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This review examines the endothelial glycocalyx’s role in inflammation and
explores its involvement in coagulation. The glycocalyx, composed of proteins
and glycosaminoglycans, interacts with von Willebrand Factor and could play a
crucial role in anchoring it to the endothelium. In inflammatory conditions,
glycocalyx degradation may leave P-selectin as the only attachment point for
vonWillebrand Factor, potentially leading to uncontrolled release of ultralong von
Willebrand Factor in the bulk flow in a shear stress-dependentmanner. Identifying
specific glycocalyx glycosaminoglycan interactions with von Willebrand Factor
and P-selectin can offer insights into unexplored coagulation mechanisms.
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1 Introduction

The endothelial glycocalyx constitutes a dense layer of carbohydrate-rich structures
that lines the endothelium (Reitsma et al., 2007; Möckl, 2020). It plays a crucial role in
transducing mechanical forces within endothelial cells (EC) and regulates various
vascular physiological activities. Despite its significance, many aspects of the glycocalyx
functions remain unknown, particularly its involvement in coagulation and the
tethering of clotting Factors. During inflammatory states, such as SARS-CoV-
2 infections, there is documented degradation of the glycocalyx (Lipowsky et al.,
2011; Zha et al., 2022). The glycocalyx is suggested to engage with clotting Factors,
including von Willebrand Factor, a key player in platelet aggregation to stabilize injury
sites (Pipe et al., 2016). These interactions create a delicate equilibrium, ensuring the
cessation of bleeding while preventing the excessive formation of clots in the
bloodstream. This review explores the intricate connections between the glycocalyx,
its associated glycosaminoglycans (GAGs), vonWillebrand Factor, and P-selectin in the
context of inflammatory pathologies.
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2 The endothelium

2.1 The endothelial glycocalyx

Endothelial cells form the inner lining of blood vessels (Alberts
et al., 2002). The endothelial glycocalyx is located at the apical side of
these cells and it’s composed of proteins and carbohydrates

responsible for regulating extracellular functions, such as cell
signaling transduction, and intercellular interactions (Jin et al.,
2021; Reitsma et al., 2007; Tarbell and Ebong, 2008) (Figure 1B).
These proteins and carbohydrates are proteoglycans,
glycosaminoglycans (GAGs), and glycoproteins as shown in
Figure 1B. GAGs are characterized by distinct disaccharide units
repeats that give rise to different components such as heparan

FIGURE 1
(A) The extrinsic pathway begins with Tissue Factor. Tissue Factor is primarily expressed in the walls of blood vessels. When the vessel wall is
damaged, a large amount of Tissue Factor enters the blood. Tissue Factor combines with present proconvertin (Factor VII) to form the activated complex
TF: FVIIa (Owens and Mackman, 2010; Neubauer and Zieger, 2022). TF: FVIIa activates Stuart-Power Factor (Factor X) and Factor VIII (O’Donnell et al.,
2019). The extrinsic pathway can be terminated by tissue Factor pathway inhibitor, which inhibits the TF: FVIIa complex (Owens and Mackman,
2010). The intrinsic pathway begins with high molecular weight kininogen. Factor XV activates Hageman Factor. Factor XIIa combines with coFactors to
activate Factor XI (Palta et al., 2014). Factor XI activates Factor IX. Factor IX activates Factor VIII. Factor IX and Factor VIII form a complex on the platelet
phospholipids that activates Factor X (Owens and Mackman, 2010). In the common pathway, activated Stuart-Prower Factor (Factor Xa) and Factor Va
form a prothrombinase complex with platelet phospholipids. Prothrombinase cleaves Prothrombin (Factor II) into Thrombin. Thrombin cleaves
Fibrinogen (Factor I) into Fibrin (Owens 3rd and Mackman, 2010). Thrombin activates Factor XIII. Factor XIII crosslinks Fibrin into a polymer with covalent
bonds. The platelets and Fibrin polymers form the haemostatic clot (Palta et al., 2014). To position the clot in the correct location, Von Willebrand Factor
(Factor XVI) binds to collagen exposed by the injury to the vessel epithelium (Neubauer and Zieger, 2022). The Von Willebrand Factor then binds to the
GPIb-IX-V complex on the platelet membrane, positioning the platelets and fibrin of the clot at the site of the injury (Sang et al., 2021). In recent years, the
glycocalyx has been proposed to potentially play an important role in the anchoring of clotting Factors, and its well documented degradation in
inflammatory states has been proposed as an underlying Factor for excessive clot development. Created with BioRender.com. (B) The endothelial
glycocalyx and theGAGs that are present in the endothelial glycocalyx. Heparan sulfate, attached to the syndecan complex, hyaluronic acid and sialic acid
and the glypican complex are the main components of the glycocalyx, which lines the endothelium (Mensah et al., 2021). Created with BioRender.com.
(A–C) The endothelial glycocalyx during both inflammatory and healthy conditions. As shown, when cytokines are present to degrade sialic acid and
heparan sulfate, the only known component anchoring the ULVWF to the endothelial membrane is P-Selectin, however much is unknown about the
interactions of Sialic Acid, Heparan Sulfate and Hyaluronic Acid separately as anchors to the ULVWF. Each component must be separately stained to
visualize and uncover these interactions in inflammatory conditions (Mensah et al., 2021). Created with BioRender.com.
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sulphate, chondroitin sulphate, hyaluronic acid, and different forms
of sialic acids (Figure 1B), (Fu and Tarbell, 2013; Weinbaum et al.,
2021). The functions of glycocalyx are very dependent on the way
GAGs are arranged (Weinbaum et al., 2007; Choi and Lillicrap,
2020). Heparan sulfate expression patterns are dependent on
endothelial cell activation and stimulation, which are shear rate
dependent (Reitsma et al., 2007; Zeng et al., 2012). Primarily binding
to syndecans-1, heparan sulfate makes up the majority of the GAGs,
binding 3–5 heparan sulfate per syndecan with larger syndecans also
binding chondroitin sulfate (Zeng et al., 2022) (Figure 1B). It is a
linear sulphated polysaccharide, formed from 40–300 sugar
residues, approximately 20–150 nm in length, and is anchored to
the apical core proteins, syndecans and glypicans (Giantsos-Adams
et al., 2013; Ebong et al., 2014). The syndecan family comprises of
different members: syndecan-1,2,3 and 4. Syndecan-1 is reported to
be present on the apical glycocalyx, whiles syndecan-4 is mostly
found in the basal membrane of the endothelial cells. Not much is
known about the structure and functions of syndecan-2 and
syndecan-3, and merits further investigation (Koo et al., 2013).
Members of the glypican family include six members glypican-
1,2,3,4,5, and 6. Among these members of the glypican family, only
glypican-1 is expressed on endothelial cell glycocalyx (Tarbell,
2010). Hyaluronic acid is a non-sulphated GAG that is not
covalently bound to a core protein. Hyaluronic acid is usually
much longer than protein attached GAGs (Weinbaum et al.,
2003; Dogné and Flamion, 2020). Long chains of hyaluronic acid,
attached to endothelial membrane bound receptors, such as CD44,
are presumed to intertwine through the glycocalyx and provide part
of its structure (Curry and Adamson, 2012), (Figure 1B). Sialic acid,
attached to other core proteins via the terminal ends is another
component of the glycocalyx (Mensah et al., 2019). The most
prominent salic acid residues that are expressed on the
endothelial cells includes ∝-2,6-linked, ∝-2,3-linked, and ∝-2,8-
linked residues which interact with the cells through recognition
binding (Betteridge et al., 2017; Mensah et al., 2019). The other
endothelium components such as glycoproteins which include
selectins, integrins and immunoglobulin-like molecules are
known to interact with the endothelial glycocalyx (Rai et al.,
2015; S Reitsma et al., 2007). P-selectin and E-selectin are usually
upregulated during inflammation (Rai et al., 2015; S Reitsma
et al., 2007).

The endothelial glycocalyx plays a crucial role in regulating
endothelial cell permeability, inflammation, signal transduction, and
anticoagulation, contributing significantly to vascular homeostasis.
Serving as the vascular gatekeeper, the glycocalyx controls the
passage of water, proteins, and various molecules (Butler et al.,
2020). Studies, such as the one conducted by Van Haaren et al.
(2003), using different sizes of dextran to investigate rat myocardial
capillaries, indicate that the glycocalyx acts as a barrier, restricting
the passage of specific molecules through its layer. Degradation of
the glycocalyx, as observed in studies by Kang et al. (2021) and van
Haaren et al. (2003), allows the transport of water and low-density
lipids into rat abdominal aorta cell membrane.

The degradation of the glycocalyx is recognized as a key
indicator of inflammation. When the glycocalyx undergoes
degradation, it exposes vascular adhesion receptors, facilitating
the binding of immune cells (Kang et al., 2021). Fatal diseases
such as sepsis and COVID-19 involve a systemic breakdown of the

glycocalyx, believed to be initiated by specific enzymes and cytokines
targeting the glycosaminoglycans (GAGs) within the glycocalyx.
These enzymes lead to instability, reducing both the overall
thickness and coverage of the glycocalyx (Uchimido et al., 2019).
It is noteworthy that the comprehensive impact of inflammation and
its underlying mechanistic pathways on the glycocalyx remains
incompletely understood, warranting further investigation.

The glycocalyx serves a crucial role beyond regulating
permeability and contributing to inflammation—it acts as a
mechanotransducer. According to Weinbaum et al. (2003),
hydrodynamic forces acting on the apical side of the glycocalyx’s
core proteins result in a bending moment that transduces fluid shear
stress. The tension in GAGs induced by hydrodynamic drags, caused
by blood flow through the glycocalyx layer, transmits fluid shear
stress through the core proteins into the cell cytoskeleton
(Weinbaum et al., 2007).

From a cellular perspective, the drag force experienced by the
glycocalyx during blood flow in vessels translates mechanical forces
through the core proteins into the cell cytoskeleton. Studies by Zeng
and Tarbell (2014) delves into the dynamics of spatial redistribution
of the actin cytoskeleton in response to shear stress. Under static
conditions, dense peripheral actin bands were present at the cell
periphery of rat fat pad endothelial cells. After 30 min of shear stress,
noticeable polymerization and polarization of actin filaments
occurred, with stress fibers oriented parallel to the nearest edge,
and the emergence of lamellipodia and filopodia. Extended exposure
to 24 h of shear stress further reinforced the polymerization and
polarization of actin filaments, leading to the observation of
prominent stress fibers (Zeng and Tarbell, 2014).

The glycocalyx is recognized for its anticoagulation properties,
with components like proteoglycans and glycoproteins (Figure 1B)
binding to anticoagulation mediators such as antithrombin III,
heparin cofactor II, and thrombomodulin (Reitsma et al., 2007).
Specifically, the interaction between antithrombin III and the
heparan sulfate of the glycocalyx strengthens its anticoagulant
properties. Additionally, thrombomodulin binds to the
chondroitin sulfate of the glycocalyx, initiating specific
anticoagulation pathways (Kozar and Pati, 2015). Diseases such
as COVID-19, disseminated intravascular coagulation (DIC), sepsis,
cancer and malaria are characterized by glycocalyx degradation
(Chelazzi et al., 2015; Buijsers et al., 2020; Huang et al., 2021)
and circulating levels of specific glycocalyx components such as
syndecan, may be used as markers for endothelial dysfunction and
diseases severity.

While endothelial extracellular proteins like von Willebrand
factor and P-selectin are known to play a role in the inflammation
and coagulation process, their direct interaction with the glycocalyx
and the exact mechanism of participation remain unclear and is the
focus of this review.

2.2 The von Willebrand Factor

The von Willebrand Factor is a glycoprotein that plays an
integral role in the maintenance of hemostasis (Peyvandi et al.,
2011). It is composed of repeating subunits that form a long
multimer (Cortes and El-Nakeep, 2023). The von Willebrand
Factor is named after Erik von Willebrand, a Finnish doctor who
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documented a family with a seemingly hereditary bleeding disease,
now known as von Willebrand disease (VWD) (Peyvandi et al.,
2011) and was able to differentiate this disorder from hemophilia,
despite similar symptoms (Favaloro, 2014). In the early 1960s, the
combined deficiency of Factor VIII and an unknown protein was
recognized as the primary cause of VWD. With advancements in
ristocetin testing in the 1970s, vonWillebrand Factor’s role in VWD
was confirmed (Kreuz, 2008; Favaloro, 2014). The synthesis of von
Willebrand Factor primarily happens in endothelial cells (Jaffe et al.,
1974) and megakaryocytes (Sporn et al., 1985).

von Willebrand Factor has different conformations depending
on the magnitude of shear stress that the glycoprotein is exposed to
(Okhota et al., 2020). The original form of von Willebrand Factor is
very similar to a folded protein, existing in a globular state. Unlike a
folded protein, von Willebrand Factor does not have a sequence
specific binding protein (Schneider et al., 2007). Therefore, the
monomers can orient themselves in any order and in the
direction of the shear stress field (Di Stasio and De Cristofaro,
2010). The changes to the orientation and state of the glycoproteins
take place at a very small length scale, changing about 10 nm at a
time (Singh et al., 2009). von Willebrand Factor structure is
advantageous for capturing and binding to platelets in the bulk
flow, which is essential in the regulation of hemostasis (Di Stasio and
De Cristofaro, 2010).

Changes in von Willebrand Factor are dependent on the shear
rate present in the cellular microenvironment. At low shear rates
(10–1,000/s) von Willebrand Factor remains in a compact
conformation (Schneider et al., 2007). The von Willebrand Factor
experiences minimal alterations at shear rates below 3,000/s, with
the overall size remaining unchanged, exhibiting only modifications
at the domain level (Singh et al., 2009). The unfolding of von
Willebrand Factor begins in a condensed arrangement when
shear stress levels reach 30 dyne/cm̂2. As the glycoprotein
unfolds, it stretches and adopts a chain-like conformation,
aligning itself in the overall direction of the shear stress field (Di
Stasio and De Cristofaro, 2010).

The role of vonWillebrand Factor in hemostasis is spurred by its
binding patterns to platelets and connective tissue (Peyvandi et al.,
2011). The A1 domain holds the primary function of being the
binding site for the platelet receptor protein, GP1b. Platelet
aggregation occurs at injury sites, resulting in the introduction of
other plasma proteins such as Factor VIII in addition to von
Willebrand Factor leading to thrombi formation (Ruggeri et al.,
2006; Zhang et al., 2009). von Willebrand Factor can exist in
ultralong forms which are cleaved in a shear stress dependent
manner by ADisintegrin and Metalloprotease with
ThromboSpondin motif (ADAMTS13) to prevent unwanted
coagulations (Zhang et al., 2009; Bartoli et al., 2015; Zheng,
2015). The anchorage of ultralong von Willebrand Factor to the
endothelium is thought to be mediated by P-selectin expressed on
the endothelial bed (Padilla et al., 2004), a mechanism that requires
further investigation.

Under normal physiological conditions, the von Willebrand
Factor will act according to the processes described above to
successfully encourage platelet aggregation (Peyvandi et al.,
2011), and the eventual cessation of bleeding. However, its
function during a disease state is less concrete (Ladikou et al.,
2020). Thrombotic incidents are prevalent amongst critically ill

COVID-19 patients (Mei et al., 2021), an infection caused by
SARS-Cov-2 virus (Li et al., 2020). This acute coagulation
disorder is termed COVID-19-associated coagulopathy and the
von Willebrand Factor potentially contributes to its development
(Mei et al., 2021). Elevated levels of both von Willebrand Factor
activity and antigens have been associated with clinically adverse
outcomes for patients, leading to questions about its contribution to
this pathophysiology. In addition to elevated von Willebrand Factor
levels, decreased levels of the ADAMTS13 enzyme have been
reported, meaning an increase amount of uncleaved von
Willebrand Factor would be in circulating during this condition
(Mei et al., 2021).

Von Willebrand Factor’s effects during COVID-19-associated
coagulopathy does not appear unique to the virus, but rather to the
presence of inflammation, as other conditions such as sepsis, DIC,
cancer, and malaria also show marked effects on the vonWillebrand
Factor. Severe DIC outcomes are also associated with an increase in
von Willebrand Factor levels and a decrease in ADAMTS13 (Habe
et al., 2012). This same pattern is observed during the massive
immune response responsible for the development of sepsis and
septic shock (Feroz Azfar et al., 2017). The widespread inflammation
and endothelial dysfunction in these conditions is indicative of the
relationship between endothelial damage and thrombotic
dysregulation (Patel et al., 2019).

2.3 P-selectin

P-selectin is expressed and produced on the endothelial bed and
megakaryocytes and encoded by the SELP gene in humans. One of
the numerous proteins attached to the glycocalyx is P-selectin (S
Reitsma et al., 2007). This selectin is composed of an N terminal
lectin domain, an epidermal growth factor, about nine repeating
regulatory proteins, as well as transmembrane sections and a small
intracytoplasmic end (Blann et al., 2003). P-selectin is stored in the
Weibel–Palade bodies and can be localized in the ⍺-granules during
exocytosis, bringing it to the cell surface when stimulated by
thrombin. P-Selectin is expressed during endothelial activation
and lasts for a short time and quickly internalized and destroyed
within the cell (Merten and Thiagarajan, 2004; Reitsma et al., 2007;
Tvaroška et al., 2020). P-selectin binds to heparan sulfate (Wang and
Geng, 2003), using the P-selectin glycoprotein ligand 1 (PSGL-1)
and the GP-IB-IX-V complex. The binding to the GP-IB-IX-V
complex allows P-selectin to mediate platelet adhesion,
furthermore, stabilizing the GPIIb/IIIa fibrin interaction mediates
inter-platelet aggregation (Blann et al., 2003). P-selectin is important
in the initial adhesion of platelets and leukocytes during injury and
inflammation, hence plays a major role in homeostasis and
thrombosis (Agrati et al., 2021). Conditions like COVID-19
which is known to cause the increased production of Tumor
Necrosis Factor Alpha (TNF-alpha) results in the increased
transcription of P-selectin (Tvaroška et al., 2020).

DIC and some cancers are pro-thrombotic events, manifesting
as microthrombi events, the over expression of P-selectin promotes
coagulation through the circulation of particles with its counter
receptor, PSGL-1, that bring tissue factors to the platelet thrombus
(Mosad et al., 2011; Agrati et al., 2021). The release of soluble
P-selectin in the plasma of patients with DIC is reported to be an
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indicator for the severity of the disease (Wang et al., 2012). Other
inflammatory associated disease such as sepsis is also associated with
soluble P-selectin and the level of blood concentrations of P-selectin
has been correlated with the severity of sepsis (Zonneveld et al.,
2014). Expression of P-selectin can also be seen when the
endothelium is damaged, activating the interactions between the
leukocytes, platelets and endothelium. P-selectin’s role in
inflammation and thrombotic events and location on the
endothelium makes it an ideal biomarker for studying pro-
thrombotic diseases and conditions (Perkins et al., 2019). While
P-selectin is a great biomarker, the binding site is very short, it
cannot be detected in healthy conditions and can only be discovered
during glycocalyx degradation (Moore et al., 2021).

3 Inflammation-induced coagulation

Inflammation is the body’s physiological response to injury or
infection (Wong, 2021). External symptoms of inflammation
include swelling, pain and heat (Nathan and Ding, 2010; Ahmed,
2011). Underlying physiological changes induced by inflammation
include vasodilation, edema and the migration of immune cells to
the affected tissue (Nathan and Ding, 2010; Alessandri et al., 2013),
(Figure 1A). Though inflammation typically responds to mitigate
damage or contamination, the response sometimes causes additional
risk (Wong, 2021). Certain pathogens have shown the ability to
change the proinflammatory cytokine cascade into a cytokine storm
that causes heightened inflammation and overproduction of
proinflammatory cytokines (Fajgenbaum and June, 2020).
Inflammation initiates coagulation, decreasing the effect of
anticoagulants mechanisms and blocking fibrinolytic systems
(Esmon, 2005, 2004). Cytokines are the mediators involved in
coagulation activation resulting in endothelial cell dysfunction by
causing the cells to be less responsive to inflammatory mediators
(Esmon, 2005).

Uncontrolled coagulation is an effect of certain human
pathologies. One defining factor in this phenomenon is the
presence of an inflammatory immune response, primary to
coagulation dysregulation (Wong, 2021). The underlying cause of
this inflammation varies by disease state, ranging from infection to
genetic autoimmune conditions (Del Carmen et al., 2018). One such
pathology is COVID-19 caused by the coronavirus SARS-CoV-2,
recently widespread in a global epidemic. This viral infection
initiates a hypercoagulative state, although direct physiological
pathways relating coronavirus infection, inflammation and
coagulation are poorly understood (Colling and Kanthi, 2020).
There are controversies in the literature as to whether endothelial
cells are directly or indirectly affected by SARS-CoV-2 (Schimmel
et al., 2021). It is known however, that the presence of the virus
results in an influx of cytokines leading to widespread damage to
vasculature (Colling and Kanthi, 2020). Patients with extreme cases
of COVID-19 presents with uncontrolled coagulation referred to as
COVID-19-Associated Coagulation, and the etiology of this
pathology is still unclear. We believe that extreme damage to the
endothelial glycocalyx during viral infection is critical for the onset
and progression of coagulation during COVID-19 infection
(Yamaoka-Tojo, 2020; Suzuki et al., 2021; Zhang et al., 2021;
Yuan et al., 2022).

Another pathology that can lead to uncontrolled coagulation is
DIC which results in overactive clotting leading to blood clots
throughout the blood vessels (Okamoto et al., 2016). These clots
can reduce or block blood flow and cause organ damage (Yamaoka-
Tojo, 2020). As the pathology progresses the overactive clotting
depletes blood platelets and clotting factors (Okamoto et al., 2016).
DIC is usually caused by inflammation, resulting in excessive
activation of Factor VII spurring fibrin and thrombin production
disproportionately (Ryan and Costello, 2023). DIC can be caused by
COVID-19 or similar infection, causing tissue Factors to be released
from damaged endothelial cells in response to cytokines, released
into the bloodstream (Ryan and Costello, 2023).

Sepsis, which is the most common risk factor for DIC, is also
caused by uncontrolled inflammation. This condition arises from an
infection within the body, leading to a hypercoagulative state and
concurrent damage to tissue and organ. In the vascular system,
perturbed endothelial cells and mononuclear cells produce
proinflammatory cytokines that promotes coagulation (Levi et al.,
1997; Okamoto et al., 2016; Song et al., 2017). Proteins expressed on
these cells such as thrombin elicits the production of monocytes
chemoattractant proteins one and interlukein-6, and interleukin-8
(Esmon, 2000; Maneta et al., 2023), leading to intravascular fibrin
deposition (Souza et al., 2015).

Cancer patients also experience an increased affinity for
thrombosis and concurrent venous inflammation (Setiawan et al.,
2022). As an acquired thrombophilia, cancer inflammation in the
microenvironment induces a pro-inflammatory response including
the release of Tumor Necrosis Factor Alpha (TNF-alpha) and
cytokines including interleukins 1a, 6, 17, and 18 (Setiawan et al.,
2022). This inflammation is responsible for widespread endothelial
cell damage and concurrent risk of thrombotic episodes.

Another pathology that is present in the activation of the
endothelial cells is Plasmodium falciparum, which is a severe
form of malaria (O’regan et al., 2016). This parasite attaches to
the endothelium disrupting the pathogenic processes of the
molecules adhered to the endothelium (Yipp et al., 2003).
Moderate to severe cases of malaria present a significant increase
in plasma von Willebrand antigen levels (O’Donnell et al., 2022).
Patients with Palsmodium falciparum have decreased amounts of
ADAMTS13, therefore have an increase in ultra-long VWF
multimers. It has been hypothesized that the VWF may be
involved in the pathogenesis of this parasitic malaria, but the
mechanisms behind it are still being investigated (O’regan
et al., 2016).

The common presentation of vascular damage in diseases like
COVID-19, DIC, sepsis, cancer and malaria underscore the intricate
relationship between inflammation and coagulation. The
dysregulation of these pathways leads to a vicious cycle of
vascular dysfunction, microthrombi formation, and organ
damage. We suspect that the endothelial glycocalyx play a
significant role in the onset and progression of these pathologies.
The compromised integrity of the endothelial barrier leading to
degradation of the glycocalyx contributes to leakage of fluids and
proteins, exacerbating organ dysfunction. Understanding these
shared mechanisms is crucial for developing targeted therapeutic
strategies to mitigate the severe consequences of these complex
disorders. Further research is essential to unravel the specific
molecular and cellular interactions driving vascular damage,
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providing a foundation for more effective interventions and
improved patient outcomes.

The interactions between the endothelial glycocalyx, von
Willebrand factor, and P-selectin form a dynamic and intricate
network that orchestrates key processes in vascular health and
hemostasis. Delving into the crosstalk among these components
could unravel a fascinating interplay that influences vascular
integrity, platelet function, and inflammation.

4 The anchorage of von Willebrand
Factor to the vascular bed, a proposed
mechanism involving the endothelial
glycocalyx and P-selectin

Components of the endothelial cell extracellular membrane,
such as P-selectin, α vβ3-integrins, and heparan sulfate, have
been proposed as possible attachment mechanisms for the
ultralong von Willebrand Factor fibers (Kalagara et al., 2018;
Wang et al., 2022). While there is binding between P-selectin and
von Willebrand Factor, research has shown that this binding is
negligible under physiological conditions of magnesium and
calcium (Huang et al., 2009). Furthermore, the role of αvβ3-
integrins has been brought into question because anchored von
Willebrand Factor fibers are still observed in vβ3-integrin
knockout mice (Chauhan et al., 2007). These observations
have led to the proposition of other possible binding
components that may be acting on von Willebrand Factor.
One possible explanation is that negatively charged GAGs may
have electrostatic interactions contributing to the attachment of
von Willebrand Factor (De Ceunynck et al., 2013). Heparan
sulfate, of the glycocalyx (S Reitsma et al., 2007) is
hypothesized to be a relevant factor for von Willebrand Factor
binding (Wang et al., 2022). The limited evidence available
suggest that the endothelial glycocalyx could play a role in
anchoring von Willebrand Factor to the endothelium
(Kalagara et al., 2018), and that both syndecans and glypicans
could play a significant role in this cellular mechanism. It is
suggested that syndecans −1 clustering is associated with
colocalization of von Willebrand Factor fibers and degradation
of heparan sulfate is reported to reduce von Willebrand Factor
binding to the endothelial bed (Kalagara et al., 2018).

Kalagara et al. (2018) provided experimental evidence that the
glycocalyx plays a crucial role in tethering the vonWillebrand Factor
to the endothelial bed, which they confirmed in their study that the
glycocalyx anchors the von Willebrand Factor (Kalagara et al.,
2018). In this experiment, wheat germ agglutinin (WGA), which
stains the entirety of the glycocalyx components, was used (Kalagara
et al., 2018). Using GAG specific antibodies and enzymes to target
specific components of the glycocalyx could help isolate GAGs that
are directly involved in the anchorage of von Willebrand Factor to
the vascular bed in addition to what was shown by Kalagara et al.
(2018) In addition, varying the shear stress magnitude could provide
relevant data on the importance of shear stress in the anchorage
mechanism. Recently, Wang et al. (2022) showed that heparan
sulfate is responsible for binding to von Willebrand Factor under
exposure to blood circulating melanoma cells. They concluded that
cancer cells with low heparan sulfate levels evade von Willebrand

Factor recognition and are prone to metastasis (Wang et al., 2022).
Further investigating involving other GAGs is necessary to clearly
characterize the role of the glycocalyx in the anchorage of von
Willebrand Factor to the endothelial bed. It could be possible that
heparan sulfate is not the only GAG involved in this
anchorage mechanism.

The role of the glycocalyx in von Willebrand Factor anchoring
is especially relevant in the cases of inflammatory pathologies. In a
healthy state, it could be possible that the glycocalyx components,
and P-selectin may work together to anchor von Willebrand
Factor as shown in Figure 1C. In inflammatory pathologies
(Figure 1C), where the glycocalyx (Lipowsky et al., 2011) is
known to be degraded and ADAMTS13 is deactivated or are
expressed in low levels (Matsumoto et al., 2021) P-selectin
could be the only remaining attachment point for von
Willebrand Factor. This could promote the premature
untethering of ultralong von Willebrand Factor from the
vascular bed leading to uncontrolled platelet activation in the
bulk flow (Figure 1C). This could be a potential contributing factor
to the onset and progression of diseases such as COVID-19-
Associated Coagulation.

Investigating the distinct glycocalyx GAGs responsible for
offering structural support to P-selectin and facilitating the
anchoring of von Willebrand Factor holds the potential to unveil
valuable insights for upcoming research directions. This exploration
could pave the way for tailored therapeutic approaches in addressing
conditions such as COVID-19-Associated Coagulation and various
inflammatory-related diseases.

5 Conclusion

Research specifically focusing on individual GAGs within the
glycocalyx to pinpoint those facilitating the anchorage of von
Willebrand Factor to the endothelium (see Figure 1D) has not
been carried out to date. While it is critical to identify distinct
GAG interactions, it is noteworthy that P-selectin exhibits
affinities for heparan sulfate and, to a lesser extent, sialic
acid—both GAGs present in the endothelial glycocalyx in a
calcium-dependent manner (Koenig et al., 1998). Previous
studies utilizing heparinase, an enzyme that cleaves heparan
sulfate from the glycocalyx, have shown a significant reduction
in P-selectin binding on cell surfaces. This suggests that, in
addition to sialic acid derivatives, P-selectin may also bind to
heparan sulfate-like proteoglycans, indicating a broader
spectrum of interactions (Ma and Geng, 2000). The
investigation into whether P-selectin collaborates with
glycocalyx components in anchoring ultralarge von Willebrand
Factor remains an area with limited research, holding potential
for insights into coagulation mechanisms associated with specific
inflammatory pathologies.
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