 weeks. Interestingly, animals with two corpus lutea (CL)
maintained fewer pregnancies; however, more data are
required about the animals who had viable multiple embryos
at the start of the detection of pregnancy (Starbuck et al., 2004).
Multiple-service Holstein cows have reduced the success of
embryo transfer if they had metritis in the early postpartum
period (Estrada-Cortés et al., 2019).

Bovine pregnancy is conventionally detected by rectal palpation
(between 40 and 60 days after artificial insemination), ultrasonography
(between 25 and 30 days after artificial insemination), or by changes in
progesterone concentration in blood (serum) or milk (between 18 and
24 days after artificial insemination) (Szenci, 2021), suggesting their
ability of accurate detection after 3 weeks of pregnancy. However, excess
contact may increase the chances of fetus or embryo loss (Franco et al.,
1987; Thurmond and Picanso, 1993; Thompson et al., 1994).
Transrectal ultrasound scanning is the gold standard for the
detection of pregnancy; however, this involves expertise and use of
expensive equipment and can be performed after 28 days post-artificial
insemination (AI) (Johnston et al., 2018). Furthermore, estrus
visualization with the help of tail paint/heat pads is labor-intensive
and not dependable due to silent and/or missed heats (Johnston
et al., 2018).

The placental lactogen, pregnancy-specific protein B, bovine
pregnancy-associated glycoprotein, and concentration of
progesterone in milk were used for the detection of pregnancy in
cows. However, these tests gave high false positives/high false negatives,
and they differed in an individual’s serum concentration and were also
present in different animal diseases (Pyo et al., 2003). Many diagnostic
methods/tests for cow pregnancy detection were made, including
pregnancy-associated glycoprotein (PAG) ELISA (Green et al., 2005;

Barbato et al., 2017; Barbato et al., 2022), pregnancy-specific protein B
(PSPB) radioimmunoassays (Humblot et al., 1988; Romano and Larson,
2010), early conception factor (ECF) lateral-flow assay (Cordoba et al.,
2001; Ambrose et al., 2007), immunoassays regarding progesterone
(Nebel et al., 1987), and in-line progesterone sensor (Friggens et al.,
2008)-based pregnancy tests. However, these tests had several
shortcomings and were not popular for detecting the early stages
of pregnancy.

The absence of a reliable method for the detection of early
pregnancy in cows decreases overall productivity, increases the
calving interval, and causes a high economic burden to the dairy
industry. The estrous cycle of bovine is approximately 21 days;
therefore, efforts are being made for the identification of pregnancy
biomarkers that detect the pregnancy before 21 days post-artificial
insemination in a less stressful and less invasive way, thereby
providing an opportunity to rebreed in the following estrus cycle.
Generally, early embryonic death results 16 days post-insemination
(Johnston et al., 2018); therefore, an early and accurate pregnancy
diagnosis is most important.

The early diagnosis of cattle pregnancy is important, leading to
the surveillance of the breeding outcome and shortening the calving
interval. The state of pregnancy is accompanied by changes in the
expression of miRNAs, proteins, metabolites and their abundances.
The establishment of dairy cow’s genomic, proteomic, and
metabolomic databases has led to the successful identification of
suitable miRNAs, proteins, and metabolite fingerprints of their
pregnancy. The high stability of microRNAs (miRNAs) renders
them potential non-invasive biomarkers of diseases (Mitchell et al.,
2008; Williams et al., 2013; Casey et al., 2015) with their association
with different diseases, such as cancer, heart diseases, and diseases
involving the autoimmune system, as well as in pregnancy-related
contexts (Miura et al., 2010; Wu et al., 2011; Haider et al., 2014; He
et al., 2015).

The “omics” technologies are capable of analyzing different
aspects of the organism at genomic, transcriptomic, proteomic,
and metabolomic levels (McGettigan et al., 2016). The synergies
between these high-throughput technologies hold the key to
maximizing the efficiency of the early detection of pregnancy.
The last decade has shown significant updates in the field of
proteomics, leading to an increased understanding of biological
pathways affected by different diseases and physiological
conditions (Yates, 2019). Interestingly, the growth of
proteomic and metabolomic technologies in animal biology
has enabled the global analysis of the proteome and
metabolome of biological/clinical samples, including the
detection of potential biomarkers that would be useful for the
early detection of disease and the welfare, safety, and quality of
animal products (Talamo et al., 2003; Bendixen et al., 2011; Turk
et al., 2012; Ceciliani et al., 2014).
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TABLE 1 Summary of early pregnancy-associated important microRNAs of dairy cows.

S.
no

Pregnancy-
associated
microRNA
(miRNA)

Sample (Days/
months) of
pregnancy

Level Mode of
measurement/
validation

Study design Enrolled
population

Reference

Retrospective Prospective Cross-
sectional

1 miR-26a Plasma Days 16–24 of
pregnancy

Upregulated Illumina small-RNA
sequencing and RT-qPCR

• Cycling Holstein-Friesian
heifers were estrus-
synchronized using
progesterone; buserelin on
CIDR insertion; and
cloprostenol after CIDR
insertion

• After 48 h of estrus-
synchronized insemination
or sham-insemination of
animals and again 24 h
later

• Blood collection was on
days 0, 8, and 16 from all
animals. Additional
samples were collected on
day 24 from the pregnant
group

• Exclusion from the study of
five animals that did not
become pregnant

• Pregnancy was confirmed
twice on days 35 and 60 by
trans-rectal ultrasound

• Validation of miRNA:
16 cycling, 14–17-month-
old Holstein-Friesian
heifers were estrus-
synchronized and
inseminated. Blood
collection was on days 0,
16, and 24 and processed
for RT-qPCR analysis

Number of controls (non-
pregnant group): 8
Number of cases (pregnant
group): 16

Ioannidis and
Donadeu (2016)

2 miR-433 and miR-487b Serum Days 19 and 24 of
pregnancy,
respectively

Upregulated Custom PCR arrays and
cDNA synthesis

• Lactating Holstein-Friesian
cows, at 50–80 days
postpartum were kept under
the same feeding and farm
conditions with the free-stall
housing system for at least
6 consecutive months

• Cows with a blind quarter
were excluded

• Cows in the first breeding
of the lactation during
experiments were used

• Cows were estrous-
synchronized and
inseminated with frozen
semen

• Blood samples were
collected 19 and 24 days
post-insemination

• Status of pregnancy
determined 35 days post-
insemination via
ultrasonography

Total: 154 lactating
Holstein-Friesian cows

Gebremedhn
et al. (2018)

3 miR-495-3p, miR-376b-3p,
and miR-323a-3p

Serum Day 24 of pregnancy Downregulated Custom PCR arrays and
cDNA synthesis

• Lactating Holstein-Friesian
cows, at 50–80 days
postpartum, were kept under
the same feeding and farm
conditions with the free-stall
housing system for at least
6 consecutive months

• Cows in the first breeding
of the lactation during
experiments were used

• Cows were estrous-
synchronized and
inseminated with frozen
semen

Total: 154 lactating
Holstein-Friesian cows

Gebremedhn
et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) Summary of early pregnancy-associated important microRNAs of dairy cows.

S.
no

Pregnancy-
associated
microRNA
(miRNA)

Sample (Days/
months) of
pregnancy

Level Mode of
measurement/
validation

Study design Enrolled
population

Reference

Retrospective Prospective Cross-
sectional

• Cows with a blind quarter
were excluded

• Blood samples were
collected 19 and 24 days
post-insemination.

• Status of pregnancy
determined 35 days post-
insemination via
ultrasonography

4 bta-miR-221 and bta-miR-
320a

Plasma 8, 12, and 16 weeks of
pregnancy

Increased Small-RNA sequencing kit • A total of 30 dairy cows
were used

• Non-pregnant cows were
excluded from the analysis

• Blood samples were
collected from animals (n =
12) on 0, 4, 8, 12, and
16 weeks of pregnancy

• Pregnancy was detected by
palpation per rectum
between days 50 and
60 after artificial
insemination or ultrasonic
examination

Total of 30 dairy cows were
used

Lim et al. (2021)

5 let-7f, let-7c, miR-30c, miR-
101, miR-26a, miR-205, and
miR-143

plasma Day 60 of pregnancy
Furthermore, miR-
26a identified on
day 8

Increased Small-RNA sequencing and
RT-qPCR

• Eleven Holstein-Friesian
heifers were estrus-
synchronized and
artificially inseminated

• Pregnancy confirmed via
trans-rectal ultrasound on
days 35 and 60 post-
insemination

• Plasma samples were
collected on days 0, 8, 16,
and 60 post-insemination

Eleven Holstein-Friesian
heifers, 14–17 months old,
were used for the study

Ioannidis and
Donadeu (2017)

6 bta-miR-146b, bta-miR-27b,
bta-miR-26b, bta-miR-450b,
and bta-let-7a-3p

Whole
blood

30 days of pregnancy
group

Upregulated Small-RNA sequencing kit Whole blood samples of
normal and 30 days of
pregnancy from Holstein
cow were collected

Three healthy dairy cows of
normal and 30 days of
pregnancy were taken

Markkandan et al.
(2018)

7 bta-miR-193b, bta-miR-197,
bta-miR-339a, bta-miR-326,
bta-miR-484, bta-miR-486,
bta-miR-423-3p, and bta-
miR-92a

Whole
blood

30 days of pregnancy
group

Downregulated Small-RNA sequencing kit • Whole blood samples
of normal and 30 days
of pregnancy from
Holstein cow were
collected

Three healthy dairy cows of
normal and 30 days of
pregnancy were taken

Markkandan et al.
(2018)
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There are pregnancy-associated microRNAs (miRNAs), proteins,
and metabolites that are differentially regulated during the early stages
of pregnancy in dairy cows. This review incorporates important early
pregnancy-associated miRNAs, proteins, and metabolites based on the
literature. We aim to find miRNA–protein–metabolite interactomes
formed during the early stages of pregnancy in dairy cows by manually
integrating the miRNA–protein interaction network and
protein–metabolite interaction networks formed from miRNAs,
proteins, and metabolites associated with the early stages of
pregnancy in dairy cows.

2 Early stage pregnancy-associated
fingerprints of dairy cows

2.1 MicroRNA fingerprints associated with
early pregnancy stages in dairy cows

MicroRNAs (miRNAs) can govern the expression of genes
post-transcriptionally. They are also involved in pregnancy
regulation in humans and animals (Miura et al., 2010; Morales
Prieto and Markert, 2011; Li et al., 2012; Fu et al., 2013; Morales-
Prieto et al., 2013; Ioannidis and Donadeu, 2016; Cai et al., 2017).
To find the role of miRNAs as the biomarkers for early pregnancy
diagnosis, Hong and co-workers profiled the circulating miRNAs
in normal and 30 days of pregnancy and found differentially
expressed miRNAs between them, including bta-miR-146b, bta-
miR-193b, bta-miR-27b, bta-miR-197, bta-miR-26b, bta-miR-
450b, bta-miR-339a, bta-miR-326, bta-let-7a-3p, bta-miR-484,
bta-miR-486, bta-miR-423-3p, and bta-miR-92a (Markkandan
et al., 2018). Furthermore, the upregulation of plasma miR-26a
during early pregnancy in heifers suggested this as an early
pregnancy biomarker (Ioannidis and Donadeu, 2016).
Furthermore, using small RNA sequencing and RT-qPCR
profiling, miRNAs such as let-7f, let-7c, miR-30c, miR-101,
miR-26a, miR-205, and miR-143 increased in day 60 pregnant
cows compared to non-pregnant cows. Interestingly, the level of
miR-26a was found to be increased on day 8 of pregnant cows,
suggesting their role in early pregnancy (Ioannidis and
Donadeu, 2017).

The serum of pregnant cows contained differentially
expressed miRNAs including miR-433, miR-487b, miR-495-3p,
miR-376b-3p, and miR-323a-3p which were homologous to
human pregnancy-associated C14MC miRNAs, suggesting
their potential roles in early pregnancy (Gebremedhn et al.,
2018). Another study has found an increase in bta-miR-
221 and bta-miR-320a in 8, 12, and 16 weeks of pregnancy in
dairy cows (Lim et al., 2021). The miRNA fingerprints of the early
stage of pregnancy in dairy cows are summarized in Table 1.

2.2 Protein fingerprints associated with early
pregnancy stages in dairy cows

Proteins such as methylmalonyl-CoA mutase, hemoglobin
subunit beta, T-complex protein 1 subunit theta, apolipoprotein
A-II, apolipoprotein AI, albumin, putative helicase MOV-10,
aspartate aminotransferase, vacuolar protein-sorting-associated

protein 36, Tuftelin-interacting protein 11, transcription factor
IIF subunit 2, translation initiation factor eIF-2B subunit beta,
and annexin A9 were found in pregnant cows. Annexin A9 was
related to the early development of the embryo. In addition, LDH
was also found in early pregnant cows (Mojsym et al., 2022).
Interestingly, alpha-1 G and lactoferrin/lactotransferrin were
increased in pregnant cow milk 35 days after insemination, were
expressed in a pregnancy-associated manner, and probably were
biomarkers of early pregnancy (Han et al., 2012). Furthermore,
bovine pregnancy-associated protein (bPAP) is also found to be
related to pregnancy, as found in pregnant Holstein cows (Pyo
et al., 2003).

A pilot study comparing pregnant and non-pregnant heifers
during the peri-implantation period showed that the levels of
expression of proteins such as growth arrest-specific protein 1
(GAS1), beta-2-glycoprotein 1 (APOH), follistatin-related protein
1 (FSTL1), and fibulin-1 were increased, while the levels of
serotransferrin (TF), F1MLW8, and immunoglobulin light chain
(IGL@) were decreased, and these may be used for the detection of
early pregnancy (Ruiz Álvarez et al., 2023).

Studies were carried out using two-dimensional-fluorescence
difference gel electrophoresis (2D DIGE) and MALDI-TOF mass
spectrometry for the serum of pregnant and non-pregnant cattle,
and it was found that proteins such as the conglutinin precursor,
modified bovine fibrinogen, and IgG1 were upregulated, while
complement component 3, bovine fibrinogen, and IgG2a were
downregulated in the pregnant cattle serum (Lee et al., 2015).
Interestingly, interferon-stimulated gene-15 ubiquitin-like
modifier (ISG15) protein, myxovirus resistance (MX1 and
MX2) proteins, and oligoadenylate synthetase-1 (OAS1) on
blood neutrophils were found to be of higher abundance on
day 18 after AI, and these were also supported by gene expression
studies. This indicates that these proteins are important for the
establishment of pregnancy and may be the biomarker for the
diagnosis of cow pregnancy (Panda et al., 2020).

Studies have shown that APOB, SPADH1, PLIN2, LPO, PIGR,
PGD, QSOX1, MUC1, SRPRA, MD2, GAPDH, FOLR1, GPRC5B,
and HHIPL2 were differentially expressed between the proteomes of
pregnant (day 21) milk whey and estrous cycle (day 21) milk whey.
These proteins were also the potential biomarkers of early pregnancy
(Johnston et al., 2018).

Rawat et al (2016) found that during early pregnancy
(16–22 days), differentially expressed proteins such as
Mannan-binding protein (MBP), haptoglobin, SERPINB3-like,
uromodulin, cathelicidin, uteroglobin, vitamin-binding protein,
and insulin-like growth factor-binding protein II (IGFBP-II)
were increased in Karan Fries (KF) heifers. The protein
fingerprints of the early stage of pregnancy in dairy cows are
summarized in Table 2.

2.3 Metabolite fingerprints associated with
early pregnancy stages in dairy cows

Understanding the metabolic global changes in pregnant
dairy cows was undertaken by metabolomics studies during
early pregnancy, that is, on days 0, 17, and 45 after artificial
insemination (AI). It was found that metabolic profiles on days
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17 and 45 were significantly different from day 0. In addition,
there were no significant differences in metabolic profiling on
days 17 and 45. The alpha-linolenic acid (ALA) level was low on
days 17 and 45 of pregnancy. Furthermore, low levels of some
important metabolites such as L-dopa, L-tyrosine,
tetrahydrobiopterin, 2,5-diaminopyrimidine nucleoside
triphosphate, folic acid, pantothenic acid, and inositol 1, 3, 4-
trisphosphate (IP3), and metabolites involved in thiamine
metabolism, TCA cycles, folate biosynthesis pathway, one-
carbon metabolism, cysteine and methionine metabolism,
purine metabolism, and pentose and glucuronate
interconversion pathways were observed on day 17 and/or day
45 of pregnancy (Guo and Tao, 2018).

Interestingly, at days 15 and 18 of gestation, the prostaglandin
(6-keto PGF1α, PGF2α, PGE2, PGD2, and TXB2) levels increased
more than those found on day 12 of gestation, which is important for
early embryonic development. The increase was in the order of 6-
keto PGF1α 〉 PGF2α 〉 PGE2 〉 PGD2〉 and TXB2. The concentration
of 6-keto PGF1α was found to be highest on day 15 of gestation
(Ulbrich et al., 2009). The metabolite fingerprints of the early stages
of pregnancy in dairy cows are summarized in Table 3.

3 Results

3.1 Gene Ontology analysis and pathway
enrichment analysis of circulatingmiRNAs of
the early pregnancy stages of dairy cows

To know about the target genes of differentially expressed
miRNA fingerprints listed in Table 1, we used miRNet, a web-
based platform tool (http://www.mirnet.ca/) (Fan et al., 2016; Fan
and Xia, 2018). The miRNet (Fan et al., 2016) incorporates well-
annotated databases such as miRTarBase (Hsu et al., 2011),
TarBase (Vergoulis et al., 2012), miRecords (Xiao et al., 2009),
SM2miR (Liu et al., 2013), Pharmaco-miR (Rukov et al., 2014),
miRanda (Betel et al., 2010), miR2Disease (Jiang et al., 2009),
PhenomiR (Ruepp et al., 2012), StarBase (Yang et al., 2011),
EpimiR (Dai et al., 2014), and miRDB (Wong and Wang,
2015). Supplementary Table S1 summarizes the target genes of
differentially expressed miRNA fingerprints listed in Table 1 using
miRNet (http://www.mirnet.ca/) (Fan et al., 2016; Fan and Xia,
2018), with a degree filter cutoff of default value 1 using the well-
annotated miRanda database (Betel et al., 2010) and MFE scores
that explain the binding affinity between miRNAs and their target
genes (Rath et al., 2016).

Furthermore, the resulting target genes (Supplementary
Table S1) of the miRNA fingerprints listed in Table 1 were
subjected to Gene Ontology biological process (GO-BP)
(Supplementary Table S2), Gene Ontology molecular function
(GO-MF) (Supplementary Table S3), and Gene Ontology cellular
component (GO-CC) (Supplementary Table S4) analyses using
the PANTHER tool (Mi and Thomas, 2009; Mi et al., 2019;
Thomas et al., 2022) and KEGG pathway (Supplementary Table
S5) analyses using the DAVID database/tool (Dennis et al., 2003;
Huang et al., 2007; Sherman et al., 2007; Sherman et al., 2022),
with the false discovery rate (FDR) of 0.05 as a significance
threshold. Therefore, the resulting target genes of the miRNA

fingerprints were enriched in biological processes such as the
regulation of cAMP-mediated signaling, histone deacetylation,
positive regulation of neurogenesis, positive regulation of cell
differentiation, positive regulation of protein kinase activity,
regulation of cell development, positive regulation of
developmental process, regulation of cell differentiation, and
regulation of developmental process (Supplementary Table
S2). Among the identified molecular functions, growth factor
binding, and water transmembrane transporter activity were
enriched (Supplementary Table S3). Furthermore, the enriched
cellular components were composed of trans-Golgi network
membrane, Golgi apparatus, cytoplasmic vesicle, vesicles, and
cytoplasm (Supplementary Table S4).

In addition, the resulting target genes of the miRNA fingerprints
were enriched in pathways such as vasopressin-regulated water
reabsorption, Ras signaling pathway, focal adhesion, T-cell
receptor signaling pathway, TNF signaling pathway, Wnt
signaling pathway, Rap1 signaling pathway, MAPK signaling
pathway, and calcium signaling pathway exported from KEGG
pathway analysis (Supplementary Table S5).

3.2 Protein–protein, protein–metabolite,
and metabolite–metabolite interactions
between protein andmetabolite fingerprints
of early pregnancy stages in dairy cows

Using the STITCH database (Szklarczyk et al., 2016), we were
able to find and identify the protein–protein, protein–metabolite,
and metabolite–metabolite interactions between protein and
metabolite fingerprints of the early stage of pregnancy in dairy
cows at high confidence scores (≥0.7 or 70%) (Figure 1;
Supplementary Table S6). The STITCH database incorporates
the details from text mining, co-occurrence, co-expression,
experiments, gene fusion, neighborhood, predictions, and
databases (Szklarczyk et al., 2016).

We saw that the protein fingerprints form protein–protein
interactions with high confidence, such as MX1–ISG15 (a high
confidence score of 0.992 or 99.2%, including the scores from
experiments, text mining, and co-expression), ISG15–MX2 (a
high confidence score of 0.958 or 95.8%, including the scores
from experiments, text mining, and co-expression),
ALB–APOA1 (a high confidence score of 0.949 or 94.9%,
including the scores from databases, text mining, and co-
expression), APOA2–APOA1 (a high confidence score of 0.934
or 93.4%, including the scores from databases and co-
expression), MX1–OAS1Y (a high confidence score of 0.929 or
92.9%, including the scores from experiments, text mining, and
co-expression), TF–APOA1 (a high confidence score of 0.92 or
92%, including the scores from databases, text mining, and co-
expression), APOA1–LTF (a high confidence score of 0.92 or
92%, including the scores from databases, text mining, and co-
expression), OAS1Y–MX2 (a high confidence score of 0.911 or
91.1%, including the scores from experiments, text mining, and
co-expression), OAS1X–MX2 (a high confidence score of 0.91 or
91%, including the scores from experiments, text mining, and co-
expression), ISG15–OAS1Y (a high confidence score of 0.907 or
90.7%, including the scores from text mining and co-expression),
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TABLE 2 Summary of important protein fingerprints of early stages of pregnancy in dairy cows.

S.
No

Pregnancy-
associated protein

Sample Pregnancy
(day/month)

Level Mode of
measurement

Study design Enrolled
population

Reference

Retrospective Prospective Cross-sectional

1 Methylmalonyl-CoA mutase,
hemoglobin subunit beta,
T-complex protein 1 subunit
theta, apolipoprotein A-II,
apolipoprotein AI, albumin,
putative helicase MOV-10,
aspartate aminotransferase,
vacuolar protein-sorting-
associated protein 36, tuftelin-
interacting protein 11,
transcription factor IIF subunit 2,
translation initiation factor eIF-2B
subunit beta, annexin A9,
and LDH

Saliva and
plasma

3–4 month-pregnant
cows

- 2D electrophoresis and
Ultraflex III MALDI TOF/
TOF spectrometer

• Selected Holstein-Friesian cows
were at least 60 days after the last
parturition

• Progress of pregnancy
was evaluated by the date
of artificial insemination
and per rectal USG

• Pregnancy established for
3–4 months

• Control (non-pregnant)
animals were at a similar
age as pregnant
individuals (4–8 years
old)

• Both saliva and plasma
from control and
pregnant groups were
collected on the same day
in the morning before
feeding

Number of control
(non-pregnant)
groups: 4
Number of cases
(pregnant group):8

Mojsym et al.
(2022)

2 Alpha-1 G and lactotransferrin milk Pregnant Holstein dairy
cattle 35 days after
artificial
insemination (AI)

Increased 2-DE and MALDI-TOF MS • Milk samples were obtained
from five pregnant Holstein
dairy cattle 35 days after
artificial insemination (AI)
and from five non-pregnant
cattle

• For confirming proteomics
results with Western blot
analysis, milk samples were
collected from another
pregnant cattle

Number of control
(non-pregnant)
groups: 5
Number of cases
(pregnant group): 5

Han et al. (2012)

3 Growth arrest-specific protein 1
(GAS1), beta-2-glycoprotein 1
(APOH), follistatin-related
protein 1 (FSTL1), and fibulin-1

Serum Increased 2-DE/
iTRAQ–MALDI–TOF-TOF

• Cows (n = 40) were Aberdeen
Angus heifers, synchronized by
inserting progesterone-releasing
insert (CIDR) prior to artificial
insemination (AI)

• D + Cloprostenol was injected
upon CIDR removal and GnRH
boosts were applied at 10 days and
1 day before AI.

• AI was performed using
commercial semen

• Serum samples were
classified as pregnant (P)
or non-pregnant (NP)

Cows (n = 40)
Number of control
(non-pregnant)
groups: 21
Number of cases
(pregnant group):19

Ruiz Álvarez
et al. (2023)

4 Serotransferrin (TF), A5PK72,
F1MLW8, and immunoglobulin
light chain (IGL@)

Serum Decreased 2-DE/
iTRAQ–MALDI–TOF-TOF

• Cows (n = 40) were Aberdeen
Angus heifers, synchronized by
inserting progesterone-releasing
insert (CIDR) prior to artificial
insemination (AI)

• D + Cloprostenol was injected
upon CIDR removal and GnRH
boosts were applied at 10 days and
1 day before AI.

• AI was performed using
commercial semen

• Serum samples were
classified as pregnant (P)
or non-pregnant (NP)

Cows (n = 40)
Number of control
(non-pregnant)
groups: 21
Number of cases
(pregnant group):19

Ruiz Álvarez
et al. (2023)

5 Conglutinin precursor, modified
bovine fibrinogen, and IgG1

Serum Pregnant Holstein cattle
at day 21 after AI

Upregulated 2D DIGE and MALDI-TOF • Serums of two pregnant
Holstein cattle at day
21 after AI and those of
two non-pregnant cattle
for analyzing of
proteomics

Number of control
(non-pregnant)
groups: 2
Number of cases
(pregnant group): 2

Lee et al. (2015)

(Continued on following page)
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TABLE 2 (Continued) Summary of important protein fingerprints of early stages of pregnancy in dairy cows.

S.
No

Pregnancy-
associated protein

Sample Pregnancy
(day/month)

Level Mode of
measurement

Study design Enrolled
population

Reference

Retrospective Prospective Cross-sectional

6 Hemoglobin, complement
component 3, bovine fibrinogen,
and IgG2a

Serum Pregnant Holstein cattle
at day 21 after AI

Downregulated 2D DIGE and MALDI-TOF • Serums of two pregnant
Holstein cattle at day
21 after AI and those of
two non-pregnant cattle
for analyzing of
proteomics

Number of control
(non-pregnant)
groups: 2
Number of cases
(pregnant group): 2

Lee et al. (2015)

7 Mannan-binding protein (MBP),
haptoglobin, SERPINB3-like,
uromodulin, cathelicidin,
uteroglobin, vitamin-binding
protein, and insulin-like growth
factor-binding protein II
(IGFBP-II)

Urine Days 0, 16, 22, and
35 upto day 60 of
pregnancy in Karan Fries
(KF) heifers

Increased 2D DIGE and LC–MS/MS • Urine was collected from
individual Karan Fries heifers
(n = 6) on different days of
pregnancy (0, 16, 22, and
35 days)

• Day 0 represents the control
[urine collection before
artificial insemination (AI)]

• Following AI, urine was
collected until day 60 of
pregnancy

Total: 6 Rawat et al.
(2016)

8 Interferon-stimulated gene-15
ubiquitin-like modifier (ISG15)
protein, myxovirus resistance
(MX1 and MX2) proteins, and
oligoadenylate synthetase-1
(OAS1)

Blood
neutrophils

10th, 18th, and 36th days
post-AI

High LC–MS/MS • Karan Fries cows were offered ad
lib green fodder, water, and
calculated amount of the
concentrate mixture

• Blood samples were collected
on four different days,
i.e., days 0th, 10th, 18th, and
36th post-AI for each cow

• At day 45 after AI, pregnancy
diagnoses were performed

• Out of 20 cows, 9 were
confirmed as pregnant, and
these pregnant samples were
used for further study. Day
0 was considered as non-
pregnant

Total: 20 Panda et al.
(2020)

9 APOB, SPADH1, PLIN2, PIGR,
PGD, QSOX1, MUC1, SRPRA,
and MD2

Milk whey 21 days post-AI Increased LC–MS/MS • Estrous cycles of 81 multiparous
Holstein-Friesian dairy cows were
synchronized

• Intra-vaginal progesterone-
releasing device (CIDR) was
inserted in the vagina of each cow

• Each cow simultaneously received
gonadotropin-releasing hormone.
Seven days later, the cows received
injection of prostaglandin and
either heat patches or tail paint
were applied on the tail head of
the cows, as aids to detect estrus

• All cows went through
one (control) estrous
cycle

• On day 21 of the control
cycle (i.e., day 0 of the
following cycle), milk
samples for proteomic
analyses were collected

• Seventy-four cows were
artificially inseminated
12 h, following
observation of estrus (day
0)

• Milk samples for
proteomic analyses were
collected 21 days post-AI
(day 21)

• Forty-five cows were
confirmed pregnant via
ultrasound scanning on
day 35 post AI (day 35)

• Ten of these cows were
selected for use in the
present study

• Total: 81
• Seventy-four cows

were artificially
inseminated

• Forty-five cows
were confirmed
pregnant

• Ten of these cows
were selected for
study

Johnston et al.
(2018)

(Continued on following page)
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OAS1X–MX1 (a high confidence score of 0.895 or 89.5%,
including the scores from experiments, text mining, and co-
expression), ALB–TF (a high confidence score of 0.892 or
89.2%, including the scores from text mining and co-
expression), HP–APOA1 (a high confidence score of 0.813 or
81.3%, including the scores from experiments, text mining, and
co-expression), OAS1X–ISG15 (a high confidence score of 0.804
or 80.4%, including the scores from text mining and co-
expression), MX1–MX2 (a high confidence score of 0.804 or
80.4%, including the scores from homology, text mining, and co-
expression), and PIGR–IL4 (a high confidence score of 0.70 or
70%, including the scores from text mining) (Figure 1;
Supplementary Table S6).

The metabolites’ fingerprints form metabolite–metabolite
interactions at high confidence such as prostaglandin
(prostaglandin E2 or PGE2)–prostaglandin (PGF2α) (a high
confidence score of 0.998 or 99.8%, including the scores from
experiments, databases, homology, and text mining),
prostaglandin (PGF2α)–prostaglandin (prostaglandin D2 or
PGD2) (a high confidence score of 0.99 or 99%, including the
scores from databases, homology, and text mining),
levodopa–tetrahydrobiopterin (a high confidence score of
0.975 or 97.5%, including the scores from databases and text
mining), prostaglandin (prostaglandin E2 or PGE2)–
prostaglandin (prostaglandin D2 or PGD2) (a high confidence
score of 0.97 or 97%, including the scores from databases,
homology, and text mining), 6-keto-PGF1α–thromboxane B2
(a high confidence score of 0.961 or 96.1%, including the
scores from text mining), levodopa–tyrosine (a high
confidence score of 0.96 or 96%, including the scores from
databases, homology, and text mining), prostaglandin
(prostaglandin E2 or PGE2)–thromboxane B2 (a high
confidence score of 0.938 or 93.8%, including the scores from
text mining), tetrahydrobiopterin–tyrosine (a high confidence
score of 0.933 or 93.3%, including the scores from databases and
text mining), prostaglandin (PGF2α)–6-keto-PGF1α (a high
confidence score of 0.923 or 92.3%, including the scores from
homology and text mining), prostaglandin (PGF2α)–
thromboxane B2 (a high confidence score of 0.92 or 92%,
including the scores from text mining), pantothenic
acid–folate (a high confidence score of 0.857 or 85.7%,
including the scores from experiments and text mining),
prostaglandin (prostaglandin E2 or PGE2)–6-keto-PGF1α (a
high confidence score of 0.804 or 80.4%, including the scores
from homology and text mining), and prostaglandin
(prostaglandin D2 or PGD2)–thromboxane B2 (a high
confidence score of 0.705 or 70.5%, including the scores from
text mining) (Figure 1; Supplementary Table S6).

Furthermore, protein and metabolite fingerprints form
protein–metabolite interactions at high confidence such as FBP
(FOLR1)–folate (a high confidence score of 0.917 or 91.7%,
including the scores from experiments, databases, and text
mining), APOA1–linolenic acid (a high confidence score of 0.913
or 91.3%, including the scores from databases and text mining),
GOT1–tyrosine (a high confidence score of 0.911 or 91.1%,
including the scores from databases and text mining),
PLIN2–linolenic acid (a high confidence score of 0.908 or 90.8%,
including the scores from databases and text mining),T
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TABLE 3 Summary of important metabolite fingerprints of the early stage of pregnancy in dairy cows.

S.
No.

Pregnancy-
associated
metabolite

Sample Level of
metabolite

Pregnancy Mode of
measurement

Statistical
method

Study design Enrolled
population

References

Retrospective Prospective Cross-
sectional

1 Alpha-linolenic acid,
L-dopa, L-tyrosine,
tetrahydrobiopterin,
2,5-
Diaminopyrimidine
nucleoside
triphosphate, folic acid,
pantothenic acid, and
inositol 1, 3,4-
trisphosphate (IP3)

Plasma Decreased Days 17 and
45 after artificial
insemination

HPLC–QTOF/MS Multivariate
statistical analysis,
PCA, OPLS-DA,
Mann–Whitney U
test, and Benjamini
and Hochberg
procedure

• Holstein cows
were in their
second lactation

• Estrus-
synchronized

• Divided into
three groups
(Group A, Group
B, and Group 3)

• Each group of
cows was
artificial
insemination on
the same day

• Group A:
12 plasma
samples from
dairy cows were
collected on day
0 at the time of
AI.

• Group B: On day
17, 11 plasma
samples from
dairy cows were
collected and
confirmed to be
from
corresponding
pregnant cows on
day 45

• Group C:
Fourteen plasma
samples were
collected from
pregnant dairy
cows on day 45

Number of
controls: 12
Number of
cases: 25

Guo and Tao
(2018)

2 PGE2, PGD2, TXB2,
PGF2α, and 6-keto
PGF1α

Uterus
fluid

Increased Days 15 and 18 of
gestation

LC–MS/MS Least-square
regression

Cyclic simmental
heifers of 23 months
of age were cycle-
synchronized
• Blood samples
taken on
synchronization
day, day 0 of the

Number of
controls: (n =
5–7 per group),
3 groups
Number of cases:
(n = 5 per group),
3 groups

Ulbrich et al.
(2009)

(Continued on following page)
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TABLE 3 (Continued) Summary of important metabolite fingerprints of the early stage of pregnancy in dairy cows.

S.
No.

Pregnancy-
associated
metabolite

Sample Level of
metabolite

Pregnancy Mode of
measurement

Statistical
method

Study design Enrolled
population

References

Retrospective Prospective Cross-
sectional

estrous cycle, and
just before
slaughtering

• Pregnant groups
of animals were
artificially
inseminated with
sperm and
slaughtered at
days 12, 15, and
18 of gestation,
respectively, (n =
5 per group)

• For these three
groups, control
groups (n =
5–7 per group)
were inseminated
with the
supernatant of
centrifuged sperm
from the same
bull and
slaughtered at
days 12, 15, and
18 of the estrous
cycle, respectively

• If no intact
conceptus was
detected in case of
AI, then those
animals were
excluded
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C3–prostaglandin (prostaglandin E2 or PGE2) (a high confidence
score of 0.907 or 90.7%, including the scores from databases and text
mining), APOA2–linolenic acid (a high confidence score of 0.90 or
90%, including the scores from databases), C3–prostaglandin
(prostaglandin D2 or PGD2) (a high confidence score of 0.90 or
90%, including the scores from databases), IGFBP2–prostaglandin
(PGF2α) (a high confidence score of 0.804 or 80.4%, including the
scores from text mining) (Figure 1; Supplementary Table S6).

3.3 MicroRNA–protein interactions in the
early pregnancy stages of dairy cows

We selected the protein fingerprints that formed protein–metabolite
interactomes at high confidence (Figure 1; Supplementary Table S6) and
the miRNA fingerprints listed in Table 1 to analyze miRNA–protein
interaction networks using the miRNet web tool (http://www.
mirnet.ca/) (Fan et al., 2016; Fan and Xia, 2018), with the well-

FIGURE 1
Protein–protein, protein–metabolite, and metabolite–metabolite interactions among protein and metabolite fingerprints of the early stage of
pregnancy in dairy cows at high confidence scores. The protein–protein interactions are represented in gray, protein–metabolite interactions are
represented in green, and metabolite–metabolite interactions are represented in red.
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annotated miRanda database (Betel et al., 2010) and proven
prediction ability (Enright et al., 2003; Fan et al., 2016).
Interestingly, we found an interaction between bta-miR-423-
3p and IGFBP2 (Figure 2; Supplementary Table S7). bta-miR-
423-3p, the miRNA fingerprint, and IGFBP2, the protein
fingerprint, were involved as the early pregnancy fingerprints
of dairy cows. The bta-miR-423-3p and IGFBP2 interaction
network using the miRNet web tool (http://www.mirnet.ca/)
(Fan et al., 2016; Fan and Xia, 2018) was found to have
predicted a high miRanda score of 169 and an MFE score
of −25.14 (Supplementary Table S7). The MFE score is the
minimum free energy score expressed as kcal/mol that
explains the binding affinity between miRNAs and their target
genes (Rath et al., 2016). An increase in the binding affinity of
miRNA and its target genes results in low free energy (Mathews
et al., 1999; Kalaigar et al., 2022). An MFE score of −25.14
(Peterson et al., 2014; Rath et al., 2016) explains the strong,
stable, and energetically favorable binding affinity between bta-
miR-423-3p and IGFBP2.

Furthermore, the interaction between bta-miR-423-3p and
IGFBP2 obtained by using miRNet, a web-based platform tool
(http://www.mirnet.ca/) (Fan et al., 2016; Fan and Xia, 2018),
was also confirmed using the miRWalk database (http://mirwalk.
umm.uni-heidelberg.de) (Ding et al., 2016; Sticht et al., 2018;
Veshkini et al., 2022), with the site accessibility of 4.42E-05;
binding site: 436,457; binding probability (p) of 1 and energy
of −25.5; number of pairings: 18; binding region length: 21;
longest consecutive pairings: 11; position: CDS; and an ME value
of −10.9177 (Supplementary Table S8; Supplementary Figure S1).
ME stands for motif m/e, explaining the probabilities of pairing at
different miRNA positions.

4 Discussion

4.1 miRNA–protein–metabolite interaction
network in the early pregnancy stages of
dairy cows

Interestingly, we saw that the miRNA–protein interaction
occurred between bta-miR-423-3p and IGFBP2 with the
binding probability (p) of 1 and energy of −25.5, along with
the site accessibility of 4.42E-05; binding site: 436,457; number
of pairings: 18; binding region length: 21; longest consecutive
pairings: 11; position: CDS; and an ME value of −10.9177 found
from the miRWalk (http://mirwalk.umm.uni-heidelberg.de/)
(Ding et al., 2016; Sticht et al., 2018; Veshkini et al., 2022)
database along with the minimum free energy (MFE) score
of −25.14 and the predicted high miRanda score of 169 using the
miRNet web tool (http://www.mirnet.ca/) (Fan et al., 2016; Fan
and Xia, 2018). (Figure 2; Supplementary Tables S7; S8;
Supplementary Figure S1).

The miRWalk database (http://mirwalk.umm.uni-
heidelberg.de) (Ding et al., 2016; Sticht et al., 2018; Veshkini
et al., 2022) generates predicted and validated miRNA-binding
sites of known gene interactions. The prediction is made with the
random forest-based approach software program TarPmiR
(Ding et al., 2016) that searches complete transcript
sequences such as 5′-UTR, CDS, and 3′-UTR, along with
integration with other well-known databases, including
DIANA-microT-CDS, miRanda-rel2010, DIANA-microTv-4.0,
miRmap, mirBridge, doRiNA, miRNAMap, PicTar, targetScan,
miRDB, miRTarBase, and miRBase (Sticht et al., 2018; Kalaigar
et al., 2022).

FIGURE 2
(A) miRNA–protein interactions of early pregnancy stages in dairy cows. (B) Interaction between bta-miR-423-3p and IGFBP2.
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The miRanda algorithm has similarity to the Smith–Waterman
algorithm (Smith and Waterman, 1981). miRanda uses an
algorithm that finds complementarity matches between miRNAs
and their targets by involving dynamic programming alignment,
thermodynamic measurements to evaluate the energetics of
physical interactions, and evolutionary conservation as the
informational filter (Enright et al., 2003; Peterson et al., 2014).
Interestingly, miRanda matches the entire miRNA sequence for
miRNA-target prediction (Enright et al., 2003), and mirSVR,
which is a support vector regression, gives the scoring that
indicates the strength of miRNA’s regulatory effect (Betel et al.,
2010; Peterson et al., 2014). In addition, some studies (Enright
et al., 2003) have shown that miRanda predictions have also
been validated.

Notably, the protein IGFBP2 has also been found to interact
with prostaglandin (PGF2α), a metabolite with a high confidence
score of 0.804 or 80.4%, including the scores from text mining using
the STITCH (Szklarczyk et al., 2016) database (Figure 1;
Supplementary Table S6).

As we found that the protein IGFBP2 interacts with both bta-
miR-423-3p (Figure 2; Supplementary Figure S1; Supplementary
Tables S7, S8) and prostaglandin (PGF2α) (Figure 1; Supplementary
Table S6), we manually integrated the miRNA–protein interaction,

such as bta-miR-423-3p and IGFBP2 and protein–metabolite
interactions such as IGFBP2 and PGF2α, through the protein
IGFBP2, resulting in the formation of
miRNA–protein–metabolite interactomes such as bta-miR-423-
3p–IGFBP2–PGF2α interactomes (Figure 3). Furthermore, we
also found that PGF2α is also interacting with different
metabolites, thus forming metabolite–metabolite interactions such
as PGF2α–PGD2, PGF2α–thromboxane B2, PGF2α–PGE2, and
PGF2α–6-keto-PGF1α at high confidence scores (≥0.7 or 70%).
In addition, the interactions between C3–PGE2, C3–PGD2,
PGE2–PGD2, PGD2–thromboxane B2, PGE2–thromboxane B2,
6-keto-PGF1α–thromboxane B2, and PGE2–6-keto-PGF1α were
also found at high confidence scores (≥0.7 or 70%) (Figure 1;
Figure 3; Supplementary Table S6).

5 Conclusion

We selected different miRNAs, proteins, and metabolites from
the literature that had played an important role in the early stage of
pregnancy in dairy cows. Furthermore, we also selected the dairy
cows, who were fed the standard diet. We did not consider the
pregnancy-related miRNA, protein, and metabolite biomarkers in

FIGURE 3
Representation of miRNA–protein–metabolite interactomes. The miRNA–protein interaction is represented in purple, protein–metabolite
interactions are represented in green, and metabolite–metabolite interactions are represented in red.
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dairy cows after the transfer of embryos produced by in vitro
fertilization.

The important pathways, biological processes, molecular
functions, and cellular components related to the early pregnancy
of dairy cows were enriched by in silico-generated target genes for
the differentially expressed miRNA fingerprints of the early
pregnancy stage in dairy cows.

We manually generated the bta-miR-423-
3p–IGFBP2–PGF2α interaction network by manually
combining the interaction network formed between bta-miR-
423-3p–IGFBP2 and the interaction network between
IGFBP2–PGF2α with IGFBP2 as a common interactor with
bta-miR-423-3p and PGF2α. Notably, the bta-miR-423-
3p–IGFBP2 interaction is found to have many sources of
evidence, including a high miRanda score of 169, a minimum
free energy (MFE) score of −25.14, binding probability (p) of 1,
and energy of −25.5. In addition, the IGFBP2–PGF2α interaction
also occurs with high confidence scores (≥0.7 or 70%).

Interestingly, PGF2α is also found to interact with different
metabolites, such as PGF2α–PGD2, PGF2α–thromboxane B2,
PGF2α–PGE2, and PGF2α–6-keto-PGF1α at high confidence scores
(≥0.7 or 70%). Additionally, the interactions between C3–PGE2,
C3–PGD2, PGE2–PGD2, PGD2–thromboxane B2,
PGE2–thromboxane B2, 6-keto-PGF1α–thromboxane B2, and
PGE2–6-keto-PGF1α were also observed at high confidence scores
(≥0.7 or 70%).

Therefore, we propose that miRNA–protein–metabolite
interactomes involving miRNA, proteins, and metabolites
including bta-miR-423-3p, IGFBP2, PGF2α, PGD2, C3, PGE2, 6-
keto-PGF1 alpha, and thromboxane B2 found in the early pregnancy
stages of dairy cows may form the key regulatory networks and
players of pregnancy regulation in dairy cows. These
miRNA–protein–metabolite interactomes represent a promising
approach for in silico biomarker discovery in dairy cow
pregnancy and may serve as an alternative to the traditional
methods of detection of dairy cow pregnancy.

To the best of our knowledge, this is the first study involving
miRNA–protein–metabolite interactomes in the early pregnancy
stage of dairy cows. In future, the experimental (in vivo and
in vitro) studies will be carried out to investigate the bta-miR-
423-3p–IGFBP2–PGF2α interactions. In addition, web-based
platforms would be developed to integrate miRNA, proteins,
and metabolites of organisms/animals together to provide
miRNA–protein–metabolite interaction networks.
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