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Mechanobiology and diseases

Seminal studies in the mid 2000s reported that extracellular matrix (ECM) stiffness
(Engler et al., 2006), cell shape and cellular contractility (McBeath et al., 2004) can direct
mesenchymal stem cell differentiation. During the subsequent 20 years, the field of
mechanobiology has been significant inspired and substantially developed. These studies
helped to better understand how mechanical forces regulate complex cell behaviors and
tissue functions (Han et al., 2018; Li et al., 2021a; Li et al., 2021b), and influence homeostasis
and disease development (Chowdhury et al., 2021).

Mechanical forces play a pivotal role in regulating cellular biochemical signaling
pathways, with reciprocal interactions influencing both cellular activities and
mechanical properties in response to environmental cues (Han et al., 2018; Yang et al.,
2023). These mutual interactions between mechanical forces and biochemical signaling
pathways are critical to human health and disease development. In general, stiffening of the
ECM during inflammatory diseases, fibrotic diseases or tumor development can regulate
cellular signaling pathways, such as YAP/TAZ, via increasing cellular tractions on ECM,
contributing to pathogenesis and exacerbating disease outcomes (Ingber, 2003; He et al.,
2022; He et al., 2023). In the realm of glaucoma research, Du et al. uncovered a role for
cellular senescence in disrupting the mechanoresponses of trabecular mesh cells (TMCs).
Senescent TMCs, subjected to fluid shear stress, exhibited diminished F-actin formation,
poor realignment of F-actin fibers, reduced cellular stiffness, and abnormal expression of
ECM remodeling-related genes, compared to their non-senescent counterparts. In another
study by Chi et al., deficiency in Integrin β4 expression led to increased lung tissue stiffness
and elevated ECM components, such as collagen and elastin. Furthermore, Integrin
β4 deficiency hindered the adaptation of bronchial epithelial cells to the ECM stiffening
due to decreased cytoskeletal stabilization and impaired RhoA activity, ultimately
contributing to the development of lung dysplasia.
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In addition to affecting cytoskeletal proteins, mechanical
forces can activate mechanosensitive Piezo proteins, which
serve as pore-forming subunits of ion channels at the cell
membrane. In response to mechanical stimuli, such as
pressure, shear, and stretch, Piezo ion channels open and
allow positively charged ions to flow into the cell, including
calcium (Wu et al., 2017). As reviewed by George and Bates in
this Research Topic, calcium oscillations occur in almost all cell
types and tissues, playing a crucial role in morphogenesis and
tissue development. Disruptions of these oscillations can lead to
developmental abnormalities and pathogenesis. However, the
underlying mechanisms by which mechanical stimuli impact
bioelectrical signals and associated pathophysiological
functions remains unclear.

Mechanobiology in organoid systems

The role of mechanical forces in cell proliferation,
differentiation, and migration have been extensively studied
(He et al., 2014; He et al., 2015; Guo et al., 2017; He et al.,
2019; He et al., 2023). However, due to the complexity of living
organisms, it is challenging to interpret how these mechano-
biochemical coupling signaling pathways impact complex organ-
level functions. The emerging technique of organoid culture
provides a feasible platform recapitulating in vivo organ
anatomy and functions for researchers to connect the cellular
level mechanisms with the organ-level behaviors, including
organoids of brain, lung, kidney, and gut, among others. In
this Research Topic, Nauryzgaliyeva et al. presented a
comprehensive reviews wherein they introduced the cutting-
edge human pluripotent stem cells (hPSCs)- kidney organoid
culture which faithfully captures in vivo kidney development and
diseases. As they pointed out, the mechanical cues have largely
been unexplored within hPSCs-derived organoid cultures. These
studies in the future will help to better understand their impact
on organ development and disease pathogenesis. They
comprehensively reviewed the state-of-the-art techniques to
interrogate organoid mechanobiology, including mimicking
the extraembryonic microenvironment, using natural or
synthetic substrates, combining with microfluidic devices,
manipulating mechanosensing and mechanotransduction
machineries, and measuring forces in complex organoids.

Regarding quantification of mechanical forces in 3D system,
like organoids, Tian et al. reported a novel strategy in this
Research Topic to analyze E-cadherin mediated intercellular
forces using a series of DNA-hairpin molecular probes which
they have developed for 2D cell models (Zhao et al., 2017; Zhao
et al., 2020; Kes et al., 2021). Excitingly, after 1–2 h of incubation,
these small molecule probes can penetrate a dosage-dependent
depth of 50–200 µm of various 3D spheroids, including
embryonic stem cell-derived embryoid bodies with strong cell-
cell junctions. Combined with confocal microscopy or potentially
more advanced imaging tools such as light sheet microscopy, this
advanced technology will facilitate the quantification of complex
intercellular mechanical interactions within 3D organoids.

Organoids and mechanomedicine

Throughout daily life, cells, composing living organisms,
experience various mechanical forces, such as stretch, shear and
pressure, as well as encounter different material properties,
including varying stiffness, viscosity, surface roughness, and
geometries. These constitutive/inherent mechanical cues can
regulate cellular signaling pathways and reshape functions of
muscles, bones, heart, and other organs, ultimately impacting
human health as aforementioned. Targeting mechanosensing
pathways is indispensable to tackle diseases and improve human
health. Organoid-based systems bridge the cellular level signaling
pathways with organ level functions in basic research and clinical
studies, which are guaranteed to provide a powerful system for the
fields of mechanobiology and mechanomedicine.
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