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Neurodevelopmental proteasomopathies constitute a recently defined class of
rareMendelian disorders, arising fromgenomic alterations in proteasome-related
genes. These alterations result in the dysfunction of proteasomes, which are
multi-subunit protein complexes essential for maintaining cellular protein
homeostasis. The clinical phenotype of these diseases manifests as a
syndromic association involving impaired neural development and multisystem
abnormalities, notably craniofacial anomalies and malformations of the cardiac
outflow tract (OFT). These observations suggest that proteasome loss-of-
function variants primarily affect specific embryonic cell types which serve as
origins for both craniofacial structures and the conotruncal portion of the heart.
In this hypothesis article, we propose that neural crest cells (NCCs), a highly
multipotent cell population, which generates craniofacial skeleton, mesenchyme
aswell as theOFT of the heart, in addition tomany other derivatives, would exhibit
a distinctive vulnerability to protein homeostasis perturbations. Herein, we
introduce the diverse cellular compensatory pathways activated in response to
protein homeostasis disruption and explore their potential implications for NCC
physiology. Altogether, the paper advocates for investigating proteasome biology
within NCCs and their early cranial and cardiac derivatives, offering a rationale for
future exploration and laying the initial groundwork for therapeutic
considerations.
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1 Introduction

Neurodevelopmental disorders (NDDs) and congenital heart
diseases (CHDs) represent two major global public health
challenges, affecting over 15% of children and nearly 1% of
newborns worldwide, respectively (Bouma and Mulder, 2017; Liu
Y. et al., 2019; Romero-Ayuso, 2021). NDDs are characterized by
deficits in cognitive function and adaptive behavior (Micai et al.,
2020; Hanly et al., 2021), spanning a broad spectrum of neurological
conditions of varying severity including notably intellectual
disability, developmental delay, autism spectrum disorders,
communication and learning disorders, as well as attention
deficit/hyperactivity disorder (Ismail and Shapiro, 2019). CHDs,
commonly referred to as heart defects, are defined as anatomical
and/or functional abnormalities of the heart or its associated great
vessels present at birth. The spectrum of CHDs varies widely,
encompassing mild defects with minimal clinical impact to severe
and life-threatening conditions. This diversity complicates the
classification of CHDs, making it both complex and challenging.
NDDs represent the most prevalent morbidity among CHD
patients, exerting a substantial impact on academic achievement,
the transition to independence, and overall quality of life (Peyvandi
et al., 2023). Herein, CHD children often demonstrate lower scores
for cognition, language, attention, executive functions, as compared
to their peers (Derridj et al., 2021). Despite their synergistic and
cumulative nature, described as “the cumulative burden of injury,”
well-known postnatal risk factors such as postnatal hypoxia/
hypoperfusion, perioperative stroke, etc., account for less than
30% of adverse neurocognitive outcomes in NDD (Marelli et al.,
2016; Patt et al., 2023). On the contrary, it seems that neurological
defects within CHDs are primarily shaped by prenatal factors. This
notion is substantiated by well-established evidence suggesting that
CHDs can impact fetal brain development, leading to reduced fetal
brain volume and disruptions in utero metabolic brain trajectories
(Sadhwani et al., 2022; Andescavage et al., 2023; Peyvandi and
Rollins, 2023). The heart and brain are indeed intricately
interconnected during embryogenesis (Polat et al., 2011;
Martinez-Biarge et al., 2013). For instance, certain CHDs can
diminish blood oxygenation due to ineffective blood pumping by
the heart, leading to insufficient oxygen and nutrients reaching the
developing brain. This prenatal hypoxia can alter brain structures,
potentially causing long-term neurological deficits (Wang et al.,
2021). Lately, a genetic cause has also been proposed to explain the
prevalence of NDDs in individuals with CHDs. This hypothesis is
notably supported by a large study based on exome sequencing of
CHDs patients and their parents, revealing a significantly increased
burden of de novo variants in genes involved in both brain and heart
development (Homsy et al., 2015).

2 Neurodevelopmental
proteasomopathies associated
with CHDs

Recent studies have brought to light that individuals with NDDs
carrying pathogenic variants in genes related to the ubiquitin-
proteasome system (UPS) may not only exhibit neurological
symptoms but also present with CHDs. The UPS, a critical and

conserved pathway across eukaryotes, consists of approximately
1,200 genes, enabling the covalent modification of damaged and/
or unneeded proteins with ubiquitin for their subsequent
degradation by 26S proteasomes (Çetin et al., 2021; Goetzke
et al., 2021). Prime example of UPS dysfunction that may result
in a dual phenotype of NDDs and CHDs include the recently
described neurodevelopmental proteasomopathies caused by
genomic alterations in proteasome genes such as PSMD12,
PSMC3 and PSMC1 (Table 1).

From a structural perspective, the 26S proteasome consists of a
20S core particle (CP) encased with a 19S regulatory particle (RP).
The 19S RP comprises 19 distinct subunits, which can be subdivided
into two sub-modules: the base and the lid (Bard et al., 2018; Sahu
and Glickman, 2021), both susceptible to loss-of-function mutations
(Figures 1A, B). The base segment comprises six diverse AAA +
ATPase subunits (designated as PSMC1-6) alongside four non-
ATPase subunits, namely, PSMD1, PSMD2, PSMD4, and
ADRM1, respectively (Bard et al., 2018; Sahu and Glickman,
2021). The lid component consists of nine structural subunits,
namely, PSMD3, PSMD6, PSMD7, PSMD8, PSMD11, PSMD12,
PSMD13, PSMD14, and SEM1 (Bard et al., 2018; Sahu and
Glickman, 2021). As illustrated in Figure 1A, the 20S CP is a
cylindrical structure formed by stacking 28 subunits into four
hetero heptameric rings: two external α-rings and two internal β-
rings, encompassing the PSMA1-7 and PSMB1-7 subunits,
respectively (Tanaka, 2009; Collins and Goldberg, 2017). The 19S
RP detects ubiquitin-modified protein substrates via the subunits
PSMD4 and ADRM1 which act as ubiquitin receptors (Deveraux
et al., 1995; Husnjak et al., 2008). This recognition is followed by
their subsequent de-ubiquitination by PSMD14 and their unfolding
by PSMC1-6 (Verma et al., 2002; Bar-Nun and Glickman, 2012).
After translocation into the 20S CP, linearized substrates are
degraded into short peptides via the PSMB5, PSMB6, and
PSMB7 catalytic subunits (Schmidt and Finley, 2014). Beyond
maintaining protein homeostasis in the cell, the UPS plays a
significant role in regulating numerous pathways by selectively
targeting kinases, transcription factors, cyclins, enzymes, and/or
other key cellular components for degradation (Çetin et al., 2021;
Goetzke et al., 2021; Papendorf et al., 2022).

Neurodevelopmental proteasomopathies were first documented
in 2017, with PSMD12 loss-of-function mutations identified in
patients presenting typical signs of syndromic intellectual
disability, including speech delay and abnormal facial features
(Küry et al., 2017; Khalil et al., 2018). Remarkably, in addition to
neurodevelopmental features, a substantial portion of patients
exhibited visceral anomalies, among which cardiac issues,
particularly patent ductus arteriosus, emerged as the predominant
feature (Cuinat et al., 2023). Five years later, a similar pattern of
neurodevelopmental delay coupled with heart defects was observed
in individuals carrying PSMC3 loss-of-function variants (Ebstein
et al., 2023). Both neurological and cardiac features were similar to
those seen in patients with PSMD12 variants, suggesting that both
diseases follow the same molecular pathogenesis. This observation
was not surprising, considering that both PSMD12 and PSMC3
encode subunits that are constituents of the same protein complex,
namely, the 19S RP within 26S proteasomes (Çetin et al., 2021). The
notion of a causal link between variants of the 19S RP and NDDs
with CHDs gained further support when one patient, afflicted with a
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neurological syndrome arising from mutations in the
PSMC1 subunit of the 19S RP, was also found to have congenital
heart malformations (Aharoni et al., 2022). As of today, all
proteasome variants causing neurodevelopmental
proteasomopathies are consistently found in genes encoding
subunits of the 19S RP, specifically PSMD12, PSMC1, PSMC3,
and PSMC5 (Figure 1B) (Küry et al., 2017; Khalil et al., 2018;
Aharoni et al., 2022; Ebstein et al., 2023; Küry et al., 2024).

The frequent association of CHDs with facial dysmorphism in
neurodevelopmental proteasomopathies suggests a significant role
of the 19S RP – and by extension, 26S proteasomes – in heart and
craniofacial development. Several explanations might account for
this connection, including the possibility that proteasome genes
autonomously contribute to heart and brain development. Besides,
given the expression of proteasomes in the placenta (Wang et al.,
2013), it is also tempting to speculate that this dual phenotype may
arise from defects in placental development. However, it is unlikely
that impaired neurodevelopment is solely due to hypoxia caused by
CHDs, as some patients with NDDs do not develop CHDs (Cuinat
et al., 2023). One particularly compelling hypothesis suggests that

the 26S proteasome dysfunction, which defines these disorders, may
arise during the early stages of embryonic development, impacting
specific cell populations that contribute to the formation of
both organs.

3 Precursor cells in cardiac and neural
development

Both the cardiac OFT and the craniofacial skeleton partially find
their early origins in neural crest cells (NCCs), a multipotent
migratory progenitor cell population derived from the ectodermal
layer (McQuillen et al., 2010). The ectoderm is one of the three
primary germ layers formed early in embryonic development and
gives rise to various tissues and structures in the body, comprising
the nervous system, the skin and the NCCs (Trounson, 2002). The
process of embryonic development is highly orchestrated and
involves a series of complex events, including migration, cell
differentiation, tissue formation, and morphogenesis (Gerri et al.,
2020). During early embryogenesis, the fertilized egg undergoes

TABLE 1 Clinical manifestations of well-established neurocristopathies and neurodevelopmental proteasomopathies caused by variants in the PSMD12,
PSMC1 and PSMC3 genes.

OMIM Genomic
alteration(s)

Disease Cardiac features Neurologic features References

188400 22q11.2 deletion
(TBX1, PITX2,
COMT)

DiGeorge syndrome
(Velocardiofacial syndrome)

OFT defects Neuronal deficits, dementia and
autistic features

Wilson et al. (1992), Evers
et al. (2006)

214800 CHD7 CHARGE syndrome Various heart anomalies Mental retardation Hurst et al. (1989), Källén
et al. (1999)

163950
605275

PTPN11
LZTR1

Noonan syndromes Various congenital heart defects Mental retardation in some cases Tartaglia et al. (2002)

105650 RPL/RPS (at least
16 genes)

Diamond Blackfan Anemia
syndromes

Various heart malformations Mental retardation and learning
disabilities in some cases

Willig et al. (1999),
Campagnoli et al. (2004),
Pallanti et al. (2008)

102500 NOTCH2 Hajdu-Cheney syndrome Cardiovascular anomalies,
persistent ductus arteriosus,
ventricular septal defect

Various neurologic symptoms Brennan and Pauli (2001)

235730 ZEB2 Mowat-Wilson syndrome Patent ductus arteriosus and/or
ventricular septal defect

Intellectual disability, delayed
psychomotor development

Wakamatsu et al. (2001),
Ishihara et al. (2004), Evans
et al. (2012)

261540 B3GLCT Peters Anomaly with short-
limb dwarfism

Cardiac malformations Mental retardation van Schooneveld et al.
(1984)

261600 PAH Phenylketonuria Congenital heart disease Hyperreflexia, kinetic tremor,
slowed horizontal saccades,
cognitive and behavioral
abnormalities

Rouse et al. (1997), Pilotto
et al. (2021)

615630 IFT172 Short-rib thoracic Dysplasia
10 with or without polydactyly

Various heart anomalies Intellectual disability in some cases Halbritter et al. (2013)

617516 PSMD12 Stankiewicz-Isidor syndrome Cardiac abnormalities,
including septal defects and
patent ductus arteriosus

Intellectual disability and abnormal
behavior, including autism

Küry et al. (2017), Khalil
et al. (2018), Yan et al.
(2022)

N.A. PSMC1 Neurological syndrome Muscular ventricular septal
defect

Intellectual disability,
dysmorphism, hearing loss

Aharoni et al. (2022)

N.A. PSMC3 Neurodevelopmental disorder
with type I IFN production

Ventricular or septal defects,
patent ductus arteriosus,
pulmonary hypertension and
atresia

Developmental delay, hearing loss,
intellectual disability, abnormal
behavior

Ebstein et al. (2023)
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multiple cell divisions, leading to the formation of the blastocyst.
The blastocyst subsequently differentiates into the three germ layers,
one of which is the ectoderm. The dorsal ectoderm gives rise to the
neural plate, which then folds and transforms into the neural tube.
This process is known as neurulation (Copp et al., 2003). The neural
tube will eventually differentiate into the brain and the spinal cord.
As shown in Figure 2, as the neural tube forms, a group of
multipotent cells referred to as NCCs emerge at its borders
(Douarin et al., 2004).

Specifically, NCCs are assigned their identity through the fine-
tune activity of several signaling pathways, among which bone
morphogenetic protein (BMP), wingless-related (Wnt) factors,
fibroblast growth factor (FGF), as well as neurogenic locus notch
homolog protein (Notch)/Delta signaling interactions originating
from neighboring regions including the neural plate, non-neural
ectoderm, and mesoderm (Rogers et al., 2012; Alkobtawi et al.,
2021). The early neural crest specifiers include the transcription
factors FoxD3, Pax3/7, Ets1, Sox8/9/10, Twist1 and Snail1/2
(Schussler et al., 2021). The primary roles of the neural crest
specifiers include three critical functions: 1) they establish NCC
fate, 2) they initiate the epithelial-mesenchymal transition (EMT)
process, characterized by the switch of cadherins, the secretion of
extracellular matrix proteins such as laminin, fibronectin, collagen,
vitronectin, thrombospondin, the activation of matrix
metalloproteinases, the reorganization of the cytoskeleton, and
the presence of distinct surface receptors including integrins and
homing receptors, and 3) they play a role in preserving
multipotency, by cooperation with pluripotency genes such as
Nanog and Oct4 (Kirby and Hutson, 2010; Simões-Costa and
Bronner, 2015; Scerbo and Monsoro-Burq, 2020; Zalc et al., 2021).

As the neural tube closes, NCCs begin migrating dorsolaterally
under the surface ectoderm or ventrally along the neural tube

(Theveneau and Mayor, 2012). As illustrated in Figure 2, NCCs
can be categorized into four distinct subpopulations–cranial
(sometimes referred to as cephalic), vagal, trunk and sacral–based
on their axial origin along the anterior-posterior axis, spanning from
head to tail (Milet and Monsoro-Burq, 2012; Simões-Costa and
Bronner, 2015; Gandhi and Bronner, 2018). Cranial NCCs primarily
reside anterior to the otic placode, extending across the forebrain,
midbrain, and the anterior segments (or rhombomeres) of the
hindbrain (Figure 2). The vagal NCCs, situated posterior to the
cranial NCCs, are found at the levels of somites 1-7 and include
cardiac NCCs (at the level of somites 1–3). Posteriorly, the vagal cell
population is succeeded by trunk NCCs (somites 8–24) and sacral
NCCs (somites 25–33).

More than thirty cell types are derived from NCCs in
vertebrates. However, according to their axial level of origin,
NCCs may display different potentials. From all levels, NCCs
give rise to neurons and glia of the autonomic and sensory
peripheral nervous system and to pigment cells progenitors. In
addition, cranial NCCs provide mesenchymal precursors of most
of head structures including bones, cartilage, connective tissue and
tendons (Cordero et al., 2011). Moreover, crucial to our hypothesis,
cranial NCCs also form the pericytes of forebrain blood vessels,
which regulate the properties of the blood-brain-barrier (BBB)
(Etchevers et al., 2001; Korn et al., 2002; Stebbins et al., 2019).
Importantly, in addition to maintaining BBB integrity, capillary
pericytes are believed to interact with various cell types besides
endothelial cells, including astrocytes, microglia, and neurons,
thereby participating in processes such as the regulation of
neurogenesis (Zhou et al., 2022). In this regard, recent research
has shown that pericyte dysfunction may impair neuronal
differentiation by disrupting microglial function (Hattori et al.,
2022). Furthermore, the notion that blood vessels play a role in

FIGURE 1
Organization of functional andmutant 26S proteasome complexes. (A) Functional 26S proteasomes are comprised of a 20S core particle (CP) linked
to one end of the 19S regulatory particle (RP), which consists of a base and a lid. The base of the 19S RP includes six ATPase subunits (pink) and four non-
ATPase subunits (purple), among which two ubiquitin receptors, as indicated. The lid of the 19S RP contains nine non-ATPase subunits (purple) including
one de-ubiquitination enzyme, as indicated. The 20S CP comprises two heptameric α-rings (light blue) and two heptameric β-rings (dark blue), each
of which housing three catalytic subunits. (B) Dysfunctional 26S proteasomes causing neurodevelopmental disorders (NDDs) associated with congenital
heart diseases (CHDs) carry pathogenic variants in the PSMD12, PSMC1 and PSMC3 subunits (red), as indicated.
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brain development is supported by the observation that proper
reelin signaling in endothelial cells is required for the development
of cortical neurons (Segarra et al., 2018).

In contrast, cardiac NCCs actively contribute to the formation of
the aorticopulmonary septum, heart valves and OFT (Figure 2)
(Srinivasan and Toh, 2019). It has become clear in the last
two decades, that a complex gene regulatory network controls the
emergence of the neural crest fate, comprising both regulations
common to all NCCs and transcriptional modules specific to NCCs
subsets. This notion implies that during the early stages of
development, NCCs destined to the heart or the head share
signaling pathways, transcription factors, and other cell biology
mechanisms that guide their specification, migration, and
differentiation. This also suggests that any dysfunction affecting
NCCs from all axial levels will have repercussions for both the heart
and craniofacial development, as well as indirectly for brain

formation via the activity of BBB. Understanding the shared
developmental origins and pathways can provide valuable
insights into the complex interactions between the heart and the
head during embryogenesis and how disruptions in these processes
can give rise to diverse clinical manifestations in affected individuals.

3.1 Cranial NCCs and their derivatives

The development of the head from cranial NCCs has been the
subject of intense investigations over the past four decades in various
animal models. It is understood that cranial NCC progenitors
embark on their transcription program at the end of gastrulation,
then during neurulation as well as several developmental stages prior
to delamination and closure of the neural tube (Tan and Morriss-
Kay, 1985). Controversy exists in the field regarding the mechanisms

FIGURE 2
Origins of heart and head structures traced to neural crest cells (NCCs). Upper left: Dorsoventral representation of neurulation, depicting the
generation of NCCs undergoing an epithelial-mesenchymal transition (EMT). BMP/Wnt and SHH act as morphogens, establishing opposing gradients
within the neural tube, as indicated. Migrating NCCs can be categorized into cranial, cardiac, vagal, trunk and sacral NCC, depending on their position
along the antero-posterior axis of the embryo, as indicated. While cranial NCCs from the diencephalon (Di) and mesencephalon (Mes) migrate into
the developing frontonasal process (FNP), cranial NCC from the rhombomere levels (r) populate the pharyngeal arches I, II, III and IV to give rise to bones,
cartilage, muscles, soft tissues and ganglia of most craniofacial structures. Cardiac NCCs arise from between the rhombencephalon and the third somite,
migrating to populate pharyngeal arches III, IV, and VI, as well as the heart, contributing to the formation of the aortic arch and the septation of the
future OFT.
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endowing these cells with such high levels of multipotency, with
some studies suggesting a retention of pluripotency gene expression
from blastula stages (Buitrago-Delgado et al., 2015; Pajanoja et al.,
2023), while accumulating evidence proposes a reactivation of Oct4,
Nanog, Klf4, and Sox2, during neurulation in NCC progenitors,
sustaining the robust expression of the Twist1 and
Prrx2 transcription factors (Scerbo and Monsoro-Burq, 2020;
Zalc et al., 2021; Hovland et al., 2022).

In any case, cranial NCCs originating from the diencephalon
and mesencephalon undergo dorsoventral migration, contributing
to the formation of the frontonasal process (FNP) (Figure 2) as well
as maxillary and mandibular processes (Kouskoura et al., 2011). By
contrast, NCCs originating from rhombomeres 1 and 2 of the
rhombencephalon migrate towards pharyngeal arch (PA) 1,
giving rise to Meckel’s cartilage of the jaw, bones of the middle
ear and the sensory ganglia of the trigeminal nerve (V). NCCs from
rhombomere 4, and to a lesser extent rhombomeres 3 and 5 migrate
towards PA2. Derivatives of PA2 include the hyoid and temporal
bones, which arise from Reichert’s cartilage as well as muscles of
facial expression and the sensory ganglia of the facial nerve (VII).
Additionally, NCCs from rhombomeres 6-8 migrate primarily to
PA3, while also making some contribution to PA4-6. These cells
contribute to the development of laryngeal cartilage and muscles as
well as the sensory glia of glossopharyngeal (IX) and vagus (X)
nerves (Méndez-Maldonado et al., 2020) (Figure 2).

While the central nervous system (CNS) develops from the
neural plate progenitors, emerging evidence indicates the
involvement of NCC derivatives in CNS development. Early on,
NCCs can act as sources for signaling molecules. Recent discussion
by Bruet et al. (Bruet et al., 2023) has underscored abundant
experimental data demonstrating that NCCs play a role in
forebrain development by regulating crucial signaling pathways,
notably by modulating FGF8 and Wnt activity along the dorsal
midline. Moreover, as mentioned above, the function of the BBB,
that regulates brain development, depends on the physiology of
NCC-derived pericytes. It is also worth noting that, NCCs share
common developmental events with the brain, including initial
patterning of the anteroposterior axis, where any defects can
impact both. Besides, the involvement of NCCs or NCC-derived
structures in brain development is supported by the presence of
intellectual disability traits observed in patients with established
neurocristopathies, including chromosome 22q11 deletion
syndrome (Cheung et al., 2014) and CHARGE syndrome (North
et al., 1995). Indeed, these latter syndromes, along with several
others, belong to a subset of CHDs that are associated with cognitive
features and result from alterations in genes involved in NCC
function (Vega-Lopez et al., 2018) (Table 1). Altogether, these
observations suggest that defective NCC may disrupt brain
networks and contribute to neurodevelopmental phenotypes.

3.2 Cardiac NCCs and their derived
structures

As shown in Figure 2, cardiac NCCs populate PA 3-6, as well as
the heart and great vessels, where they undergo differentiation into
smooth muscle cells (SMCs). In these locations; they play a crucial
role in the remodeling of the aortic arch, the septation of the OFT

into the aorta and pulmonary arteries, and formation of the OFT
valves (Ryckebüsch et al., 2010; Roux et al., 2017; Odelin et al., 2018;
Stefanovic et al., 2021).

Migrating cardiac NCCs express high levels of MafB, Tbx2 and
Tbx3 transcription factors (Tani-Matsuhana et al., 2018; De Bono
et al., 2023), playing a pivotal role in heart development and
contributing to the formation of the connective tissues of the
thymus, thyroid and parathyroid glands (Monsoro-Burq, 2015).
Recent work by De Bono et al. proposes that the specification of
cardiac NCCs is governed by neighboring mesodermal cells
expressing the transcription regulator Tbx1, which generates
ligands, including Wnt and FGF, to drive the differentiation
process (De Bono et al., 2023). Tbx1 also collaborates
synergistically with SMAD7 in mesodermal cells to prevent
premature activation of the TGFβ/BMP pathway, thereby
preserving the expression of Tbx2 and Tbx3 in cardiac NCCs.
Subsequently, progressive activation of the TGFβ/BMP pathway
facilitates the acquisition of Gata3 and Isl1 markers, directing the
differentiation of cardiac NCCs toward smooth muscle cells (SMCs)
(Figure 2). In the context of heart development, cardiac NCCs
facilitate the elongation OFT via incorporation of second heart
field (SHF) mesoderm cells (Waldo et al., 2005) and participate
in the septation of the aorta and pulmonary arteries (Waldo et al.,
1998; Phillips et al., 2013).

4 Consequences of persistent
proteasome loss of function

As discussed above, the co-occurrence of neurodevelopmental
proteasomopathies with CHDs strongly suggests that the
repercussions of proteasome dysfunction are particularly
prominent within NCCs. A plausible rationale for the heightened
susceptibility of NCCs to defective proteasomes might stem from the
absence of fully adapted compensatory mechanisms. It is indeed
plausible that the mechanisms could either be insufficient or overly
robust, leading to diverse detrimental impacts on NCC physiology.

It is widely recognized that the physiology of NCCs depends
on the proper functioning of the UPS. For instance, SoxE, an
essential transcription factor guiding NCC differentiation into
cartilage, glia, and melanocytes (Haldin and LaBonne, 2010), has
been found to undergo modification by the ubiquitin-like protein
SUMO (Taylor and Labonne, 2005; Lee et al., 2012). While the
exact role of SUMO modification in this process remains
incompletely understood, it is plausible that it could interfere
with the ubiquitination process and thereby alter protein
turnover, as previously described for the transcription factor
MYC (Sun et al., 2021). Similarly, epithelial-to-mesenchymal
transition (EMT) factors are recognized as proteasome
substrates targeted for degradation by cullin-RING E3 ligases
(Vernon and LaBonne, 2006; Lee et al., 2012).

Nonetheless, to the best of our knowledge, virtually nothing is
known about the repercussions of proteasome dysfunction on the
intricate series of events of NCC induction, specification, migration
and/or cell fate determination. It can only be conjectured that the
consequences of proteasome defects observed in other cellular or
animal models might have implications for NCCs–and a fortiori in
heart and head development–as well, as discussed below.
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4.1 Disruption of protein homeostasis

Given the pivotal role of 26S proteasomes in the breakdown of
intracellular proteins, their loss of function associated with
neurodevelopmental proteasomopathies inevitably leads to
increased accumulation of ubiquitin-modified proteins (Küry
et al., 2017; Kröll-Hermi et al., 2020; Ebstein et al., 2023; Küry
et al., 2024). This uncontrolled buildup of toxic proteins within the
cytosol and nucleus has the potential to compromise cellular
integrity and disrupt various vital biological processes,
particularly intracellular transport (Wen et al., 2023). A large
fraction of substrates continuously degraded by 26S proteasomes
consists of defective ribosomal products (DRiPs), which are newly
synthesized proteins that have failed to attain their final and native
conformation following translation (Schubert et al., 2000). Notably,
it is estimated that DRiPs constitute as much as 30% of all newly
synthesized proteins (Yewdell and Nicchitta, 2006), suggesting that
cells or tissues with elevated rates of protein synthesis face
heightened degradation demands, rendering them more
susceptible to the effects of 26S proteasome impairment.
Interestingly, it seems that cranial NCCs proliferate at a slower
rate than their cardiac counterparts (Ridenour et al., 2014), implying
that precursor cells of the heart could accumulate a larger volume of
protein aggregates than those of the brain under conditions of 26S
proteasome impairment.

In addition to DRiPs, other substrates of the 26S proteasome
include functional and long-lived proteins, that in response to
specific signals, undergo ubiquitination for subsequent
degradation. The removal of specific regulators by the UPS
facilitates the modulation of diverse processes, enabling the cell
to effectively adapt to its changing environment. In this context, the
UPS regulates multiple signaling pathways including those involved
in NCC induction, such as the BMP, Wnt, Notch, FGF, and Hippo
transduction cascades (Zhu et al., 1999; Gupta-Rossi et al., 2001;
Oberg et al., 2001; Wu et al., 2001; Wu et al., 2010; Zhao et al., 2003;
Kowanetz et al., 2008; Voutsadakis, 2012; Li et al., 2014; Tu et al.,
2014; Meng et al., 2016). Because 26S proteasomes may theoretically
eliminate both positive and negative regulators of these pathways,
the long-term effects exerted by defective 26S proteasomes on
development may be difficult to predict. Nevertheless, it is widely
acknowledged that inhibiting proteasome activity leads to
diminished cell proliferation (Adams, 2004), thereby implying a
potential decrease in the population of NCCs in embryos harboring
proteasome loss-of-function variants.

In addition to their role in cell signaling, 26S proteasomes
participate in the modulation of gene expression by degrading
transcription factors and/or repressors. Consequently, sustained
26S proteasome dysfunction could lead to the stabilization of
these factors. This aspect becomes particularly significant in
cardiac development, given that certain DNA-binding proteins
like ISL-1 need to be eliminated during the initial stages of heart
development, especially within the OFT (Hatzistergos et al., 2020).

However, it is important to note that an analysis of the
ubiquitination profile may not necessarily reflect the activity of
the 20S proteasome, which can degrade disordered and/or oxidized
proteins independent of ubiquitin (Abi Habib et al., 2020). It is
indeed widely assumed that a non-negligible fraction of proteasomes
within cells lack the 19S RP, allowing them to exist as free 20S

proteasomes (Fabre et al., 2014). It is conceivable that alterations
within the 19S RP could lead to disassembly of the 26S proteasome,
thereby affecting the ratio of 26S to 20S proteasomes in patients with
neurodevelopmental proteasomopathies. Future investigations will
need to consider this and assess the quantity and activities of all
proteasome complexes using a combination of native-PAGE and
activity-based probes (ABPs) targeting the active sites of the
threonine proteases, as previously described (Türker et al., 2023).

4.2 Increased autophagy

It is well established that proteasome dysfunction triggers a
range of compensatory responses aimed at restoring protein
homeostasis (Cuinat et al., 2023). As shown in Figure 3, not
surprisingly, one of these programs is the autophagy-lysosomal
degradation system, the second main degradation machinery in
the cell (Kocaturk and Gozuacik, 2018). Indeed, by reducing protein
breakdown and the subsequent availability of peptides and amino
acids in the cell (Vabulas and Hartl, 2005; Suraweera et al., 2012),
defective proteasomes activate autophagy by downregulating mTOR
signaling (Feng et al., 2015). Additionally, there is an indication that
the TRPML1 channel might also play a role in this phenomenon.
Notably, as a substrate of the proteasome, TRPML1 becomes
stabilized when proteasome function is compromised,
subsequently promoting the release of calcium from lysosomes
into the cytosol (Figure 3). The elevated calcium levels lead to
the activation of a calmodulin-dependent phosphatase that
dephosphorylates the transcription factor TFEB, enabling its
nuclear translocation and the subsequent induction of
autophagy-related genes such as SQSTM1, UVRAG, and VSP18
(Su and Wang, 2020) (Figure 3).

An ongoing debate revolves around the role of autophagy in
NCC function. Initial studies suggested that excessive autophagy
suppresses NCC survival (Wang et al., 2015); however, subsequent
research has revealed that autophagy is indispensable for NCC
induction (Wang et al., 2018). Moreover, autophagy could
potentially influence cell fate determination, as the inhibition of
autophagy may prompt cranial NCCs to adopt a chondrocyte fate
(Yang et al., 2021). Interestingly, overactive chondrogenesis could
result in delayed or impaired transition to bone, leading to
underdeveloped or deformed facial bones. In any scenario,
elevated autophagy should also lead to higher mitophagy rates,
subsequently reducing the mitochondrial population within the
cell. This aspect is particularly significant, as oxidative
phosphorylation and its essential ATP production have been
demonstrated to play a crucial role in the transcription of the
NCC specifier FOXD3 (Costa et al., 2021).

4.3 Activation of the unfolded protein
response (UPR)

Because the translocation of non-functional proteins from the
ER lumen to the cytosol by the ER-associated degradation
machinery (ERAD) is driven by proteasomes, any decline in
proteasome activity results in protein burden within the ER
compartment (Ebstein et al., 2019) (Figure 3). Consequently, this
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aggregation is sensed by the three ER membrane-resident IRE1,
ATF6 and PERK receptors which in turn trigger the so-called
unfolded protein response (UPR) by activating the downstream
transcription factors sXBP1, fATF6 and ATF4 (Hetz, 2012)
(Figure 3). The UPR is widely recognized as a stress response
program designed to combat proteotoxic stress by increasing the
expression of protein chaperones and transiently arresting
translation (Ebstein et al., 2019). The stop in protein biosynthesis
is mediated by phosphorylation of eiF2α by PERK, a PTM that
blocks GDP/GTP exchange by eiF2B (Harding et al., 2000).
Importantly, phosphorylation of eiF2α can be further supported
by additional upstream kinases of the integrated stress response
(ISR), including GCN2, PKR and HRI, which undergo activation
following various cellular stresses such as amino acid depletion, viral
infection or iron deficiency, respectively (Pakos-Zebrucka et al.,
2016). Surprisingly, virtually nothing is known about the impact of
sustained UPR in NCCs. However, the observation that
GCN2 mutations are associated with pulmonary veno-occlusive
disease (PVOD) (Eyries et al., 2014) suggests a critical role of
this protein in cardiac development, a notion that remains,
however, to be formally addressed. Besides, the impairment of
stress response by mutations in EIF2AK2 –which encodes a eiF2α

kinase–and eiF2B genes–EIF2B1 and EIF2B2– leads to
leukoencephalopathy (Leegwater et al., 2001; Mao et al., 2020),
hereby suggesting the importance of the UPR in CNS structure.

4.4 Activation of NFE2L1

Predictably, proteasome loss of function results in the
stabilization of numerous proteins, including the ER membrane-
resident protein NFE2L1 (also referred to as TCF11 or NRF1)
(Radhakrishnan et al., 2010; Steffen et al., 2010). As shown in
Figure 3, delayed degradation of this normally short-lived protein
results in its cleavage by the protease DDI2 (Koizumi et al., 2016),
whereby the C-terminal fragment enters into the nucleus to induce
the transcription of genes coding for proteasome subunits and
components of the mitophagy pathway (Radhakrishnan et al.,
2010; Steffen et al., 2010; Yang et al., 2018) (Figure 3). Again,
NFE2L1 processing upon proteasome impairment is regarded as
a compensatory response destined to help the cell cope with
proteotoxic stress by upregulating proteasomes and eliminating a
potential source (i.e.,; mitochondria) of reactive oxygen species
(ROS). Interestingly, once in the nucleus, NFE2L1 also inactivates

FIGURE 3
Consequences of proteasome dysfunction. Defective proteasomes lead to the accumulation of ubiquitin-modified proteins in the cytosol, resulting
in the disassembly of the HSP90-HSP70-HDAC6-HSF1 complex and the subsequent initiation of a heat shock response, as indicated. Within these
cytosolic aggregates, IL-24 is detected by PKR, prompting the induction of type I IFN responses. In lysosomes, increased calcium levels are linked to the
stabilization of the calcium channel TRPML1. Autophagy activation is facilitated by decreased amino acid levels, leading to reduced
mTORC1 signaling. In the endoplasmic reticulum (ER), the buildup of defective ribosomal products (DRiPs) triggers the unfolded protein response (UPR)
through sensing by IRE1, ATF6, and PERK receptors. Stabilization of the ER-resident membrane protein NFE2L1 allows DDI2 protease to cleave it,
releasing the C-terminal fragment that translocates into the nucleus to activate various programs (for detailed explanation, see text).
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LXR (Widenmaier et al., 2017), a transcription factor upregulating
genes involved in cholesterol export such as ATP-binding cassette
(ABC) transporters (Bilotta et al., 2020). This observation suggests
that persistent proteasome dysfunction may lead to intracellular
cholesterol deficiency (Figure 3). Considering the pivotal
involvement of cholesterol in Sonic hedgehog (SHH) signaling
(Xu and Tang, 2022), this line of reasoning could potentially
signify a crucial function of NFE2L1 in the molecular
underpinnings of NDDs associated with CHDs. Indeed, it has
been demonstrated that SHH originating from the surrounding
environment was a vital survival factor for both cranial and cardiac
NCCs (Ahlgren and Bronner-Fraser, 1999; Arrigo and Lin, 2021).

4.5 Acquisition of type I IFN gene signatures

A few years ago, Goldbach-Mansky’s laboratory uncovered an
unexpected association between proteasome pathogenic variants
and the onset of sterile type I interferon (IFN) responses in
patients afflicted with chronic atypical neutrophilic dermatosis
with lipodystrophy and elevated temperature (CANDLE) (Brehm
et al., 2015), a condition initially described by Torrelo and others
(Torrelo et al., 2010). Since then, the causal relationship between
proteasome dysfunction and the development of interferonopathies
has been confirmed and validated by many other groups in various
models (Poli et al., 2018; Zitvogel and Kroemer, 2021; Isidor et al.,
2022; Yan et al., 2022; Ebstein et al., 2023; Waad Sadiq et al., 2023;
Küry et al., 2024). The concept that cells carrying faulty proteasomes
elicit a type I IFN response is intriguing, given that such responses
typically arise during viral infections in response to pathogen-
associated molecular patterns (PAMPs). A recent study
conducted by Davidson et al. provided some clarity on this issue.
Their work revealed that cytosolic aggregated IL-24 proteins
function as a danger signal, activating protein kinase R (PKR)
(Davidson et al., 2022) (Figure 3). This activation sets off a
signaling cascade that ultimately leads to the production of type I
IFN (Davidson et al., 2022). The precise rationale behind the
production of type I IFN in response to disruptions in protein
homeostasis remains elusive. However, its capacity to enhance the
expression of immunoproteasomes and proteasome activators (Shin
et al., 2007; Ebstein et al., 2009) suggests that it might serve the
purpose of bolstering proteasome function to better manage
proteotoxic stress. Currently, it remains unknown whether NCCs
respond to proteasome dysfunction by generating IFNs, and even
the capacity of NCCs to produce type I IFN is uncertain. This aspect
warrants swift investigation, especially given that type I IFN has been
demonstrated to adversely affect NCC migration (Pallocca et al.,
2017), and more broadly, the maintenance of pluripotent stem cells
(Eggenberger et al., 2019). The negative impact of type I IFN on
development is further emphasized by the observation that
prolonged IFN signaling has adverse consequences for
cardiogenesis in individuals with Down syndrome (Chi et al.,
2023) or neurogenesis in general (Zheng et al., 2014; Borsini
et al., 2018; Kaneko et al., 2020). Collectively, these studies
position type I IFN as a highly plausible disease driver candidate
directly contributing to both heart and craniofacial malformations.
However, this promising concept still needs to be substantiated from
the perspective of NCCs.

4.6 Heat shock response (HSR)

It is also well established that malfunctioning proteasomes trigger a
heat shock response (HSR) (Bush et al., 1997), albeit the underlying
molecular mechanisms remain unresolved so far. As depicted in
Figure 3, it appears that irrespective of temperature, proteotoxic
stress prompts the disassembly of a high-molecular-weight cytosolic
complex composed of HSP90, HDAC, and HSF1, thereby enabling the
later to enter the nucleus and induce the transcription of specific target
genes (Dai and Sampson, 2016). Not surprisingly, these genes encode
protein chaperones including small heat shock proteins of the HSP
family along with components of the UPS, collectively facilitating the
alleviation of protein burden (Murray et al., 2004; Medicherla and
Goldberg, 2008). Once more, the HSR in NCCs currently lacks
documentation; nevertheless, the specific expression pattern of HSP
during embryogenesis (Miller and Fort, 2018) as well as the
upregulation of HSP27 and HSP47 in migrating NCCs (Rosenfeld
et al., 2013; Liao et al., 2017) suggests that any disruption of this process
could have significant implications for the development of the
heart and head.

5 Prospective avenues for unraveling
the molecular pathogenesis of
neurodevelopmental
proteasomopathies associated
with CHDs

As highlighted repeatedly, our current understanding of proteasome
biology and/or the regulatory mechanisms governing protein
homeostasis in NCCs is ill-defined. Addressing this knowledge gap is,
however, an essential prerequisite for unveiling the molecular
pathogenesis underlying neurodevelopmental proteasomopathies
associated with CHDs, as well as for contemplating therapeutic
interventions. The reason for the lack of information on this subject
is likely attributable to the constrained accessibility of NCCs from animal
embryos resulting in a very limited amount of biologic material that is
not suitable for conducting biochemical experiments.

However, this limitation can now be readily overcome by using
human induced pluripotent stem cells (iPSCs). Indeed, in recent
years, several studies have documented the successful generation of
SOX10+ NCCs from iPSCs, often achieved through concurrent
BMP inhibition and activation of Wnt signaling pathways
(Menendez et al., 2011; 2013; Hackland et al., 2017). An ideal
strategy to pinpoint the link between NDDs and CHDs would
involve the further differentiation of iPSCs-derived NCCs into
distinct cranial and cardiac NCC subtypes, each of which serving
as precursor cells for craniofacial structures, pericytes and the OFT
of the heart, (Stebbins et al., 2019). Of note, cranial identity can be
established by adding BMP-4 during the process of NCC
differentiation, which results in increased expression levels of
cranial-specific DLX genes (Mimura et al., 2016). Unfortunately,
as far as our current understanding goes, there is no existing
protocol for generating cardiac NCCs from iPSCs. However, it
has been demonstrated that supplementing iPSCs-derived NCCs
with fetal bovine serum (FBS) and TGF-β results in the development
of smooth muscle cells (SMCs) (Srinivasan and Toh, 2019) which
participate in the heart OFT formation (Liu X. et al., 2019). In any

Frontiers in Cell and Developmental Biology frontiersin.org09

Vignard et al. 10.3389/fcell.2024.1370905

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1370905


case, deciphering the impact of proteasome loss-of-function variants
on NCC biology would consist of 1) reprograming biological
samples from patients with neurodevelopmental
proteasomopathies into iPSCs before subsequent differentiation
into various NCC subtypes or 2) introducing recurring loss-of-
function proteasome mutations into control iPSCs by gene editing.
The approach would then consist of determining the ability of these
cells to differentiate into NCC and derivatives and uncover the
impact of each of the compensatory pathways on this process.

6 Concluding remarks

The presented work highlights indeed a series of converging
factors that point towards protein homeostasis disruptions within
NCCs as a possible underlying cause for the concurrent emergence
of NDDs and CHDs. Supporting this hypothesis, NCCs exhibit a
particular vulnerability to pathogenic variants in ribosome genes
commonly associated with ribosomopathies (Yelick and Trainor,
2015). This susceptibility suggests a high protein synthesis demand
in NCCs, making them significant producers of potentially
harmful DRiPs that require efficient clearance by the
proteasome. Therefore, partial overlap in the clinical phenotype
of neurodevelopmental proteasomopathies with certain
ribosomopathies such as Treacher Collins syndrome (Vincent
et al., 2016), Diamond-Blackfan anemia (Pallanti et al., 2008) or
Roberts syndrome (Bermejo-Sánchez et al., 2011) is unsurprising.
This overlap is particularly evident in craniofacial anomalies,
cognitive impairment and, the frequency of cardiac
malformations. While NCCs were discovered 150 years ago
(Achilleos and Trainor, 2012), the acknowledgment of the vital
significance of protein homeostasis regulation by the UPS is
relatively recent, as underscored by the awarding of Nobel Prize
in Chemistry to Aaron Ciechanover, Avram Hershko and Irwin
Rose in 2004 (Behuliak et al., 2005). Although the exploration of
this research field in NCCs is still in its early stages, its significance
is expected to endure, given the pivotal role these cells play in the
development of both the head and the heart. In this context, future
research will have to assess NCCs for their equipment that preserve
protein homeostasis, with the objective of understanding how
disruptions of this equilibrium lead to the development of heart
malformations and neurodevelopmental delay.
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