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Introduction: Prohibitin (PHB) is an essential scaffold protein that modulates
signaling pathways controlling cell survival, metabolism, inflammation, and bone
formation. However, its specific role in periodontium development remains less
understood. This study aims to elucidate the expression pattern and function of
PHB in periodontium development and its involvement in alveolar
bone formation.

Methods: Immunolocalization of PHB in the periodontium of postnatal (PN) mice
were examined. Phbmorpholino was micro-injected into the right-side mandible at
PN5, corresponding to the positionwhere the alveolar boneprocess forms in relation
to the lower firstmolar. Themicro-injectionwith a scramble control (PF-127) and the
left-side mandibles were used as control groups. Five days post-micro-injection,
immunohistochemical analysis and micro-CT evaluation were conducted to assess
bonemass andmorphological changes. Additionally, expression patterns of signaling
molecules were examined following Phb downregulation using 24-h in vitro
cultivation of developing dental mesenchyme at E14.5.

Results: The immunostaining of PHB showed its localization in the periodontium
at PN5, PN8, and PN10. The in vitro cultivation of dental mesenchyme resulted in
alterations in Bmps, Runx2, and Wnt signalings after Phb knock-down. At 5 days
post-micro-injection, Phb knocking down showed weak immunolocalizations of
runt-related transcription factor (RUNX2) and osteocalcin (OCN). However,
knocking down Phb led to histological alterations characterized by decreased
bonemass and stronger localizations of Ki67 and PERIOSTIN in the periodontium
compared 1 to control groups. Themicro-CT evaluation showed decreased bone
volume and increased PDL space in the Phb knock-down specimens, suggesting
its regulatory role in bone formation.
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Discussion: The region-specific localization of PHB in the margin where alveolar
bone forms suggests its involvement in alveolar bone formation and the
differentiation of the periodontal ligament. Overall, our findings suggest that Phb
plays amodulatory role in alveolar bone formation by harmoniously regulating bone-
forming-related signaling molecules during periodontium development.

KEYWORDS

periodontium, differentiation, functional evaluation, alveolar bone process,microinjecfion

Introduction

The periodontium develops from mesenchymal precursor
cells within the dental follicle, consisting of fibroblasts,
osteoblasts, and cementoblasts, which differentiate into the
periodontal ligament fibers, alveolar bone, and cementum
respectively (Grobstein, 1955). Numerous studies have
explored the developmental processes of the periodontium,
aiming to examine the precise signaling pathways involved in
these mechanisms (Souza et al., 2012; Zhang et al., 2017; Wei
et al., 2021). The fine-tuning of harmonized signaling regulations
in periodontium development is considered essential for
achieving both structural and functional regeneration of the
periodontium as a functional unit.

To date, primary cell lines, in vitro organ cultivation, and
genetically manipulated mice have served as the primary
experimental systems for evaluating signaling regulations in
periodontium differentiation (Luan et al., 2006; Fujii et al., 2008;
Neupane et al., 2020). However, these systems are inadequate to fully
represent and understand the complexities of the in vivo condition,
given that the periodontium comprises multiple cell types and exhibits
intricate interactions during its development (Stepaniuk andHinrichs,
2013). Notably, the lack of suitable in vitro and experimental animal
model systems for evaluating detailed signaling regulations underlying
periodontium differentiation remains a challenge. Moreover, the
study of the alveolar bone process, a dynamic and functional
structure supporting the teeth, has been insufficient. These
incomplete understandings of periodontium differentiation might
impede the development of techniques for functionally
regenerating the periodontium, encompassing the alveolar bone,
periodontal ligament, and cementum.

Prohibitin (PHB) constitutes a highly conserved and widely
expressed family of proteins, known as the prohibitin domain
family, implicated in various processes such as transcriptional
regulation, cell proliferation, development, and mitochondrial
function (Mishra et al., 2005; Supale et al., 2013; Della-Flora
Nunes et al., 2021). Extensive studies have elucidated the
therapeutic roles of PHB as a cell proliferation inhibitor in
various cancers (Theiss and Sitaraman, 2011), and its
involvement in rodent uterine development and ovarian cell
differentiation has been suggested (Thompson et al., 1999;
Thompson et al., 2001; He et al., 2011). Additionally, PHB has
been identified as a strong binding protein for anti-resorptive
compounds, inhibiting osteoclast differentiation (Lee et al., 2015).
Particularly, lower expression of PHB has been associated with the
regulation of osteogenesis-related signaling molecules, leading to
increased proliferation and formation of osteoblasts (Zhu et al.,
2010). Based on these prior reports, we hypothesize that PHB plays a

crucial role in the intricate processes involved in the structural and
functional formation of the periodontium, especially in the
formation of the alveolar bone process and periodontal ligament.
In this study, we employed a previously established micro-injection
model (An et al., 2017) and an in vitro tissue culture model system to
analyze the precise developmental mechanisms mediated by the
function of PHB during periodontium differentiation.

Materials and methods

Animals

All experiments involving animals were performed in
accordance with the guidelines of the Kyungpook National
University, School of Dentistry, Intramural Animal Use and
Care Committee (KNU-2020-0107). Adult ICR mice were
housed in optimum conditions, including room temperature
(22°C ± 2°C), 55 % ± 5% humidity and artificial illumination
with lights on from 05:00 to 17:00 h, with access to food and water
ad libitum. Postnatal mice at day 5 (PN5) were used for micro-
injection experiment. For in vitro tissue cultivations, 5 pregnant
mice were sacrificed at embryonic day 14.5 (E14.5) and at least
50 embryos were used.

Micro-injection of signaling molecules

Phb morpholino (1 µM with 15% PF127; Gene Tools, LLC,
United States) and carrier control (15% PF127) were micro-injected
on right side of the PN5 mandible as described previously
(Supplementary Figure S1) (An et al., 2017). Our result showed
successful microinjection with knockdown of Phb in the
periodontium region (Supplementary Figures S1, S2). The left side
ofmandibles were used as control. At least 12 newborn ICRmice (PN5)
were examined for each group (control and experimental). The
concentrations were decided with the previous report (Chang et al.,
2011). Over 90% of the postnatalmice survived aftermicroinjection and
to ensure their normal behavior, we monitored the cages every 24 h.
After 5 days frommicro-injections, mice were sacrificed, andmandibles
were harvested for morphological and immunohistochemical analysis.

Specimen preparation for micro computed
tomography

The harvested mandible specimens were fixed with 4%
formaldehyde at 4°C and then subjected to micro-computed
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tomography (micro-CT) analysis (SkyScan1272; 166μA, 60kV;
Bruker, United States). Computed tomography (CT) was used to
study the 3D structure of hard tissue in periodontium and allowed
the selection of virtual parallel slices spaced by 7 μm planes. The
image data from the scanned planes were subsequently
reconstructed using N Recon software (SkyScan, United States).

Histology and immunohistochemistry

Histological staining, including hematoxylin and eosin (H&E)
and Masson’s trichrome (MTC), as well as immunostainings, were
conducted following previously established protocols (An et al.,
2017). Briefly, after deparaffinization and rehydration, the sections
were processed for either H&E and MTC staining or processed with
antigen retrieval for immunostainings. Non-specific antibodies were
blocked using 1X western blocking solution (Germany, Mannheim,
Roche; Ref. 11921673001). The primary antibodies directed against
PROHIBITIN (Abcam, Cat. No. ab28172), PERIOSTIN (Abcam,
Cat. No. ab14041), Ki67 (Neo Markers, Cat. No. RM-9106), RUNX2
(Abcam, Cat. No. ab192256) and Osteocalcin (Abcam, Cat. No.
ab93876) were used. The secondary antibodies used in this study
were biotinylated goat anti-rabbit IgG (Invitrogen, Waltham, MA,
United States). The binding of the primary antibody to the sections
were visualized by using a diaminobenzidinetetrahydrochloride
(DAB) reagent kit (Zymed, Cat. No. 00-2014). All experiments
were performed a minimum of three times.

In vitro tissue cultivation and qPCR

The molar tooth germs at E14.5 were dissected and incubated in
Dispase II (Roche, Germany) at 1.2 Unit/ml in PBS for 20 min. The
tooth germs were rinsed in DMEM with 20% FBS for 10 min. For
drop cultivation, mesenchymal tissue was prepared after removing
epithelium and cultivated in DMEM containing 10% FBS and 1%
Penicillin Streptomycin. For experimental group, 1 μM Phb
morpholino and for control group, 0.01% DMSO were added
into the medium for 24 h. The sequences of Phb-
oligodeoxynucleotides (ODNs) were as follows: antisense AS-
ODN 5′-AGATACGAGGAAGCTGGCTG-3′ and sense (S) ODN
5′-CAGCCAGCTTCCTCGTATCT-3′. Total RNA extraction and
cDNA synthesis for qPCR analysis were carried out using RNeasy®

Micro Kit (Germany, Qiagen; Cat. No. 74004) and Omniscript® RT
Kit (Germany, Qiagen; Cat No. 205111) respectively as described
previously (Adhikari et al., 2021). The primers used in this study are
listed in Supplementary Table S1. The data have been expressed as
mean ± S.D. The mean expression levels of the experimental and
control groups were compared using the Student’s t-test; p < 0.05
was considered significant.

Tartrate-resistant acid phosphatase staining

The osteoclast number was evaluated by staining the slide for
TRAP (Sigma, MO, United States), as described previously
(Adhikari et al., 2021). TRAP-positive cells with three or more
nuclei were counted as multinuclear osteoclasts.

Statistical analysis

ImageJ software (http://imagej.net/) was used to count the
immunostaining positive cells as described in previous report
(Neupane et al., 2020). The number of PHB, Ki67, RUNX2, and
Osteocalcin positive cells in the DAB-stained sections were counted
in the defined area of periodontium. Data were represented as ±
standard deviations and the mean was determined by comparing
control and experimental groups using Student’s t-test. p < 0.05
indicates significance. On the other hand, the intensity of
immunostaining against Periostin were quantified as -:none, +:
exist, ++: strong, +++: strongest because of their broad nature of
localization patterns outside the nucleus.

Results

Localization of PHB in the developing
periodontium

Frontal sections from postnatal mice (PN5, PN8, and PN10) were
examined to analyze the tissue forming the alveolar bone process within
the mesial root forming region (Figures 1A–C). At PN5, the initiation of
tooth root elongation was observed with the growth of Hertwig’s
epithelial root sheath (HERS) (Figure 1A-a’). At PN8, the elongating
root showed increased length accompanied by a rise in fibroblast cell
count and thickening of the mandibular bone (Figure 1B-b’). At PN10,
there was a notable increase in the thickness of the fibroblast cell layer
between the tooth and themandibular bone. This stage allowed for easier
identification of periodontal ligament-like and alveolar bone process
forming tissues (Figure 1C-c’). Consequently, the elongation of the tooth
root made the alveolar crest and tooth crown more distinguishable
(Figure 1C’). Immunolocalization of PHB revealed its presence in the
periodontium forming tissues at PN5 (Figure 1D), with a stronger
localization observed at PN8 (Figure 1E). By PN10, the localization was
comparatively weaker than at PN5 and PN8 (Figure 1F).

Evaluation of gene expression patterns using
a drop cultivation method

To elucidate the signaling regulation modulated by Phb, we
utilized the drop cultivation method, as previously described (An
et al., 2017). Developing dental meenchymal cells at E14.5 were
harvested and cultivated for 24 h with or without Phb knock-down
(Figure 2). RT-qPCR was employed to examine the altered expression
patterns of known signaling molecules expressed in periodontium
development (Figure 2). Specifically, we investigated the expression
patterns of Wnt- and TGFβ/BMP-related signaling molecules,
including Axin-2, β-Catenin, Lef1, Slug, Twist, Tgfβ2, Runx2,
Bmp2, Bmp4, Bmp6, and Bmp7 (Figure 2). These molecules are
well-known for their involvement in mesenchymal tissue
differentiation during organogenesis (Kim et al., 2007; Beederman
et al., 2013). The knock-down of Phb during the in vitro cultivation of
dental mesenchymal cells resulted in altered expressions of these
signaling molecules. Particularly, the expression patterns of β-
Catenin, Lef1, Runx2, Bmp2, Bmp4 and Bmp6 were significantly
downregulated after Phb knock-down (Figure 2).
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Morphological alterations in periodontium
after knocking down Phb

To understand the morphological alterations, we examined the
histomorphology of the carrier control and experimental groups in
the periodontium of the first lower molar tooth following Phb
morpholino treatment for 5 days (Figures 3aa′-bb′). MTC
staining unveiled developing structures of alveolar bone,
periodontal ligament, and cementum-forming tissues in the
buccal side of the lower molar tooth root-forming region in both
carrier control and Phbmicro-injected specimens (Figures 3aa′-bb′).
Nevertheless, when juxtaposed with the control group, Phb knock-
down specimens exhibited an increased PDL (periodontal ligament)
space, accompanied by an evident reduction in alveolar bone
thickness (Figure 3B-b’). Specifically, these morphological
changes in the developing periodontium were primarily
noticeable in the alveolar bone-forming region rather than the
cementum-forming region (Figure 3bb′).

Alterations of cellular physiology in
developing periodontium

To examine the role of PHB in alveolar bone formation,
immunolocalizations of pre-osteoblast transcription factor
(RUNX2) and osteoblast (OCN) after Phb knock-down were
performed (Figures 4aa’-cc’). Our results showed that Phb
knock-down specimens showed decreased localizations of PHB,
RUNX2 and OCN along the PDL and alveolar bone forming
regions compared to control (Figures 4aa’a”–cc’c”).
Interestingly, the PHB localizations coincide with the
localization patterns of RUNX2 and OCN (Figures 4aa’–cc’).
On the other hand, the number of osteoclast positive cells were
increased in the alveolar bone after Phb knock-down
(Figure 4dd’d”). Furthermore, we examined changes in cellular
proliferation during periodontium development using
Ki67 immunohistochemistry (Figure 5). The number of Ki67-
positive cells increased after Phb knock-down compared to

FIGURE 1
Localization pattern of PHB in the developing periodontium. H&E staining showing developing periodontium and adjacent tissue at PN5, PN8 and
PN10 mandible (A–C). In the mesial root forming region, PHB localization is observed in the periodontium at PN5, PN8, and PN10 (D–F). At PN5, PHB is
broadly localized in the developing periodontium (D). By PN8, a stronger positive reaction of PHB is observed in the alveolar bone forming regions (E).
However, a weaker localization pattern of PHB is detected at PN10 (F). Square boxes in a-c indicate enlarged view in (a’-c’), respectively. Dotted
rectangles indicate the magnified area presented as inset images in the top right of the respective figure (a’-c’), (D–F). H&E; hematoxylin and eosin, PHB;
prohibitin, m1; molar 1, i; incisor, t; tongue. Scale bars: 500 µm (A–C), 200 µm (a’-c’), (D–F), 50 µm (images in the inset).
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controls (Figures 5A–C,G). Meanwhile, cellular apoptosis
remained unchanged in both the control and knock-down
specimens (data not shown). Additionally, we investigated
PERIOSTIN immunostaining after Phb knock-down (Figures

5D–F) because it is a specific protein indicating the maturation
level of PDL fibers (Suzuki et al., 2004). PERIOSTIN-positive cells
were localized within the fibrous bundles of the PDL (Figures
5D–F). Our results indicated that knocking down Phb led to

FIGURE 2
Evaluation of differential expression patterns of candidate signaling molecules. qPCR showing altered expression patterns of signaling molecules
after knocking down Phb. Expression levels are normalized by Hprt. * denotes p < 0.05.

FIGURE 3
Histological analysis of periodontium after micro-injection of Phb morpholino. Compared with carrier control (aa’), MTC staining shows increased
PDL space (arrow) and decreased alveolar bone (*) after Phb knocking down (bb’). Rectangular boxes (A,B) indicate the magnified regions presented in
(a’-b’). Scale bars: 500 μm (A,B), 200 μm (a’-b’).
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increased PERIOSTIN-positive cells along the fibrous bundles of
the PDL compared to controls (Figures 5D–F,H).

Evaluation of mineralized tissue formation
using micro-CT

To understand the developmental role of Phb in
periodontium formation, we assessed the level of hard tissue
formation in the PN10, carrier control (PN5+5) and Phb knock-
down (PN5+5) specimens using micro-CT (Figure 6). Following
Phb knock-down, the thickness of the alveolar bone facing the
tooth root forming region appeared to decrease compared to the
control specimens (Figures 6A–C). The bone volume in the
control specimens was higher (PN10: 6.699mm3, Carrier
control: 8.410 mm3) than that in the Phb knock-down
specimens (5.698 mm3), as determined by CT AnalyzerTM
software (Skyscan, Kontich, Belgium) (Figure 6D). The
carrier control specimen (Figures 6B, Supplementary Figure
S2) exhibited a slightly increased mass of alveolar bone forming
tissues on the buccal side of the lower molar compared to that of
the PN10 (Figure 6A). This increase might be attributed to
additional stimulations during micro-injections.

Discussion

In this study, we utilized previously established micro-injection
and in vitro tissue culture model systems to evaluate the
developmental function of signaling molecules involved in
periodontium formation, as previously described (An et al.,
2017). Prior research primarily employed experimental studies,
including primary cell cultivation and the pathological conditions
of animal model systems, focusing solely on and presenting results
restricted to the periodontal ligament (Cerri et al., 2000; Sena et al.,
2003; Luan et al., 2006; Flores et al., 2008; Fuji et al., 2008; Polimeni
et al., 2009; Kaku and Yamauchi, 2014; Neupane et al., 2020). These
fragmented findings, limited to the periodontal ligament, are
insufficient for comprehensively understanding the
developmental and regenerative mechanisms within the entire
periodontium. Considering that the periodontium comprises
various cell lineages and necessitates coordinated regulations for
its development and regeneration, our study employed the
aforementioned model systems to elucidate the three-dimensional
mechanisms underlying periodontium development and
regeneration. This involved examining alteration patterns of
morphogenesis in adjacent tissues and expressions of related
signaling molecules. Anatomical markers, such as the positions of

FIGURE 4
Altered localizations of bone forming factors. Immunolocalizations of PHB (A), RUNX2 (B) and OCN (C). Compared to control, the localizations of
PHB, RUNX2 and OCN in the PDL forming region are decreased after knocking down of Phb (aa’a”-cc’c”). However, the number of bone resorbing cells,
osteoclasts are increased in the Phb knock-down specimen when compared to control (d-d”), arrows. Quantification of immunopositive cells using
ImageJ (a”-d”). RUNX2; runt-related transcription factor, OCN; osteocalcin. * and ** indicate p < 0.05 and 0.01, respectively. Scale bars: 200 μm
(aa’-dd’).

Frontiers in Cell and Developmental Biology frontiersin.org06

Aryal et al. 10.3389/fcell.2024.1369634

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1369634


blood vessels and the oral cavity, were taken into account for the
designation of micro-injections, as previously described (An
et al., 2017).

Dental follicle cells play a crucial role in giving rise to the
periodontal ligament (PDL), alveolar bone, and cementum,
establishing spatial patterning during periodontium development
(Somerman et al., 1999; Mizuno et al., 2005). The comparative
thickness of the tissue forming PDL between the alveolar bone and
the regions forming the tooth root undergoes specific alterations,
driven by three-dimensional and differential growth of each tissue
through specific cellular mechanisms, including lateral inhibition
(Kim et al., 2007). The PDL itself exhibits a balanced proliferation
and differentiation due to distinct cellular activities. In the mid-
region of the PDL, cells initiate the production of extracellular
matrix, while concurrently displaying the highest rate of type I
collagen expression and differentiation, alongside extensive
remodeling and vascularization (Rooker et al., 2010). Drawing
from these previous reports, we hypothesized that signaling
molecules play a determining role in the precise interactions and
pattern formation of the periodontium during its developmental
stages. At PN5, the lower molar initiates root development
concurrent with the termination of crown development. By

PN10, the buccal side of the periodontium of the lower first
molar exhibits the evident structural formation of the three
components of the periodontium: alveolar bone, periodontal
ligament, and cementum (Figures 1, 3). Consequently, the
developmental stages at PN5 and PN10 are critical time points
for tooth root and periodontium development in mice. Based on
observed morphological changes, we selected PN5 for micro-
injection and harvested specimens after 5 days at PN10
(Figure 3; An et al., 2017).

Phb has been reported to play various roles in transcriptional
regulation, cell proliferation, mitochondrial function as well as in
uterine development and ovarian cell differentiation (Thompson
et al., 2001; Mishra et al., 2005; He et al., 2011; Theiss and Sitaraman,
2011; Supale et al., 2013; Della-Flora Nunes et al., 2021). It also
exhibits involvement in the negative regulation of osteoclast
differentiation (Lee et al., 2015) and regulates the proliferation
and formation of osteoblasts (Zhu et al., 2010). To comprehend
the developmental role of PHB in periodontium formation, we
initially examined the precise localization pattern of PHB using
immunohistochemistry (Figure 1). The specific localization pattern
of PHB observed in developing periodontium implies its putative
role, particularly during alveolar bone and periodontal ligament

FIGURE 5
Alteration in cellular physiology and morphogenesis in periodontium. Compared with PN10 and carrier control, Phb knock-down shows an
increased number of the Ki67 positive cells in PDL forming region (A–C), (G). The localization pattern of PERIOSTIN is observed in the cell layer adjacent to
both the alveolar bone and the root sheath (D–F). Compared to controls, a stronger positive reaction against PERIOSTIN is observed in Phb knock-down
specimens (D–F). The intensity of immunostaining of Periostin is quantified as: none, +: exist, ++: strong, +++: strongest, due to their broad nature
of localization patterns outside the nucleus (H). Ce; cementum, PDL; periodontal ligament. Dotted boxes indicate the magnified regions and dotted lines
indicate the margin of cementum. Scale bars: 50 μm (A–F).
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(PDL) formation. Upon the knock-down of Phb, the decreased
alveolar bone volume while the increased width of PDL-forming
region was observed (Figures 3, 6). Our results demonstrated that
knocking down Phb increased the proliferation and differentiation
of PDL (Figure 5). Notably, after Phb knock-down, PERIOSTIN,
typically localized in well-differentiated periodontal ligaments
(Horiuchi et al., 1999), exhibited a significant increase (Figure 5).
These findings suggest that knocking down Phb modulates the
morphogenesis of the periodontium by enlarging the PDL space
and reducing alveolar bone thickness through the alteration of
cellular events in alveolar bone and PDL forming tissues. The
reformation of PDL space by Phb knock-down might offer a
potential treatment strategy for ankylosed teeth. Moreover, the
decreased PHB, RUNX2 and OCN localizations, and increased
osteoclast cells after Phb knock-down suggest the important role
of PHB in alveolar bone formation as in previous reports (Figure 4;
Zhu et al., 2010; Lee et al., 2015; Tabti et al., 2021).

We also investigated the underlying molecular mechanisms
regulated by Phb using a drop in vitro cultivation method, as
previously reported (Jung et al., 2017). At E14.5, dental follicle
cells remain undifferentiated and possess the potential to
differentiate into the periodontium (Kim et al., 2007). In our
examination, we focused on paracrine signaling pathways,
including Shh, Bmps, Fgfs, and Wnt, recognized as important
signaling molecules during periodontium differentiation
(Tummers and Thesleff, 2009). Shh signaling plays a critical role
as an epithelial factor for tooth crown and HERS formation, while
Fgf signaling is predominantly expressed in dental pulp cells,
contributing to cell proliferation and differentiation (Neubuser
et al., 1997; Thesleff et al., 2001; Thesleff, 2003; Handrigan and
Richman, 2010). Wnt signals stimulate osteogenic transcription
factors, initiating the differentiation of periodontal ligament
(PDL) fibroblasts into the osteogenic lineage (Rooker et al., 2010;
Jung et al., 2017). Furthermore, Wnt signals are responsible for

FIGURE 6
Micro-CT evaluations of hard tissue formation. Micro-CT images of the frontal section of the mandibular first molar at PN10 (A), carrier control (B)
and Phb knock-down specimens (C). Compared to PN10 (A) and carrier control (B), the Phb knock-down specimen shows the thinner alveolar bone
facing the tooth root forming region (C). Arrows indicate the region of interest in the alveolar bone (B, C). The table of analysis using the CT AnalyzerTM
software (D).
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cementoblast maturation (Nemoto et al., 2009) and the maintenance
of alveolar bone volume and osteoblasts (Yin et al., 2015). Similarly,
BMP signaling regulates the development of calcified tissues by
directing the differentiation of mesenchymal precursor cells
(Beederman et al., 2013). Based on these results, we suggest that
altered signaling molecules provide compelling evidence for the
transformed morphogenesis of the periodontium during the
developmental phase. The assessment of altered morphogenesis
in hard tissue formation was performed using micro-CT image
analysis (Figure 6), aligning with previous reports demonstrating the
osteogenic potential of PHB (Jung et al., 2017).

In conclusion, employing functional analysis model systems
such as the micro-injection model and in vitro tissue culture
model systems proves to be an appropriate method for
examining the coordinated regulation of periodontium
development. The periodontium displayed specific alteration
patterns in both morphological and molecular aspects following
the knock-down of Phb. Further studies are needed to investigate the
potential applications of PHB in the regeneration of periodontal
tissue, aiming to restore functionality in cases of
periodontal diseases.
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