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Background: Glioma is the most common cancer of the central nervous system
with poor therapeutic response and clinical prognosis. Insulin-like growth factor
1 receptor (IGF-1R) signaling is implicated in tumor development and progression
and induces apoptosis of cancer cells following functional inhibition. However,
the relationship between the IGF-1R-related signaling pathway genes and glioma
prognosis or immunotherapy/chemotherapy is poorly understood.

Methods: LASSO–Cox regression was employed to develop a 16-gene risk
signature in the TCGA-GBMLGG cohort, and all patients with glioma were
divided into low-risk and high-risk subgroups. The relationships between the
risk signature and the tumor immune microenvironment (TIME), immunotherapy
response, and chemotherapy response were then analyzed.
Immunohistochemistry was used to evaluate the HSP90B1 level in clinical
glioma tissue.

Results: The gene risk signature yielded superior predictive efficacy in prognosis
(5-year area under the curve: 0.875) and can therefore serve as an independent
prognostic indicator in patients with glioma. The high-risk subgroup exhibited
abundant immune infltration and elevated immune checkpoint gene expression
within the TIME. Subsequent analysis revealed that patients in the high-risk
subgroup benefited more from chemotherapy. Immunohistochemical analysis
confirmed that HSP90B1 was overexpressed in glioma, with significantly higher
levels observed in glioblastoma than in astrocytoma or oligodendrocytoma.

Conclusion: The newly identified 16-gene risk signature demonstrates a robust
predictive capacity for glioma prognosis and plays a pivotal role in the TIME,
thereby offering valuable insights for the exploration of novel biomarkers and
targeted therapeutics.
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1 Introduction

Glioma is the most aggressive primary malignant tumor of
the central nervous system (CNS) and accounts for 81% of
intracranial malignancies (Ostrom et al., 2019). Among
gliomas, glioblastoma (GBM) represents the predominant
high-grade subtype (Louis et al., 2021), comprising 49.1% of
all CNS malignancies (Ostrom et al., 2021). GBM is
characterized by a low survival rate (5-year survival rate:
6.8%) (Ostrom et al., 2021) and exhibits extreme malignancy
and invasiveness (Louis et al., 2021). Because of the high
proliferation rate, cellular heterogeneity, and extensive
infltration capacity of gliomas, treatment response remains
poor for these patients (DeCordova et al., 2020). Recently,
several molecular biomarkers have been identified for
improved diagnosis, treatment selection, and prognostic
assessment of glioma (Hu and Qu, 2021; Zhuo et al., 2023).

The insulin-like growth factor 1 receptor (IGF-1R), a
member of the receptor tyrosine kinase family, remains
unmutated in cancers (Baserga, 1995) and exhibits high
expression in various tumors (Soni et al., 2023), thus
establishing itself as one of the most extensively investigated
kinase targets. The correlation between elevated levels of IGF-1R
pathway signaling and cancer is significantly positive (Baserga,
1995). And the inhibition of IGF-1R itself or the downstream
signal transduction cascade, namely, the PI3K/AKT/MTOR
pathway, exerts potent stimulation on autophagy (Troncoso
et al., 2012; Galluzzi et al., 2014) and other adaptive
mechanisms (Wang et al., 2020) to achieve anti-tumor
efficacy. Therefore, it is considered a crucial target for the
development of anti-cancer therapeutics. However, targeting
it has often produced the disappointing outcomes arising
from the intricate crosstalk with numerous downstream
signaling pathways. Despite continuous advancements in
inhibitors targeting this specific receptor (Wu et al., 2021), no
anticancer drugs have received approval from the Food and
Drug Administration (FDA) to date. This suggests that the IGF-
1R signaling pathway is complex and its pathophysiological role
remains incompletely elucidated. Consequently, it is imperative
to further investigate the activation mechanism of IGF-1R and
its downstream signaling pathway in order to identify key
molecules driving tumor proliferation.

The relationship between gliomas and IGF-1R has been
previously reported inhibition of IGF-1R can effectively
suppress the growth of GBM cells either by directly reducing
tumor cell proliferation or through indirect antiangiogenic
effects (Zamykal et al., 2015). The study conducted by Tan
et al. demonstrates that in glioma, the dual inhibition of IGF-
1R and STAT3 sensitizes STAT3-low cells and improves the
survival of orthotopic xenograft model mouse and concluded
that STAT3-mediated expression features can be used for precise
treatment of patients (Tan et al., 2019). Wei et al. clearly showed
that the interaction between IGF-1R by CXCL14 secreted by
tumor cells, initiates the subsequent activation of IGF-1R and its
downstream mediators, ERK and AKT, involved in the
protumorigenic effects for glioblastoma (Wei et al., 2023).
Nevertheless, the prognostic and therapeutic significance of
IGF-1R-related signaling pathway genes (IGFIRS) in gliomas

has not been investigated. The independent prognostic value of
IGF1RS in glioma, its relationship with the immune
microenvironment, and its efficacy in predicting treatment
response remain to be investigated.

Therefore, in this study, we initially identified IGF-1R-
related signaling pathway genes with prognostic value in
patients with glioma by analyzing multiple public cohorts and
their corresponding survival information. LASSO–Cox
regression analysis was used to establish and assess IGF1RS
as well as explore its association with the clinicopathological
characteristics, prognosis, tumor immune microenvironment
(TIME), and therapy response of glioma. Moreover, the
marker heat shock protein 90β family member 1 (HSP90B1)
was screened from the genes included in IGF1RS and its
expression was verified in cell lines and clinical glioma
specimens. This study provides the basis for further
exploration of enhanced personalized treatment options for
patients with glioma using IGF-1R-related pathway genes.

2 Materials and methods

2.1 Data collection

The Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.
cn/index.jsp) RNAseq data (mRNAseq_325 [CGGA325] and CGGA
mRNAseq_693 [CGGA693]), along with the corresponding clinical and
molecular information (gender, age, overall survival [OS], survival state,
World Health Organization grade, isocitrate dehydrogenase [IDH]
mutation status, and 1p/19q codeletion status) were obtained from
CGGA in-house data. Similarly, the Tumor Genome Atlas (TCGA)
RNAseq data (TCGA-GBMLGG) and its matching information were
downloaded from other data in CGGA other data. Primary cases were
retained, and patients with missing survival data were excluded. In total,
110 IGF-1R-related signaling pathway genes were extracted from the
“Development IGF-1 receptor signaling SuperPath” module in
PathCards (https://pathcards.genecards.org).

2.2 Screening of IGF-1R-related signaling
pathway genes and calculation of IGF1RS

The relationship betweenOS and gene expression levels was assessed
using univariate Cox regression analysis. Cox regression analyses were
conducted using the Survival (3.4–0) package in R software (version
4.1.3), and hazard ratios (HR) along with their corresponding 95%
confidence intervals (95% CI) were calculated. In all cohorts, genes with
p values <0.05 were considered to have significant prognostic potential
and were retained. Subsequently, the least absolute shrinkage and
selection operator (LASSO)–Cox regression models were used to
screen the optimum risk genes for analysis and to establish a
prognostic risk model in TCGA-GBMLGG. The penalty parameter
(λ) of the model was determined through ten-fold cross-validation,
selecting the value of λ that yielded the lowest partial likelihood deviance.
In addition, the IGF1RS of each patient was calculated based on the
expression level of the genes and their corresponding coefficients derived
from LASSO–Cox regression. IGF1RS was calculated using the
following formula:
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riskScore � ∑
16

i

Xi*Yi X: coefficients,Y: gene expression level( )

2.3 Survival analysis

Based on the median IGF1RS, patients were divided into low-
risk and high-risk subgroups. Then, a t-distributed stochastic
neighbor embedding (t-SNE)-based approach was adopted to
explore the low-risk and high-risk assignments. Receiver
operating characteristic (ROC) curve, Kaplan–Meier (K–M)
survival curve, ranked dot plots, and scatter plots were used to
assess the efficiency of IGF1RS in predicting survival.

2.4 Development of a prognostic nomogram

Univariate and multivariate Cox regression analyses were used
to screen independent prognostic prediction biomarkers to
construct a nomogram in TCGA-GBMLGG, and the HRs along
with their corresponding 95% CI were calculated. The prognostic
effect of the model was evaluated using the concordance index (C
index). The consistency between the predicted and actual survival
was demonstrated by 1-, 3-, and 5-year prediction calibration curves.
In addition, ROC and decision curve analysis (DCA) curves,
including nomogram score, IGF1RS, and age, were plotted to
further evaluate the model’s performance.

2.5 Functional enrichment analysis of IGF1RS

The R packages “clusterProfiler” (v.4.8.1) and “ReactomePA”
(v.1.44.0) were used to visualize the top six results of the Gene
Ontology (GO) and Reactome pathways for the 16 risk genes.

2.6 Immune infltration analysis

The ESTIMATE algorithm was used to evaluate tumor purity
and tumor immune score (includes ImmueScore, StromalScore, and
EstimateScore). The microenvironment cell population (MCP)
algorithm was employed to calculate eight immune cell
populations and two stromal cell populations in each sample. In
addition, the extent of immune infltration in the gliomas was
evaluated using single-sample gene set enrichment
analysis (ssGSEA).

2.7 Prediction of immunotherapy/
chemotherapy response

The Submap algorithm (Hoshida et al., 2007) was employed to
predict the clinical response to PD1 and CTLA4 immune checkpoint
blocking within the low-risk and high-risk groups. The Genomics of
Drug Sensitivity in Cancer (GDSC) database was used to predict the
chemotherapeutic response. The prediction process was conducted
using the R package “pRRophetic” (version 0.5), where ridge

regression was employed to estimate the half-maximal inhibitory
concentration (IC50) of each sample. Subsequently, the GDSC
website (https://www.cancerrxgene.org/) was used to identify the
target pathways of drugs exhibiting significant differences in high-
and low-risk groups, while displaying the correlation coefficient of
drugs based on the target pathways. The Connectivity Map (cMap)
is a comprehensive database that contains over 6,900 expression
profiles and 1,309 drugs, which enables the prediction of molecular
compounds for diseases by calculating the connectivity between the
gene-expression signatures of the patient and all the gene-expression
signatures in the database (Lamb et al., 2006). This resource was
utilized for drugs validation by inputting the differentially expressed
genes, which were identified using the “limma” package (version 3.
56.2) (Ritchie et al., 2015), that exhibited upregulation or
downregulation between low-risk and high-risk subgroups of
IGF1RS (|log2 Fold Change| > 0.3 and P-adjusted values <0.05).

2.8 HSP90B1 expression, cell culture, and
Western blot analyses

Using the GEPIA website (http://gepia.cancer-pku.cn/) (Tang
et al., 2017), we analyzed the differences in HSP90B1 mRNA
expression among normal brain tissues, low-grade glioma, and
GBM. The UALCAN database (http://ualcan.path.uab.edu/)
(Chandrashekar et al., 2017) was used to identify variations in
HSP90B1 protein levels between GBM and normal brain tissues.

Human normal astrocytes (HA 1800) and a malignant glioma
cell line (U118MG) were purchased from Jennio Biotech
(Guangzhou, China). T98G, U251, and LN229 cells were
purchased from Procell Life Science and Technology (Wuhan,
China). The cells were authenticated using short tandem repeat
profiling and screened to exclude mycoplasma contamination. Cells
were cultured in high-glucose Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal bovine serum and 1%
penicillin–streptomycin (15140-122, Gibco) and incubated in a
humidified CO2 incubator at 37°C. The medium was replaced
two to three times a week. The aforementioned cells were lysed
using RIPA buffer. Then, 20 μg protein, quantified using the BCA
kit, was subjected to 10% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred onto a polyvinylidene
fluoride membrane. The membrane was blocked with 5% skim milk
for 1 h and then incubated with diluted primary antibodies
(HSP90B1: 1:10000, 14700-1-AP, proteintech, Wuhan, China;
Actin: 1:15000, GB15003-100, Servicebio, Wuhan, China)
overnight at 4°C. Subsequently, the membrane was hybridized
with a secondary antibody. The expression levels of the proteins
were detected using an enhanced chemiluminescence assay.

2.9 Immunofluorescence, single-cell
expression, and
immunohistochemistry analyses

Immunofluorescence images depicting HSP90B1 distribution in
the glioma cell line U251 were downloaded from the Human Protein
Atlas (HPA) database (https://www.proteinatlas.org/) (Uhlén et al.,
2015). Four 10X genomics-based single-cell sequencing GBM cases
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in the CHARTS (https://charts.morgridge.org/) (Bernstein et al.,
2021) database and the uniform manifold approximation and
projection dimensionality reduction method were used to
examine the predicted cell type composition (Zhuo et al., 2023)
and HSP90B1 expression.

HSP90B1 expression was detected in 101 glioma tissues
diagnosed by pathologists collected from the First Affiliated
Hospital of Hainan Medical University. The studies involving
human participants were reviewed and approved by the
Humanities Ethics Committee of the First Affiliated Hospital of
Hainan Medical University (Ethics Approval Number: 2023-KYL-
124). All research procedures adhered to the code of ethics of the
institution, the National Research Council, and the 1975 Declaration
of Helsinki and its subsequent amendments. Informed consent was
obtained from all participants prior to their inclusion in the study.

Paraffin-embedded glioma tissue sections, with a thickness of
5 μm, were blocked with 5% BSA (Sigma, B2064) for 20 min and
subsequently incubated overnight at 4 °C with primary polyclonal
anti-HSP90B1 (14700-1-AP, proteintech, 1:200). After washing
with phosphate buffered saline, the sections were incubated at
37°C for 30 min with biotinylated immunoglobulin G (IgG)
secondary antibodies (diluted to a concentration of 1:200).
Dako REAL™ EnVision™ detection was used for executing the
system secondary antibody and diaminobenzidine color
development. Scanned images of stained sections were
captured using a digital pathology slide scanner (KFBIO KF-
PRO-120), and graphical representation was performed using

K-Viewer software (version 1.5.5.6). The assessment of the
results was independently conducted by two individuals
primarily based on the staining intensity and count of positive
cells. Cell scores for staining ranging from 0% to 25% were
denoted as (+, 1), cells exhibiting staining between 26% and
50% were assigned a score of (++, 2), cells with staining in the
range of 51%–75% were given a score of (++, 3); and cells
displaying staining within the range of 76%–100% were
assigned a score of (++++, 4). The staining color was assessed
as light-yellow particles (+, 1), brown-yellow particles (++, 2), or
brown particles (+++, 3). The final score was determined by
multiplying the staining number score by the staining color score.

2.10 Statistical analysis

The analyses in this study were performed using R software
4.1.3. Wilcoxon’s rank sum test was used to compare the differences
in gene expression between the two groups, while the
Kruskal–Wallis test was employed to analyze the differences
among the three groups. The Chi-square test was used to
compare the clinical data between patients in the low-risk and
high-risk groups. Log-rank tests and Kaplan–Meier (K–M) plots
were used to compare the survival rates of the low-risk and high-risk
groups. Spearman’s correlation coefficient was used to conduct
correlation analyses. A significance level of p < 0.05 was
considered statistically significant.

FIGURE 1
The flowchart of this study.
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3 Results

3.1 Identification of IGF-1R-related signaling
pathway geneswith independent prognostic
value in glioma and establishment of IGF1RS

A comprehensive flow chart of this article is illustrated in
Figure 1. Forty IGF-1R-related signaling pathway genes were
screened via univariate Cox regression analysis in the TCGA-
GBMLGG, CGGA325, and CCGA693 cohorts. Subsequently, the
LASSO–Cox algorithm was used to screen 16 genes (AKT1, IGFBP5,
IGF1R, JAK3, PIK3CD, RPS6KA1, IKBKB, MDM2, SOCS1, NFKB1,
ELK1, PCNA, IL2RG, IGFBP2, FES, and HSP90B1) in TCGA-
GBMLGG (Figures 2A, B). The HR and 95% CI of 16 genes are
shown in Supplementary Figure S1. IGF1RS was calculated by
multiplying the expression level of the genes by their
corresponding regression coefficients (IGF1RS = −0.344009920 ×
expression level of AKT1+ 0.093474674 × expression level of

IGFBP5 + 0.039986077 × expression level of IGF1R +
0.010017526 × expression level of JAK3 + 0.028010873 ×
expression level of PIK3CD + 0.063966696 × expression level of
RPS6KA1 + 0.161467468 × expression level of IKBKB +
0.070073487 × expression level of MDM2 + 0.028624805 ×
expression level of SOCS1+ 0.251289822 × expression level of
NFKB1 + 0.241967045 × expression level of ELK1 +
0.208932545 × expression level of PCNA + 0.046361918 ×
expression level of IL2RG + 0.308388697 × expression level of
IGFBP2 + 0.001870550 × expression level of FES +
0.009765477 × expression level of HSP90B1). The levels of gene
expression for the 16 genes are comprehensively documented in
Supplementary Table S1. The patients were then divided into low-
risk and high-risk subgroups based on the median IGF1RS. The
t-SNE results revealed a general alignment between the subgroups
and a two-dimensional t-SNE distribution pattern (Figure 2C).
Notably, the expression of the majority of genes exhibited a
positive correlation with IGF1RS, except for IGF1R, which

FIGURE 2
Identification of a 16-gene risk signature for overall survival by LASSO–Cox regression analysis in TCGA-GBMLGG cohort. (A) Cross-validation for
tuning parameter selection in the proportional hazards model. (B) The coefficient spectrum of 16-gene in gliomas. (C) t-SNE analysis supported the
stratification into low- and high-risk subgroups. (D) Heatmap shows the association between risk and clinicopathological features based on the 16-gene
risk signature. LASSO: least absolute shrinkage and selection operator.
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displayed low expression in the high-risk group (Figure 2D).
Moreover, the low- and high-risk groups exhibited significant
differences in the distribution of age (p < 0.001), tumor grade
(p < 0.001), IDH status (p < 0.001), and 1p/19q status (p <
0.001) (Table 1). Moreover, the expression of the 16 genes
exhibited significant differences in terms of clinicopathological
characteristics (Supplementary Figure S2). Data from
CGGA325 and CGGA693 cohorts were used to validate these
findings (Supplementary Figures S3–S5, Supplementary
Tables S2, S3).

3.2 Survival analysis and independent
prognostic values of IGF1RS

The K–M survival analysis indicated a significant association
between the high-IGF1RS group and poor outcomes (p < 0.001)
(Figure 3A). Furthermore, IGF1RS exhibited favorable predictive
capability for the 1-, 3-, and 5-year OS rates, with corresponding
AUC values of 0.892, 0.924, and 0.875, respectively (Figure 3B). The
ranked dot and scatter plots revealed that with an increase in the
expression of IGF1RS, the survival time significantly decreases
(Figure 3C). Similarly, IGF1RS was found to have a significant
association with OS in the CGGA325 and CGGA693 cohorts
(Supplementary Figure S6); these findings were consistent with
those from the TCGA-GBMLGG cohort.

The association between IGF1RS and clinicopathological
features was assessed using univariate and multivariate Cox
regression analyses. As shown by the forest plots, similar to age,
IGF1RS could serve as an independent prognostic factor (p < 0.001,
HR: 2.317, 95% CI: 1.755–3.058) (Figures 3D, E).

3.3 Construction and evaluation of
individualized prognostic prediction models

Recognizing the significance of both IGF1RS and age, a
nomogram was developed to enhance the accuracy of individual
prognosis prediction (C index: 0.874) (Figure 3F). The calibration
curves for the nomogram at 1-, 3-, and 5-year intervals, as depicted
in the plot (Figure 3G), demonstrated the accurate prediction of
survival time for patients with glioma. Furthermore, we employed
ROC analysis to assess the sensitivity of the prognostic prediction
model. The AUC values for the nomogram, IGF1RS, and age at
5 years were found to be 0.891, 0.875, and 0.803, respectively
(Figure 3H), indicating that the model was more effective in
differentiating between patients with favorable or unfavorable
prognoses than a single independent prognostic factor. The DCA
curves further substantiated the superior predictive capability of the
nomogram in prognosis assessment (Figure 3I).

3.4 Functional enrichment analysis related
to IGF1RS

To gain a more comprehensive understanding of the underlying
biological functions and pathways associated with IGF1RS, we
performed GO and Reactome pathway analyses using 16 risk
genes. A Spearman’s correlation coefficient was employed for GO
and Reactome pathway analyses. The gene ontology-biological
processes (GO-BP) were mainly related to insulin-like growth
factor receptor signaling pathway, cellular response to peptide,
positive regulation of cell activation, response to peptide
hormone, gland development, and positive regulation of T cell

TABLE 1 Characteristics of patients between high- and low-risk groups in TCGA-GBMLGG cohort.

Characteristics N High (N = 301) Low (N = 302) p-value

Grade 603 <0.001

WHO II 31(5.14%) 182(30.18%)

WHO III 118(19.57%) 120(19.90%)

WHO IV 152(25.21%) 0(0.00%)

Gender 603 0.96

Female 126(20.90%) 128(21.23%)

Male 175(29.02%) 174(28.86%)

Age 603 <0.001

>41 232(38.47%) 125(20.73%)

≤41 69(11.44%) 177(29.35%)

IDH mutation status 597 <0.001

Mutant 78(13.07%) 295(49.41%)

Wildtype 218(36.52%) 6(1.01%)

1p/19q codeletion status 598 <0.001

Codeletion 16(2.68%) 133(22.24%)

Non-codeletion 280(46.82%) 169(28.26%)
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FIGURE 3
Prognostic significance of the 16-gene signature-derived risk score in the TCGA-GBMLGG cohort. (A) Kaplan-Meier analysis of the overall survival
between low- and high-risk subgroups. (B) ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival. (C) Ranked dot and scatter plots
showing the distribution of risk score and patient survival status. The black dotted line is the optimal cut-off value for dividing patients into low- and high-risk
groups. (D) Forest plot shows the associations between risk factors and survival of gliomas by univariate Cox regression analysis. (E) Forest plot shows
that the risk signature is an independent predictor bymultivariate Cox regression analysis. (F) A nomogramof the gliomas (TCGA-GBMLGG cohort) was used
to predict theoverall survival. (G)Calibrationmapswere used to predict the 1-, 3-, and 5-year survival. The x-axis and y-axis represent the predicted and actual
survival rates of the nomogram, respectively. The solid line represents the predicted nomogram, and the vertical line represents the 95% confidence interval.
(H) ROC curve analysis between nomogram and the significative characteristics (risk score and age) frommultivariate Cox regression analysis. (I)DCA curves
of the nomogram and significative characteristics (risk score and age). ROC: Receiver operating characteristic; DCA: Decision curve analysis.
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activation (Figure 4A). The enriched gene ontology-molecular
functions (GO-MFs) were mainly related to insulin-like growth
factor I binding, insulin-like growth factor binding, growth factor
binding, protein tyrosine kinase activity, nonmembrane spanning
protein tyrosine kinase activity, and protein/serine/threonine/
tyrosine kinase activity (Figure 4B). The enriched gene ontology-
cellular component (GO-CC) included the transferase complex,
transfer of phosphorus-containing groups, extrinsic component
of the membrane, protein kinase complex, phosphatidylinositol
3-kinase complex, cytoplasmic side of the plasma membrane, and
cytoplasmic side of the membrane (Figure 4C). The Reactome
pathway enrichment components were mainly related to
signaling by interleukins, toll-like receptor cascades, interleukin-4
and interleukin-13 signaling, MyD88 and Mal/TIRAP cascade
initiated on the plasma membrane, toll-like receptor TLR6/
TLR2 cascade, and toll-like receptor TLR1/TLR2 cascade
(Figure 4D). The genes associated with risk score were mainly
involved in kinase itself, kinase-binding protein, and kinase

regulation, which are consistent with the further function
analysis of the genes comprising IGF1RS. Additionally, there is a
close association between risk genes and immune-related pathways
such as positive regulation of T cell activation (Baserga, 1995; Wu
et al., 2011; Baxter, 2014). To further demonstrate the potential
biological function of IGF1RS, we focused on immune
microenvironment.

3.5 Correlation of IGF1RS with the immune
microenvironment

To assess the relationship between IGF1RS and TIME, we
investigated the correlation between IGF1RS and immune status,
immune cell infltration, and immune cell subpopulations in the
glioma microenvironment using the MCP and ssGSEA algorithms
in the TCGA-GBMLGG (Figure 5A), CGGA325 (Supplementary
Figure S7A), and CGGA693 (Supplementary Figure S7B) cohorts.

FIGURE 4
Functional enrichment analysis of genes related to risk score in TCGA-GBMLGG cohort. (A) Barplot graph for GO-BP. (B) Barplot graph for GO-MF.
(C) Barplot graph for GO-CC. (D) Barplot graph for Reactome pathways.
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FIGURE 5
The role of risk signature in immune microenvironment, immunotherapy, and chemotherapy. (A) Immune cells infltration by MCP counter and
ssGSEA algorithm between low- and high-risk subgroups in the TCGA-GBMLGG cohort. (B) Correlation between immune checkpoint genes and risk
score in the TCGA-GBMLGG cohort. Red color indicates positive correlations, green color represents negative correlations, while white color is assigned
to themedian (correlation = 0). (C) Predicting response to immunotherapy (anti-PD1 and anti-CTLA4) in low- and high-risk subgroups based on the
Submap algorithms in TCGA-GBMLGG cohort. The color of the grid in Submap heatmap represents the correlation p-value. (D) The circos plot illustrates
the correlation coefficient (r > 0.3) calculated based on the IC50 and risk score in public cohorts. (E) The circos plot depicts a comprehensive
representation of 25 drugs based on their target pathways. The p-value is indicated in the figure. ns: no significance; *: p < 0.05; **: p < 0 .01; ***: p <
0.001; ****: p < 0.0001.
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We used the ESTIMATE algorithm to calculate tumor purity and
immune score. The findings of the ESTIMATE algorithm
demonstrated that patients with elevated IGF1RS exhibited a
notably heightened tumor immune score. Endothelial cells and
fibroblasts were significantly enriched in the high-risk subtypes
based on the MCP algorithm. According to the ssGSEA
algorithm, the high-risk subtypes exhibited a significant
enrichment of immune cells, including aDCs, macrophages,
pDCs, T helper cells, Th2 cells, and regulatory T cells (Tregs),
whereas the low-risk groups demonstrated an abundance of
Th1 cells. Moreover, a statistically significant difference was
observed in immune-related biological processes or molecular
functions between the low-risk and high-risk subgroups. These
included antigen-presenting cell costimulation, chemokine
receptor, checkpoint, cytolytic activity, human leukocyte antigen,
major histocompatibility complex class I, para-inflammation, T cell
co-inhibition, T cell costimulation, type I interferon (IFN) response,
and type II IFN response. The endothelial cells can be classified into
four types, namely, arteries, capillaries, veins, and lymphatic
endothelial cells (Geldhof et al., 2022). Similarly, fibroblasts were
categorized into three types: steady state-like (SSL),
mechanoresponsive (MR), and immunomodulatory (IM)
fibroblast cells (Foster et al., 2022; Jain et al., 2023). The findings
revealed significant differences among SSL fibroblast cells, MR
fibroblast cells, arteries endothelial cells, and lymphatic
endothelial cells in TCGA-GBMLGG, CGGA325, and
CGGA693 cohorts (Supplementary Figure S8). Additionally, the
EPIC algorithm was used to validate the results regarding
endothelial cells and fibroblasts (Supplementary Figure S8).
Subsequently, the correlations between immune checkpoint-
related genes and IGF1RS were calculated. In Figure 5B, the
majority of immune checkpoint genes are colored red as they
exhibit a positive correlation with the risk score. The result
showed that the genes (including CD276, CD274, and
PDCD1LG2) had functions on T-cell co-inhibition contributing
to tumor cell evasion were enriched in high-risk groups and become
important targets for blockade-based immunotherapy in cancer
(Figure 5B, Supplementary Figure S9); (Lee et al., 2017; Yearley
et al., 2017; Wang et al., 2019).

3.6 Prediction of immunotherapy and
chemotherapy response in glioma

The above findings suggest that patients with high IGF1RS levels
may be favorable candidates for immunotherapy. Then, the Submap
algorithm was employed to further investigate the correlation
between the IGF1RS signature and the efficacy of
immunotherapy. Within this algorithm, we compared the
expression profiles of two patient groups (high- and low-risk)
with a publicly available dataset on immunotherapy. This dataset
encompasses expression data from 47 melanoma patients who
underwent treatment with PD-1 immune checkpoint inhibitors
or CTLA-4 immune checkpoint inhibitors (Hoshida et al., 2007).
The results demonstrated that the high-risk group exhibited a more
pronounced response to anti-PD-1 treatment than the low-risk
group, with the p values for the three cohorts being less than
0.05 (TCGA-GBMLGG: p = 0.019, Figure 5C; CGGA325: p =

0.019, Supplementary Figure 10A; CGGA693: p = 0.004,
Supplementary Figure 10B). According to the Bonferroni-
corrected p values (p = 0.032), more reliable prediction results
were observed in the CGGA693 cohort. To further assess the
differences in response to chemotherapy among patients in the
high- and low-risk subgroups, 64 potential drugs were screened
based on the GDSC database. Subsequently, the correlation
coefficient between the IC50 of these potential drugs and IGF1RS
was calculated for each sample in the CCGA325, CGGA693, and
TCGA-GBMLGG cohorts, and we found that the correlation
between these potential drugs and IGF1RS were negative, while
no positive correlation was observed. The drugs with correlations
less than 0.3 were excluded in order to show significant differences,
while drugs with coefficients greater than 0.3 were retained
(Figure 5D). Based on the target pathways of the drugs from
GDSC website, the results showed 25 drugs (negative correlation
with IGF1RS), including those involved in the cell cycle (BI.2536,
CGP.60474, GW843682X, and roscovitine), mitosis (docetaxel,
S-trityl-L-cysteine, and vinblastine), PI3K/mTOR signaling
(A.443654, JW.7.52.1, NVP.BEZ235, rapamycin, and
temsirolimus), protein stability and degradation (AUY922,
bortezomib, CCT018159, MG.132, and X17.AAG), receptor
tyrosine kinase signaling (NVP.TAE684, PHA.665752, pazopanib,
and sorafenib), kinases (A.770041, BMS.509744, and WZ.1.84), and
apoptosis regulation (Z.LLNle.CHO) (Figure 5E; Supplementary
Figures 10C, D). The detailed correlation coefficients are shown
in Supplementary Table S4. To validate the correlations between
IGF1RS and drugs, we utilized the cMap website (https://clue.io/
query) to ascertain the associations between IGF1RS and potential
drugs correlated with IGF1RS in different cancer cell lines. The
connectivity score indicates the association, with a higher negative
correlation indicating the potential to reverse the molecular
characteristics of the disease and, theoretically, an increased
likelihood of effectively treating the disease. The antitumor effects
of 17 potential drugs were fully validated, and their high negative
connectivity scores are shown in Supplementary Table S5.

3.7 The expressions of HSP90B1 in glioma

To screen and validate the expression of risk score-related in
glioma, we performed literature investigation, assessed protein
expression, and conducted druggability analysis. Among them,
few relevant studies have been conducted on HSP90B1 in glioma.
The HSP90B1 protein exhibits elevated expression levels in glioma
according to the HPA database (Uhlén et al., 2015), indicating its
potential role in the pathogenesis of this neurological malignancy.
Subsequently, we conducted an analysis of HSP90B1 associated with
drug target tractability using the DepMap website (https://depmap.
org/portal/) and showed that the HSP90B1 protein possesses
bioactive compounds and has a druggable structure. This
heightened expression may suggest a significant association
between the druggable protein HSP90B1 and glioma
development, highlighting its importance as a potential
therapeutic target for further investigation in glioma treatment
strategies. Hence, HSP90B1 was chosen for further
comprehensive investigation. The results of GEPIA database
showed that the expression of HSP90B1 in GBM tumor tissue
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FIGURE 6
(A)Differences inHSP90B1mRNAexpression in normal and cancerous tissues in LGG andGBM. (B)Differences in the expression of HSP90B1 protein in
normal and primary gliomas. (C) Protein expression of HSP90B1 in HA 1800, T98G, U251, U87, LN229, and U118MG cell lines. (D) The immunofluorescence
images depicting theHSP90B1 distribution in theU251 cell line from theHPA database. (E)UMAP plots of single-cell RNA-seq level expression of HSP90B1 in
MGH102.10X, MGH115.10X, MGH124.10X, and MGH125.10X from the CHARTS database. (F) Representative immunohistochemistry images depicting
HSP90B1 expression in astrocytoma, oligodendroglioma, and glioblastoma were obtained from a cohort of 101 glioma tissues collected at the First Affiliated
Hospital of HainanMedical University. The scale bar is 100 µm. (G) The Kruskal–Wallis test was used to determine if the IHC staining score of one group in in
astrocytoma (n = 23), oligodendroglioma (n = 27), and glioblastoma (n = 51) had different distributions from the others respectively. LGG: low-grade gliomas;
GBM: glioblastoma. The p-value is indicated in the figure. ns: no significance; *: p < 0.05; ****: p < 0.0001.
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was significantly higher than that in normal tissue, but there was no
significant difference in LGG (Figure 6A). UALCAN database
analysis revealed higher levels of HSP90B1 protein in GBM tissue
compared to normal tissue (Figure 6B). To verify the protein
expression level of HSP90B1, a Western blot assay was
performed. Compared with the normal astrocyte cell line HA
1800, the protein expression levels of T98G, U251, U87, LN229,
and U118MG were higher (Figure 6C). The HPA database was used
to confirm the cytoplasmic localization of HSP90B1 in U251 human
glioma cell lines by immunofluorescence (Figure 6D). Additional
investigations were conducted to explore the expression ofHSP90B1
at the single-cell level, revealing predominant expression in myeloid
cells and astrocytes (Figure 6E). Meanwhile, HSP90B1 was found to
be significantly enriched in subgroups characterized by low
malignancy scores, and these particular subgroups exhibited
higher inflammation scores (Zhuo et al., 2023). In addition, the
immunohistochemical results revealed that the staining intensity of
HSP90B1 protein in patients with GBM was more pronounced than
that in patients with astrocytoma or oligodendroglioma
(Figures 6F, G).

4 Discussion

IGF-1R, a molecule known to exert potential carcinogenic effects
in various tumors, plays a crucial role in the IGF-1R signaling
pathway (Chen et al., 2020; Hua et al., 2020). In the development of
malignant tumors in humans, the signaling level of the IGF/IGF-1R
pathway plays a pivotal role in promoting cell transformation,
tumor cell proliferation, resistance to apoptosis, and metastasis
(Scagliotti and Novello, 2012; Liefers-Visser et al., 2017).
Considering the significant role played by IGF-1R signaling in
carcinogenesis pathways (Chen et al., 2020; Hua et al., 2020) as
well as the poor prognosis associated with glioma (Simpson et al.,
2020), further investigation of the IGF-1R-related signaling pathway
genes in glioma is necessary.

In this study, we used the IGF-1R-related signaling pathway
genes to develop a predictive risk model for further investigation of
their role in glioma. Our comprehensive analysis revealed an
association between IGF1RS and immune infltration, and drug
therapy. We found that IGF1RS could serve as an independent
prognostic indicator for gliomas. Moreover, the development of a
personalized prognostic model based on IGF1RS and age showed
robust predictive performance, indicating significant potential in
predicting the 5-year survival rate (AUC = 0.891). The IGF1RS
signatures including 16 genes. Among them, IGFBP1 and IGFBP5
play important roles in transcriptional regulation, apoptosis
induction and DNA damage repair, and can modulate IGF-1R
signaling pathway activity upon binding to IGF1/2 ligand (Baxter,
2014). Meanwhile, the IGF-1R signaling can be enhanced by non-
receptor tyrosine adhesion kinase FES-related (FER) to facilitate
cooperative growth and adhesion signaling that potentially
contributing to cancer progression (Stanicka et al., 2018). The
IGF-1/IGF-1R signaling can activate the PI3K/AKT/mTOR
pathway signaling pathway (Abdel-Wahab et al., 2018), which is
closely related to AKT1 and PIK3CD and plays a critical role in
glioma progression, promoting cancer cell proliferation and
inducing drug resistance. In addition, the negative feedback

modulating effect of SOCS1 on IGF-1R mediated signaling has
been reported (Inaba et al., 2005) and whether SOCS1 can
negatively inhibit IGF-1R signaling in gliomas is worthy of
further study. The E3 ubiquitin ligase MDM2 is believed to
mediate the degradation of IGF-1R, thereby directly regulating its
expression levels (Girnita et al., 2007). Conversely, PCNA indirectly
modulates the expression level of IGF-1R by activating PDK1 (Wu
et al., 2011). In order to further elucidate the potential biological
functions associated with IGF1RS, we conducted functional pathway
analysis utilizing IGF1RS as opposed to individual genes. The results
revealed a close association between risk genes and immune-related
pathways, such as positive regulation of T cell activation. Glioma is
renowned for its intricate TIME and poor response to immune
checkpoint inhibitors, with T cell dysfunction favoring tumor
immune evasion among patients with glioma (Mirzaei et al.,
2017; Woroniecka et al., 2018). Consequently, we investigated the
correlation between IGF1RS and immune scores along with immune
cells and observed significant disparities in immune cell abundance
between the high-risk and low-risk subgroups. Notably,
immunosuppressive cells, such as Th2 cells and Tregs, were
significantly enriched within the high-risk subgroup, whereas
Th1 cells predominantly populated the low-risk
subgroup. Furthermore, a positive correlation was identified
between IGF1RS and TNF superfamily immune checkpoint-
related genes as well as most B7-CD28 family genes. These
findings suggest that cancer cells in patients with high-risk
glioma may evade elimination by overexpressing
immunosuppressants after stimulating immune activation.
Overall, these findings suggest that IGF1RS plays a pivotal role in
the TIME of gliomas and that immunotherapy can confer greater
benefits on high-risk patients.

Next, we investigated the differences in the responses to
immunotherapy between the high- and low-risk groups. Previous
studies have demonstrated that patients with glioma exhibit limited
sensitivity to immunotherapy (Yu and Quail, 2021). However, the
identification of advanced immunotherapy regimens (Luo et al.,
2023; Morimoto et al., 2023), and emerging treatment targets (Zhuo
et al., 2023) is anticipated to overcome this obstacle. Upon
examining the three cohorts, we observed that patients with an
elevated IGF1RS exhibited a heightened response to anti-PD1
treatment. This implies that high-risk subtype patients may
demonstrate enhanced sensitivity to immunotherapy.
Subsequently, we used the predictive model of GDSC to assess
chemotherapy drugs and analyze differences in response between
the high- and low-risk subgroups. Interestingly, we discovered a
negative correlation between IC50 values and IGF1RS, indicating the
potential benefits of chemotherapy for high-risk patients. IGF-1R is
a multifunctional membrane-associated tyrosine kinase
(DeCordova et al., 2020), which potentially facilitates the glioma
patient’s response to kinase-inhibiting drugs such as WZ.1.184,
BMS.509744, and A770041. As for drugs involved in the PIK/
mTOR signaling pathway (A.4JW.7.52.1, NVP.BEZ235,
rapamycin, and temsirolimus), Quail et al. demonstrated that the
activation of the PI3K pathway in recurrent GBM can be enhanced
by both macrophage-derived IGF-1 and tumor cell IGF-1R (Quail
et al., 2016), thereby indirectly confirming their potential anticancer
effects within the context of the IGF-1R signaling pathway. This
undoubtedly provides a new chemotherapy pathway for gliomas.
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Among the genes involved in establishing IGF1RS, we
observed that the exploration of HSP90B1 in gliomas was
relatively limited. HSP90B1, a member of the heat shock
protein (HSP) 90 family (Chen et al., 2005), is a stress-
induced molecular chaperone that facilitates the normal
folding, intracellular disposition, and proteolytic turnover of
numerous key regulators involved in cell growth,
differentiation, and survival (Whitesell and Lindquist, 2005).
It plays a crucial role in IGF production and signaling
(Radosevic-Stasic et al., 2012) and Wnt pathway (Liu et al.,
2013). During oncogenesis, tumor cells exhibit an increased
reliance on HSPs (including HSP90B1) for chaperoning to
support their proliferation due to the misfolding of
oncoproteins requiring enhanced chaperone activity for
correct folding (Chatterjee and Burns, 2017). This
phenomenon has been confirmed by elevated expression
levels of HSP90B1 observed in various cancer tissues
(Dejeans et al., 2012; Rachidi et al., 2015). We found
significant differences in the expression of HSP90B1 between
GBM and normal tissue. Using staining analysis of tissue from
101 glioma patients, the HSP90B1 protein was found to be
significantly higher in tumor sections in GBM patients than
in astrocytoma or oligodendrocytoma patients. This indicates
its important role in glioma progression. The inhibition of
HSP90B1 in targeted therapy may impede the correction of
misfolded oncoproteins, thereby inducing cancer cell death.
And various inhibitors have been developed as anticancer
agents (Whitesell and Lindquist, 2005; Taipale et al., 2010;
Patel et al., 2013). For instance, DN401 exhibits robust
inhibition of HSP90B1 both in vitro or in vivo (Park et al.,
2020). After conducting predictive analysis on an extensive
range of drugs utilizing the GDSC database, we have
successfully identified 25 distinct drugs based on the target
pathways, thereby establishing a robust foundation for
targeted drug exploration of HSP90B1.

Despite these findings, this study had some limitations. For
example, the prognostic value of IGF1RS requires further
validation in clinical cohorts. In addition, the role and
function of HSP90B1 as a prognostic biomarker in glioma
should be further investigated using 3D cell culture and cell-
or patient-derived xenograft models.
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