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Metronomic chemotherapy (MCT), characterized by the continuous
administration of chemotherapeutics at a lower dose without prolonged drug-
free periods, has garnered significant attention over the last 2 decades. Extensive
evidence from both pre-clinical and clinical settings indicates that MCT induces
distinct biological effects than the standard Maximum Tolerated Dose (MTD)
chemotherapy. The low toxicity profile, reduced likelihood of inducing acquired
therapeutic resistance, and low cost of MCT render it an attractive
chemotherapeutic regimen option. One of the most prominent aspects of
MCT is its anti-angiogenesis effects. It has been shown to stimulate the
expression of anti-angiogenic molecules, thereby inhibiting angiogenesis. In
addition, MCT has been shown to decrease the regulatory T-cell population
and promote anti-tumor immune response through inducing dendritic cell
maturation and increasing the number of cytotoxic T-cells. Combination
therapies utilizing MCT along with oncolytic virotherapy, radiotherapy or other
chemotherapeutic regimens have been studied extensively. This review provides
an overview of the current status of MCT research and the established
mechanisms of action of MCT treatment and also offers insights into potential
avenues of development for MCT in the future.
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1 Metronomic chemotherapy: less is more

The principle of chemotherapeutic drugs is to inhibit cell proliferation or induce cell
death through many different mechanisms (Shewach and Kuchta, 2009). The traditional
regimen for chemotherapeutic administration has predominantly favored the Maximum
Tolerated Dose (MTD) therapy approach for a long time (McConnell, 1989). MTD therapy
utilizes the maximum dose that can be tolerated by the patient without inducing lethal
consequences to the patient (Takimoto, 2009). Though it is aimed at maximizing tumor
depletion in the patient, the cytotoxic burden of this treatment option in normal tissues
brings out the need for prolonged rest periods between administrations (Xu et al., 2021).
Side effects such as extensive damage to healthy tissues and neurotoxic properties are of
great concern and greatly impair the quality of life of the patients (Ho et al., 2018). Although
this administration route results in a serious decrease in the tumor volume initially, it is
often accompanied by the development of therapeutic resistance and subsequent relapse in
later stages (Kareva et al., 2015).
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The history of MTD being the hallmark of chemotherapeutic
treatment dates back to the 1970s when it was proven to be
successful in treating pediatric acute lymphoblastic leukemia
(Skipper et al., 1970). This was a rare case since the leukemic
tumor clone could be fully eliminated. However, this is not the
case in many other cancer subtypes, even in leukemias other than
acute lymphoblastic leukemia. Many other cancer types require
more than just the elimination of the tumor cells using very high
MTD doses since there are also many other players contributing to
tumorigenesis such as the tumor microenvironment (Wu and Dai,
2017), immune cells (Gun et al., 2019), different cancer subclones
(Zhang et al., 2022), and epigenetic alterations (Ilango et al., 2020).
Cancer is not a simple disease that can be explained by the mutations
of the cancer cells by itself but rather it is a complex interplay
revolving around many different aspects (Hanahan and Weinberg,
2011). The philosophy that “the more is better’’ in the case of cancer
treatment is outdated, as it has been proven that this approach is not
only insufficient but also could be even more harmful, in most cases
(Scharovsky et al., 2009). Therefore, the need for the development of
different chemotherapeutic administration regimens is of utmost
importance.

A novel alternative concept of drug administration regimen
named metronomic chemotherapy (MCT) has emerged in the last
2 decades. MCT refers to the continuous administration of low-dose
chemotherapeutic agents within close intervals, without long rest
periods (Cazzaniga et al., 2016). In the year 2000, Browder et al.
published a study exploring the anti-angiogenic effects of varying
doses of different cytotoxic drugs, primarily cyclophosphamide on a
mouse model. They found that when the drug was given at a lower
dose within 6-day intervals, it was more effective than the traditional
MTD regimen in terms of tumor shrinkage and anti-angiogenesis
properties (Browder et al., 2000). Klement et al. also published a

study in the same year on the effects of the drugs Vinblastine and
mAb DC-101 which were administered regularly in a mouse model
at lower doses than MTD. They found that when these two drugs
were given together in lower doses, namely, the MCT regimen, the
tumors significantly regressed, anti-angiogenic effects were detected,
no relapse period was observed afterward and the toxicity of the
treatment was far less than that of MTD regimen (Klement et al.,
2000). Later that year, Hanahan et al., used the term “metronomic
chemotherapy’’, for the first time in a commentary based on the two
studies mentioned above (Hanahan et al., 2000). Since then, it has
been backed up by many other preclinical studies as well as clinical
trials that MCT has different biological effects than MTD, and the
many aspects of MCT have been delineated (Kamat et al., 2007;
Schito et al., 2020; Mundo et al., 2022).

The main differences between conventional MTD
chemotherapy and MCT lie in the temporal administration
regimen and the given dosage of the chemotherapeutic drug.
These differences are diagrammatically depicted in Figure 1. In
conventional chemotherapy schedules, the standard of care MTD
therapy involves administrating the maximum dose that can be
tolerated by the patient without the induction of lethal outcomes
(Scharovsky et al., 2020). Conversely, in MCT studies, dosages have
consistently been reported at levels notably lower than the
maximum tolerated dose (Mpekris et al., 2021; Romiti et al.,
2017; Wysocki et al., 2022). Another significant difference
between conventional MTD chemotherapy and MCT is their
temporal administration routes. In conventional MTD
chemotherapy, prolonged drug-free periods are often necessitated
since the administration of high doses of the chemotherapeutics
frequently leads to damage in normal tissues and requires recovery
time (Scharovsky et al., 2020). In contrast, MCT employs lower
doses, resulting in reduced damage to normal tissues, thereby the

FIGURE 1
Diagrammatic description of maximum tolerated dose therapy (upper part) vs metronomic therapy (bottom part) for chemotherapeutic drug
administration schedules.
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drugs can be administrated continuously or with minimal drug-free
periods (Shi et al., 2019).

There are a number of therapeutic options available for the
treatment of different cancer types. Unfortunately, the opportunity
to access them is not the same for people all over the world. According
to the 2020 World Health Organization (WHO) report, cancer was
responsible for approximately 10 million deaths across the world
(World Health Organization, 2020). Among these 10 million cancer-
associated deaths, around 70% were from low and middle-income
countries (LMICs). Moreover, the incidence rates of cancers were lower
in these countries despite the enormous death rate, indicating the
necessity for improved monitoring of cancers. Cancer care is associated
with an overwhelming demand for resources, infrastructure, and
challenges for the national health systems (Fousseyni et al., 2011;
Chalkidou et al., 2014) Patients from LMICs lack access to
screening, early diagnosis, treatment facilities, pain-relief options,
cancer-preventative vaccines, and many more (André et al., 2013).
Furthermore, the escalating cost of novel therapeutics renders the
clinical trials and biomedical research on the subject unsustainable
and slows down scientific progress (Schrag, 2004). Under these
conditions, considering the cost of treatment options to provide
treatments as accessible as possible hold critical importance.

Considering cost-efficacy, MCT is a prominent therapeutic
option (Bocci et al., 2005). Usually, generic, non-patented drugs
are used in MCT applications. Many of these drugs can also be
supplied in oral forms, which are easier to administer and require no
hospital care during the administration process (André et al., 2013).
The toxicity profile of MCT is profoundly less than that of other
regimens, especially MTD (Benzekry and Hahnfeldt, 2013). This
eliminates the need for costly hospital stays for the inevitable normal
tissue recovery phase after the treatment (C). The minimal toxicity-
inducing doses of MCT induce fewer adverse effects and decrease
the cost of monitoring as well as supporting care (Munzone and
Colleoni, 2015). All of the above-mentioned reasons make MCT a
feasible potential therapeutic option in the fight against cancer.

A tremendous amount of data has been produced in cancer
research, and the accumulation of data has continued over the years.

One beneficial way to make use of this data is via the utilization of
mathematical models of cancer growth and treatment (Araujo and
McElwain, 2004; Tabassum et al., 2019). Using mechanistic insights
and better understanding of cellular parameters provided by those
mathematical models, both clinicians and biologists have a chance to
develop better strategies to combat cancer (Majumder and
Mukherjee, 2007; Gallasch et al., 2013). Mathematical modeling
in cancer research dates back to the 20th century with themajority of
these studies focusing on the tumor growth itself (Moolgavkar,
1991). The temporal administration of drugs has been an
important area of interest within those efforts. For example, West
and Newton designed an evolutionary growth/regression model to
investigate the effects of chemotherapeutic dose scheduling (West
and Newton, 2017). They compared the efficacy of MCT and MTD
chemotherapeutic regimens on various tumors bearing different
growth rates. They concluded that MCT strategies exceeded MTD in
terms of a decrease in the total number of tumor cells, especially in
the fast-growing tumors. Another study performed by Curtis et al.,
proposed a pharmacokinetic/pharmacodynamic model coupled
with a vascularized tumor growth model to stimulate MTD and
MCT regimens in lung cancer chemotherapy cases. They concluded
that metronomic regimens were more advantageous than MTD
regimens, and the combination of these two strategies did not
improve the outcome (Curtis et al., 2018). Due to the
heterogeneous nature of tumor populations, mathematical models
of various kinds have been proven to favor low-dose employing
regimens, such as MCT over MTD in this context (Ledzewicz and
Schättler, 2014).

2 Metronomic chemotherapy:
mechanisms of action

When MCT was first discovered, it was thought that the main
function of this treatment was anti-angiogenesis (Colleoni et al.,
2002; Perroud et al., 2013). As more evidence accumulated through
both preclinical studies and clinical data, it was later revealed that

FIGURE 2
Schematic representation of mechanisms of action of metronomic chemotherapy.
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MCT had not only provided anti-angiogenetic properties but also
various other functions (Cazzaniga et al., 2016; Romiti et al., 2017).
The aspects of metronomic chemotherapy highlighted in the review
herein are summarized in Figure 2. In this section, important
advantages and the main mechanisms of action of MCT will be
discussed in detail, such as decreasing angiogenesis and increasing
anti-tumor immune response.

2.1 Metronomic therapy induces less
acquired therapeutic resistance

Intertumoral and intratumoral heterogeneity have been a hot topic
of research in the past years (Liu et al., 2018; Bergmann et al., 2020;
Yalcin et al., 2020; Grzywa et al., 2021). The tumor heterogeneity
contributing to the presence of one or more cancer cell clones that are
resistant to the chemotherapeutic agent of choice could be present prior
to the treatment or it might emerge during the course of the treatment
(Kelderman et al., 2014; Danisik, et al., 2023; Yalcin et al., 2023; Baygin
et al., 2024). The heterogeneous nature of the tumor population
contributes to the latter; acquired therapeutic resistance and poses a
serious threat to the therapeutic outcomes (Foo andMichor, 2014; Acar
et al., 2020). One of the key differences between MCT and MTD
treatment regimens is the extent of their ability to form acquired
therapeutic resistance since the temporal administration status of
drugs is a key determinant of their resistance profile (Goldman
et al., 2015; Kareva et al., 2015). As previously discussed, MTD
administration generally results in increased acquired therapeutic
resistance. The MTD therapy aims to eliminate all drug-sensitive
cells through employing the highest possible dose of the cytotoxic
agent, this in return creates a selective pressure leading to the selection
of the most fit’’ drug-resistant clones in the tumor population (Foo and
Michor, 2010; Vasan et al., 2019). Even though most of the drug-
sensitive clones have been eliminated, this phenomenon drives the rapid
recolonization of the tumor population through drug-resistant clones,
hence relapses arise (Dagogo-Jack and Shaw, 2018). In the case ofMCT,
the observed effect of acquired therapeutic resistance is significantly
lower than that of MTD (Scharovsky et al., 2020; Patwardhan et al.,
2021). Typical MCT regimens employ much lower doses than MTD,
and in return ensure the maintenance of the drug-resistant tumor
population since the selective pressure is not as prominent (Bondarenko
et al., 2021). A recent study performed by Mejia Peña et al. (2023),
demonstrated that the administration of metronomic or MTD
Paclitaxel regimens resulted in different resistant cancer cell
populations with unique nuclear and phenotypic traits. The evidence
they provided pointed toward the phenomenon that these two different
resistant populations are primed differentially for the response they
might give towards chemotherapy or induced metastasis stress (Meja
Peña et al., 2023). In conclusion, metronomic chemotherapy is
emerging as a prominent treatment strategy, offering the potential to
mitigate acquired therapeutic resistance.

2.2 The low toxicity profile of metronomic
chemotherapy

The toxicity induced by chemotherapy is considered as one of
the most important side effects (Livshits et al., 2014). The working

mechanism of the chemotherapeutic drugs is to damage
proliferating cells through inducing DNA damage, impairing
mitosis and DNA damage repair mechanisms, and eventually
leading to apoptosis (Kaufmann and Earnshaw, 2000; Hayashi
and Karlseder, 2013). Importantly, these damages are not specific
to the cancer cells but rather they affect all proliferating cells,
including the normal ones (Toale et al., 2021). The cytotoxic
burden of the treatment affects the administration intervals to
allow sufficient time for the recovery of damaged non-cancerous
tissues. MTD requires prolonged rest periods between the
administrations since it utilizes highly cytotoxic doses. On the
contrary, the MCT regimen has been shown to exhibit a much
lower toxicity profile than MTD (Emmenegger et al., 2004; Simsek
et al., 2019; Cazzaniga et al., 2022). The lower cytotoxic burden also
means fewer side effects and an increased quality of life for the
patients in general (Xu et al., 2021; Wysocki et al., 2022). This is
especially advantageous for cancer patients in palliative care as the
expectations of the treatment outcome are symptomatic relief and
low toxicity (Patil et al., 2019; Harsh et al., 2023). In summary, the
low toxicity profile of metronomic chemotherapy renders it an
appealing and viable treatment option for cancer of many kinds.

2.3 Effects of metronomic chemotherapy on
the immune system

The immune system plays a double-edged role in the initiation,
progression and metastasis stages of cancers (Visser et al., 2006;
NarendraBodduluru et al., 2013). Hanahan and Weinberg have
categorized tumor-promoting inflammation and avoiding
immune destruction as two of the hallmarks of cancer in their
seminal 2011 paper (Hanahan and Weinberg, 2011). Among the
many cells of the immune system, regulatory T cells (T-regs) are of
great importance in the context of the tumor microenvironment
(Wolf et al., 2015; Paluskievicz et al., 2019). T-regs are a specialized
subset of helper T lymphocytes that bear the important role of
modulating the immune response (Shevyrev and Tereshchenko,
2020). They express specific cell surface markers such as CD3,
CD4, and CD25, as well as FoxP3 (Tanaka and Sakaguchi, 2019).
They are important for building tolerance towards the host’s self-
antigens, and they take part in key cellular processes including
allergies, tumorigenesis, neoplasia and infections (Martins et al.,
2012). Dysfunction of T-reg cells leads to an over-suppression of the
immune response and it is correlated with a number of different
diseases such as autoimmune disorders, allergy and cancer (Attias
et al., 2019; Ohue and Nishikawa, 2019). Within the context of
cancer, T-reg cell overexpression poses a serious problem as it results
in the over-suppression of the effector anti-tumor immunity which
may result in treatment unresponsiveness and tumor progression.
Also, the assembling of T-reg cells in tumor sites as well as in the
peripheral circulation leads to immune evasion of the tumors
(Frydrychowicz et al., 2017). Furthermore, the anti-tumor
immune response significantly weakens as the T-reg cells secrete
cytokines (IL-10, TGF-β etc.) that suppress other types of immune
cells such as helper and cytotoxic T cells, macrophages, natural killer
cells that are responsible for anti-tumor responses (Ohue and
Nishikawa, 2019). Although, it should be noted that the presence
of T-reg cells is of great importance for numerous other vital
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functions, such as fighting autoimmunity, hence, the required T-reg
population should be maintained (Wolf et al., 2015).

The administration of various chemotherapeutic agents has
been reported to induce T-reg-decreasing effects. Banissi et al.
has reported that a metronomic regimen of Temozolomide was
the most successful among other treatment regimens in decreasing
the T-reg population in a rat glioma model (Banissi et al., 2009).
Another study performed by Shevchenko et al. investigated the
effects of metronomic Gemcitabine administration on murine
pancreatic cancer model Panc02. They concluded that the
administration of the metronomic Gemcitabine depleted the
T-regs, and it resulted in improved survival of the animal models
(Shevchenko et al., 2013). In particular, the Treg-related effects of
the metronomic administration of the drug Cyclophosphamide has
been extensively studied in both animal models and clinical trials. Ge
et al. reported that metronomic administration of
Cyclophosphamide led to a selective and rapid decrease in the
T-reg cell numbers of breast cancer patients and noted that this
decrease was temporary (Ge et al., 2012). Generali et al. reported that
Cyclophosphamide in combination with the aromatase inhibitor
Letrozole resulted in a significant decrease in T-reg population in a
cohort of 83 breast cancer patients (Generali et al., 2009)
Ghiringhelli et al. has also shown that metronomic oral
administration of Cyclophosphamide has led to a selective
decrease in circulating T-reg cells, which positively correlated
with the therapeutic outcomes of advanced cancer patients
(Ghiringhelli et al., 2007).

Apart from decreasing the immune suppression caused by T-reg
cells, MCT has been shown to have promising effects on enhancing
the anti-tumor immune response as well. Cytotoxic T cells are a subset
of immune cells that represent one of the most potent effectors in the
immune response against cancer. They can be distinguished by their
expression of the CD8 cell surface marker and serve as primary
destroyers of pathogens as well as tumor cells (Raskov et al., 2021).
Increase in the cytotoxic T-cell population was also observed in many
MCT studies. Hermans et al. asserted thatmetronomic administration
of Cyclophosphamide resulted in a considerably larger increase in the
cytotoxic T-cell population compared to theMTD administration in a
mouse model. They also observed that the MTD administration of
Cyclophosphamide caused a dramatic decrease in the overall
cytotoxic T-cell population after 28 days, which was not the case
in the MCT administration of the same drug (Hermans et al., 2003).
Likewise, He et al. reported that metronomic administration of
Paclitaxel in combination with an anti-cancer vaccine has
significantly increased the cytotoxic T-cell infiltration into the
tumor tissue in a prostate cancer mouse model. In the same study,
they also observed increased dendritic cell maturation, translating into
enhanced anti-tumor immune response (He et al., 2011). Dendritic
cells are another subset of immune cells that are responsible for
activating the T-cell-mediated anti-tumor response through their
antigen presenting properties (Wculek et al., 2020). Finally,
additional studies have also supported the anti-tumor immune
response-promoting effects of MCT (Ghiringhelli et al., 2007; Ge
et al., 2012; Khan et al., 2020). Altogether, the presented data strongly
indicate that metronomic chemotherapy not only diminishes the
suppressive impact of regulatory T cell populations but also
enhances the anti-tumor immune response, underscoring its
potential as a pivotal element in cancer treatment strategies.

2.4 The anti-angiogenesis effects of
metronomic chemotherapy

The cells in the human body require certain nutrients and
oxygen to survive. To supply this demand, they must be located
near blood vessels, the highways of the body, and new blood vessels
should be recruited through processes called vasculogenesis and
angiogenesis as the organism gets larger (Nishida et al., 2006).
Angiogenesis refers to the formation of new capillaries through
the pre-existing blood vessels. It is part of normal cellular processes
such as wound healing and embryogenesis as well as pathological
conditions such as atherosclerosis, tumorigenesis and rheumatoid
arthritis (Rajabi and Mousa, 2017). In the case of tumors, the
formation of new blood vessels is especially important for the
tumor to grow to a certain size and for the metastasis process,
moreover, it has been defined as one of the hallmarks of cancer
(Hanahan and Weinberg, 2011). Pro-angiogenic and anti-
angiogenic molecules are responsible for regulating this crucial
cellular process. These molecules can be influenced by various
events such as hypoglycemia, inflammatory response, and genetic
changes, and they can originate from endothelial cells, blood, and
cancer cells (Huang and Bao, 2004). Among the pro-angiogenic
molecules, vascular endothelial growth factor (VEGF), fibroblast
growth factor-2 (FGF-2), platelet-derived growth factor (PDGF),
and angiopoietins have been characterized. On the other hand,
thrombospondins TSP-1 and TSP-2, angiostatin, interleukins IL-1
β, IL-3, IL-6, IL-8, and tumor necrosis factor (TNF) α are crucial
effector molecules of anti-angiogenesis (Carmeliet and Jain, 2000).
Altogether, the balance between these two classes of molecules is of
utmost significance for angiogenesis capacity and tumor control. If
this balance is disrupted, favoring the pro-angiogenic side, the
“angiogenic switch’’ occurs (Bergers and Benjamin, 2003). This
results in circulating endothelial progenitors (CEP) recruitment
which are able to promote angiogenesis. In addition, the
angiogenic switch can induce genetic reprogramming in the
cancer cells, consequently inducing new blood vessel formation,
all of which favor tumor progression (Natale and Bocci, 2018).

The earliest studies on metronomic therapy have showcased the
anti-angiogenesis effects of the treatment option (Browder et al., 2000;
Klement et al., 2000). Since then, it has been assumed that the main
anti-tumor effect of MCT was its anti-angiogenesis properties. This is
postulated to be due to the characteristics of the tumor endothelial
cells and the mechanism of action of the chemotherapeutic agents
(Kerbel and Kamen, 2004). In the MCT regimens, low doses of the
chemotherapeutic drugs are employed in a continuous manner. This
ensures the presence of a certain level of the drug in the body for
longer times. Chemotherapeutic drugs are not selective by nature; they
act by disrupting the cellular proliferation of all dividing cells,
including the endothelial cells found in growing blood vessels
around the tumor sites (Soultati et al., 2012). Endothelial cells are
relatively more genetically stable than cancer cells and do not develop
drug resistance as easily (Hida et al., 2018). Therefore, the presence of
chemotherapeutic drugs without long rest periods ensures the
elimination of the dividing endothelial cells around the tumor,
thus, translating into anti-angiogenic effects (Kerbel and Kamen,
2004). On the other hand, longer rest periods are needed in MTD
regimens, thus, giving endothelial cells around the tumormore time to
recover from the detrimental chemotherapeutic effects.
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One of the pioneering studies on the anti-angiogenic effects of
metronomic chemotherapy was performed in 2003 by Wang et al.
They have demonstrated that when the drug Paclitaxel was
administered at low doses (0.1–100 p.m.), it selectively inhibited
the human endothelial cell proliferation in vitro. Whereas, when
they administrated the same drug at concentrations 104–105 folds
higher, they observed the inhibition of cells that are of non-
endothelial origin (Wang et al., 2003). Perroud et al. has
analyzed the serum levels of angiogenesis markers in breast
cancer patients undergoing MCT treatment of Cyclophosphamide
and Celecoxib. They have demonstrated that the ratio of VEGF/
TSP-1 has decreased significantly during the course of the therapy.
This suggests that there has been a shift towards the anti-angiogenic
molecule TSP-1 during the treatment (Perroud et al., 2013).
Similarly, Colleoni et al. has also looked at the serum VEGF
levels of 63 breast cancer patients that received MCT treatment
of Methotrexate and Cyclophosphamide. They displayed a decrease
in VEGF levels, therefore, a decrease in angiogenesis after the MCT
treatment (Colleoni et al., 2002). A recent study performed by
Mundo et al., investigated the differences between angiogenesis
markers on a mouse colorectal cancer model treated with
Fluorouracil following either a MTD or MCT regimen. They
have shown that the MTD regimen leads to a more prominent
increase in the mean tissue oxygen saturation and oxyhemoglobin
levels. In addition, the MTD group had a sustained decrease in
VEGF expression. It was concluded that the MTD group displayed
more evident blood vessel remodeling, which is correlated with
angiogenesis (Mundo et al., 2022). To sum up, altering angiogenesis
was the first effective mechanism of MCT to be identified, and until
this day, a growing body of data confirm that MCT is responsible for
decreasing angiogenesis (Pietras and Douglas, 2005; Biziota et al.,
2017; Natale and Bocci, 2018).

2.5 Cancer stem cell (CSC) targeting effects
of metronomic chemotherapy

Cancer stem cells (CSCs) are a subpopulation of cells harboring
cancer-initiating properties (Wysocki et al., 2022). The CSCs were
first identified in 1994, when a subgroup of cancer cells was isolated
through their CD34+ and CD38− surface marker expressions, in a
study performed on a leukemia mouse model (Lapidot et al., 1994).
They are also distinguished by expression signature of the
transcription factors OCT4, Sox2, MYC, Nanog, and signaling
pathways Wnt, Notch, JAK-STAT (Yang et al., 2020). Other
biomarkers of CSC include expression of surface markers CD44,
CD133, CD166 and CD90 (Leon et al., 2016). The CSCs are
characterized by their self-renewal and cell differentiation
capacities, thereby playing a fundamental role in various aspects
of tumor malignancy. This subpopulation of cancer cells is especially
important in the biological processes of tumor recurrence and
metastasis, owing to their differentiation, senescence and self-
renewing properties. Accordingly, CSCs pose a serious threat to
the efficacy of cancer therapies. Several studies have shown that
MCT led to a decrease in the proliferation and survival rates of CSCs
(Folkins et al., 2007; Muñoz et al., 2021; Wysocki et al., 2022). In an
in vitro study, MCT administration of Paclitaxel has been shown to
reduce CSC population (Salem et al., 2020). In another study, the

CSC population-depleting effects of MCT administration of
Cyclophosphamide was shown in a xenograft model of
pancreatic cancer (Vives et al., 2013). To conclude, beneficial
effects of MCT on decreasing the CSC population, an important
player in cancer progression, have been demonstrated by
several studies.

3 The translation of MCT: from Petri
dish to the clinic

The effects of various MCT regimens as first- and second-line
treatments have been extensively studied in the clinic. Numerous
ongoing phase II and III clinical trials persist in elucidating the
diverse effects of metronomic chemotherapy on patients in real-
world scenarios. Among these, the clinical studies concerning
breast cancer patients are especially high (Montagna et al., 2017;
Lago et al., 2022; Chai et al., 2023). In 2017, The International
Consensus Guidelines for Advanced Breast Cancer (ABC)
affirmed that MCT is a reasonable treatment for patients
without the need for rapid tumor shrinkage. They also stated
that so far, especially the low-dose oral Cyclophosphamide and
Methotrexate MCT regimen had accumulated substantial clinical
data and called for more randomized trials to better compare
MCT with other standard regimens. The published statement
garnered agreement from a consensus of 88% of the panelists
(Cardoso et al., 2017). MCT is also a popular treatment option
among clinical studies regarding other types of cancer, such as
prostate cancer, ovarian cancer and non-small cell lung cancer
(NSCLC). Table 1 provides a detailed overview of selected clinical
studies conducted over the past decade, encompassing phase II,
phase III, and retrospective studies across various cancer types.
Overall survival (OS), progression free survival (PFS) and
objective response rate (ORR%) properties were displayed to
assess the efficacy of the therapy choice.

4 Combination therapy strategies
regarding MCT

Combination therapeutic approaches have been widely used in
cancer therapy. When compared with mono-therapy, the efficacy of
the treatment is often increased synergistically or in an additive
fashion when two or more therapeutic agents are used in
combination (Matlock et al., 2017; Mokhtari et al., 2017). This
phenomenon occurs primarily because approaches targeting distinct
pathways are employed together in combination therapy.
Consequently, the risk of developing acquired resistance to
treatment and the subsequent progression of the tumor is
reduced (Leary et al., 2018).

For a study design of anti-cancer combination therapy, the
toxicity aspect is of great concern, since when more than one
cytotoxic agent is being utilized it may result in an increased
toxic burden on the patient (Delbado et al., 2004; Parhi et al.,
2012). MCT is commonly used in combinational therapeutic
approaches, primarily owing to its low toxicity profile and its
capacity to minimize the acquired therapeutic resistance. There
are many studies in which MCT was employed in combination
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TABLE 1 Selected clinical studies concerning metronomic chemotherapy.

Study
design

Cancer type Metronomic regimen Patients
(n)

Median PFS Median OS ORR % References

phase I/II oral Cancer metronomic erlotinib,
methotrexate, and celecoxib

91 71.10% 61.20% Patil et al. (2019)

phase II breast cancer metronomic vinorelbine,
cyclophosphamide and

capecitabine

25 34% after 1 year 27% Montagna et al.
(2017)

phase II breast cancer metronomic oral vinorelbine
and capecitabine

29 12.5 months 31.00% Chai et al. (2023)

phase II breast cancer metronomic capecitabine and
cyclophosphamide

51 12.3 months 86%, after 1 year 44.40% Yoshimoto et al.
(2012)

phase II breast cancer Metronomic capecitabine
combined with aromatase

inhibitors

44 16.2 months 70.5% Li et al. (2019)

phase II ovarian cancer pembrolizumab, bevacizumab,
and oral cyclophosphamide

40 10 months 47.50% Zsiros et al. (2021)

phase II breast cancer Metronomic trastuzumab, oral
capecitabine and
cyclophosphamide

66 47.7% after 1 year 45.9 months 56.70% Orlando et al.
(2020)

phase II NSCLC oral vinorelbine 43 9 months 18.60% Camerini et al.
(2015)

phase II breast cancer Arm A: vinorelbine Arm B:
vinorelbine, capecitabine

120 7.1 months in arm
A and 6.3 months

in arm B

23.3 months in arm A
and 22.3 months in

arm B

24% in arm
A and 29%
in arm B

Brems-Eskildsen
et al. (2020)

phase II ovarian cancer Arm A: oral metronomic
etoposide, cyclophosphamide

Arm B: Pazopanib

75 3.4 months in arm
A and 5.1 months

in arm B

11.2 months in arm A,
not reached In arm B

Sharma et al.
(2021)

phase II pediatric solid
tumours

Nivolumab, oral metronomic
cyclophosphamide

13 1.7 months 3.4 months Pasqualini et al.
(2021)

phase II NSCLC cisplatin, metronomic oral
vinorelbine

65 11.5 months 35.6 months 78.48% Provencio et al.
(2021)

phase II breast cancer oral metronomic vinorelbine 9 12.0 weeks 38% Krajnak et al.
(2021)

phase II breast cancer fulvestrant, oral capecitabine 41 14.98 months 28.65 months 24.40% Schwartzberg et al.
(2014)

phase II breast cancer metronomic
cyclophosphamide,

capecitabine, vinorelbine

108 6.9 months 91% in naive patients
and 83% in pre-treated

patients

Montagna et al.
(2017)

phase II Medulloblastoma oral metronomic thalidomide,
fenofibrate, celecoxib,

alternating cycles of oral
etoposide and

cyclophosphamide

40 8.5 months 25.5 months Peyrl et al. (2023)

phase II ovarian cancer metronomic cyclophosphamide
and temozolomide

55 5.9 months 10.1 months 44% Bhattacharyya
et al. (2015)

phase II breast cancer trastuzumab plus pertuzumab
or trastuzumab and

pertuzumab plus metronomic
oral cyclophosphamide

80 46.2% vs. 73.4% Lago et al. (2022)

phase II ovarian, fallopian
tube or primary
peritoneal cancer

metronomic cyclophosphamide
and nintedanib

117 2.9 months 6.8 months Hall et al. (2020)

phase II breast cancer metronomic oral vinorelbine
and trastuzumab

20 7.4 months 45.8 months 20.00% Wang et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Selected clinical studies concerning metronomic chemotherapy.

Study
design

Cancer type Metronomic regimen Patients
(n)

Median PFS Median OS ORR % References

phase II NSCLC cisplatin, metronomic oral
vinorelbine

65 11.5 months 35.6 months 78.48% Provencio et al.
(2021)

phase II breast cancer oral metronomic vinorelbine 9 12.0 weeks 38% Krajnak et al.
(2021)

phase II breast cancer fulvestrant, oral capecitabine 41 14.98 months 28.65 months 24.40% Schwartzberg et al.
(2014)

phase II breast cancer metronomic
cyclophosphamide,

capecitabine, vinorelbine

108 6.9 months 91% in naive patients
and 83% in pre-treated

patients

Montagna et al.
(2017)

phase II Medulloblastoma oral metronomic thalidomide,
fenofibrate, celecoxib,

alternating cycles of oral
etoposide and

cyclophosphamide

40 8.5 months 25.5 months Peyrl et al. (2023)

phase II ovarian cancer metronomic cyclophosphamide
and temozolomide

55 5.9 months 10.1 months 44% Bhattacharyya
et al. (2015)

phase II breast cancer trastuzumab plus pertuzumab
or trastuzumab and

pertuzumab plus metronomic
oral cyclophosphamide

80 46.2% vs. 73.4% Lago et al. (2022)

phase II ovarian, fallopian
tube or primary
peritoneal cancer

metronomic cyclophosphamide
and nintedanib

117 2.9 months 6.8 months Hall et al. (2020)

phase II breast cancer metronomic oral vinorelbine
and trastuzumab

20 7.4 months 45.8 months 20.00% Wang et al. (2021)

phase II/III esophageal squamous
cell carcinoma

metronomic celecoxib and
methotrexate

151 25 months 36 months Noronha et al.
(2022)

phase III breast cancer metronomic methotrexate and
cyclophosphamide

158 26 months 33 months Nasr et al. (2015)

phase III nasopharyngeal
carcinoma

metronomic oral capecitabine 406 85·3% (FFS) Chen et al. (2021)

phase III head and neck
carcinoma

oral netronomic methotrexate
and celecoxib

422 3·23 months 7.5 months Patil et al. (2020)

phase III pediatric cancers oral celecoxib, thalidomide, and
fenofibrate, with metronomic

cyclophosphamide and
etoposide

97 60% Robison et al.
(2014)

retrospective NSCLC osimertinib with metronomic
oral vinorelbine tartrate

28 9.4 months 17.90% Li et al. (2023)

retrospective breast cancer metronomic oral
cyclophosphamide and

methotrexate

120 12.0 weeks Krajnak et al.
(2020)

retrospective breast cancer fulvestrant with metronomic
polychemotherapy VEC

(vinorelbine,
cyclophosphamide and

capecitabine)

39 8.4 months 21.5 months Buda-Nowak et al.
(2023)

retrospective breast cancer metronomic vinorelbine 90 65.50% Liu et al. (2021)

retrospective breast cancer metronomic oral
cyclophosphamide and
methotrexate, CTX and
capecitabine, CTX, or
vinorelbine alone

72 17.0 weeks 58.0 weeks Krajnak et al.
(2023)

(Continued on following page)
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with other anti-cancer therapies such as immunotherapy (Soriano
et al., 2011), radiation therapy (Chung et al., 2017) and oncolytic
virotherapy (Liikanen et al., 2013). There are also cases where MCT
is coupled with an MTD treatment approach of another
chemotherapeutic agent to strengthen the anti-tumor response
without inducing adverse toxicity (Brems-Eskildsen et al., 2021).

Radiation therapy is a commonly used treatment modality for
different cancer types. Approximately 50% of all cancer patients
undergo radiation therapy as a part of their treatment regimen
throughout the course of their illness (Baskar et al., 2012). A number
of studies reported promising results upon the administration of
combination therapy regimens employing radiation therapy along
with MCT (Štěrba et al., 2002; Choi et al., 2008; Chung et al., 2017).
It has been shown that the metronomic administration of four
different drugs; namely, Celecoxib, Vinblastine, Cyclophosphamide,
and Methotrexate coupled with radiotherapy afterward, resulted in
favorable outcomes in 64 pediatric solid tumor-bearing patients (Ali
and Mohamed, 2016). The disease response rate was found to be
~76.6%, coupled with minimal toxicity and a 62% 1-year overall
survival rate (Ali and Mohamed, 2016).). In another study, Salmaggi
et al. investigated the effects of a combination of Carmustine wafers
(which are implanted into the brain to release the drug Carmustine
as the wafers dissolve), metronomic Temozolomide and
radiotherapy regimen for the treatment of glioblastoma patients.
They compared the efficacy of the treatment as compared to the

Stupp protocol, a standard practice for the treatment of newly
diagnosed glioblastoma patients (Salmaggi et al., 2013). They
reported an increase in progression-free survival without the
increased toxicity, as compared with the standard Stupp regimen.
However, they also noted that the median survival rate increase in
their newly-formed schedule was not as evident as in Stupp
schedule, and therefore prospective comparative trials were
recommended (Salmaggi et al., 2013). Collectively, combination
therapeutic strategies employing radiation therapy along with
metronomic chemotherapy have been shown to be effective in
many studies.

Oncolytic virotherapy is a form of cancer therapy utilizing
oncolytic viruses that specifically replicate and damage cancerous
cells (Davis and Fang, 2005). It offers a multidirectional
therapeutic platform since the viral vectors can be engineered
to harbor transgenes that alter their cytotoxicity and
immunostimulatory properties (Harrington et al., 2019).
Combination therapies consisting of oncolytic virotherapy
along with metronomic administration of chemotherapeutic
drugs have been reported to have increased efficacy (Bramante
et al., 2016; Toulmonde et al., 2022). Qiao et al. reported that the
metronomic administration of a combination of
Cyclophosphamide along with oncolytic reovirus resulted in
greater antitumor efficacy and less toxicity when compared to
single high or low-dose administrations (Qiao et al., 2008).

TABLE 1 (Continued) Selected clinical studies concerning metronomic chemotherapy.

Study
design

Cancer type Metronomic regimen Patients
(n)

Median PFS Median OS ORR % References

retrospective breast cancer metronomic
cyclophosphamide,

capecitabine, etoposide and
vinorelbine, alone or in

combinaton

584 6.28 months 22.7 months in VRL-
only, 30–14.2 months
in other regimens

Cazzaniga et al.
(2019)

retrospective ovarian cancer metronomic oral etoposide,
cyclophosphamide and

tamoxifen

40 3.7 months 6.5 months 60% Harsh et al. (2020)

retrospective prostate cancer cyclophosphamide and
prednisolone

14 8.1 months Knipper et al.
(2019)

retrospective hepatocellular cancer capecitabine 117 8 months Granito et al.
(2015)

retrospective prostate cancer oral metronomic
cyclophosphamide

74 4.0 months 8.1 months Caffo et al. (2019)

retrospective prostate cancer metronomic cyclophosphamide
and low dose of corticosteroids

37 11 months 28 months Calvani et al.
(2019)

retrospective prostate cancer metronomic oral
cyclophosphamide with or
without oral prednisolone

18 4.7 months Dabkara et al.
(2018)

retrospective prostate cancer metronomic
cyclophosphamide, etoposide,
estramustine, ketoconazole and

prednisolone

123 4.4 months 12.3 months Asowed et al.
(2023)

retrospective ovarian cancer topotecan or topotecan and
metronomic cyclophosphamide

72 3.65 months 27% Wysocki et al.
(2023)

retrospective ovarian cancer metronomic
cyclophosphamide, etoposide
and celecoxib with or without

pazopanib

36 8.2 months 38 months 19% Sharma et al.
(2019)
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Onimaru et al. also showed that the combination therapy
involving metronomic administration of Gemcitabine along
with engineered adenovirus resulted in increased cytotoxicity
of cancer cells in pancreatic cancer mouse models. They have
attributed this increase to the crosstalk mechanisms between the
two components, allowing for enhanced viral entry and
subsequent cancer cell cytotoxicity (Onimaru et al., 2010). A
similar case of enhanced oncolytic adenovirus anti-tumor
efficacy was reported when combined with low-dose Paclitaxel
(Ingemarsdotter et al., 2015). Another study performed by
Cheema et al. has also demonstrated that metronomic
etopside induction enhanced the antitumor properties of
oncolytic herpes simplex virus treatment and decreased the
cytotoxic burden of the viral treatment on human
glioblastoma stem cell xenografts (Cheema et al., 2011). Taken
together, these data suggest that the combination of virotherapy
with MCT is a promising strategy to achieve increased anti-
tumor properties as well as decreased toxicity.

Cyclophosphamide is a widely used chemotherapeutic drug for
the treatment of neoplasms, it is a nitrogen mustard and it induces
anti-tumor effects through alkylation (Emadi et al., 2009; Voelcker
et al., 2020). While relatively successful at eradicating the tumor
cells, Cyclophosphamide is known to have a high cytotoxic profile,
limiting its utilization (Haubitz, 2007). Rather than the highly
cytotoxic MTD administration, MCT administration of
Cyclophosphamide is extensively being utilized in many studies
in combination with various other therapies such as vaccine
administrations or immunotherapies (Soriano et al., 2011; Weir
et al., 2014). It has been shown to help decrease the immune
suppression caused by the tumor and strengthen the anti-
immune responses (Hermans et al., 2003; Borch et al., 2016). It
has been shown that low-dose metronomic application of
Cyclophosphamide strengthens both the adaptive and innate
anti-tumor immune responses when combined with a
TLR9 agonist (Leong et al., 2019). In another study, Webb et al.
proposed that a combination of anti-PD1 immunotherapy and
metronomic CPA administration resulted in an increased survival
rate among mouse models (Webb et al., 2022).

Lastly, drug repurposing is another phenomenon worth
mentioning that helps salve the expenses of novel therapeutic
drug research and makes MCT an attractive option. Drug
repurposing is a remarkably cost-effective approach to utilize
old drugs for novel purposes (Sleire et al., 2017; Correia et al.,
2021). It enables faster clinical translation since the time-
consuming testing of parameters such as toxicity, efficacy, and
pharmacodynamic properties of the drug are already set. MCT
offers a new possibility for the repurposing of old, non-cancer
drugs. Muscarinic agonists are a great example of popular drug
repurposing efforts in the context of MCT (Sales, 2018; Salem
et al., 2020). In addition, since MTD therapy has been the
cornerstone of chemotherapeutic treatment for a long time,
most of the chemotherapeutic drugs were tested specifically on
MTD regimen. MCT offers a promising novel low-cost option for
the use of already existing chemotherapeutic drugs, as it has been
proven by many studies that MCT and MTD regimens of the
same drug induce different biological effects (Tongu et al., 2013;
Fares et al., 2020).

5 More than chemotherapy:
Metronomic photodynamic therapy

Photodynamic therapy (PDT) is a new field of cancer therapy. It
is based on the principle of utilizing photosensitizer drugs which are
administrated to the tumor area, and then irradiated when light is
induced into the area (Agostinis et al., 2011). As the photosensitizer
drug absorbs either visible or near-infrared light, a series of
photochemical reactions are then triggered, releasing cytotoxic
reactive oxygen species (ROS) byproducts and leading to cancer
cell death through free radical-related DNA damage, oxidative
stress, apoptosis, or necrosis (Wilson and Patterson, 2008;
Kwiatkowski et al., 2018). PDT treatment has been a popular
choice for the treatment of skin cancers owing to the feasibility
of the treatment related to the positioning of the tumor, as well as
brain cancers since modern therapies have been very limited (Quirk
et al., 2015).

A downside of PDT was the emergence of treatment resistance
due to the rapid consumption of oxygen that comes with using a
high fluence rate. The concept of metronomic photodynamic
therapy (mPDT) emerged around 2 decades ago, meeting the
need for decreased treatment resistance and lower toxicity profile
(Bisland et al., 2004). Metronomic photodynamic therapy is based
on both the photosensitizer drug and the light source being
metronomically applied at a low rate, continuously to maximize
specifically tumor cell ablation and minimize damage to normal
tissues. Especially in the case of brain cancer treatment, choosing a
regimen inducing low toxicity to normal brain tissues is of utmost
importance. In one of the earliest works within this research area,
Davies and Wilson examined the feasibility of metronomic
application of the photosensitizer 5-aminolevulinic acid induced
protoporphyrin IX (ALA-PpIX) mediated photodynamic therapy in
a rat-derived astrocytomamodel. They were able to demonstrate a 4-
day metronomic delivery, and reported that mPDT was the most
successful delivery option among other PDT regimens. They also
observed the ablation of the newly formed pre-bulk tumor
population through metronomic application (Davies and Wilson,
2007). Other than brain tumors, the potential of mPDT has been
demonstrated in various other types of cancers, such as colorectal
cancer and cervical cancer (Shi et al., 2019; Dai et al., 2023) In a study
by Caverzán et al., standard and metronomic regimens of
conjugated polymer nanoparticles-based PDT was assessed on
glioblastoma cell lines and xenograft mouse models. They
reported that mPDT regimes induced increased cancer cell death,
and lowered therapeutic resistance furthermore resulted in the
polarization of one of the most important cancer-related immune
cell subtypes, macrophages, towards an anti-tumoral phenotype
(Caverzán et al., 2023).

There exists an additional challenge that needs to be overcome
in the application of mPDT; delivery systems enabling the
metronomic induction of the treatment. A growing interest has
been towards the construction of wireless devices that adhere to the
tissue of interest and ensure the induction of PDT in a metronomic
manner (Lin et al., 2023). Another strategy is utilizing engineered
microneedle devices for the delivery of photosensitizers in mPDT
(Dai et al., 2023). The nature of this treatment option calls for
interdisciplinary cooperation to help it advance. There is a need for
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optimization of the delivery systems used in metronomic
photodynamic therapy.

In addition, the success of metronomic administration of
photodynamic therapy underlines one critical point; that
metronomic regimens do not have to be limited to
chemotherapeutic uses only. The term ‘‘metronomic’’ refers to
the type of temporal administration of the therapeutic agent
used. As discussed above, the success of metronomic
chemotherapy is mainly attributed to its low toxicity profile and
its ability to decrease acquired therapeutic resistance. However,
toxicity and resistance concerns are not limited to the use of
chemotherapeutics, they are key factors to consider within the
applications of other treatment options, too. Given that studies
concerning metronomic chemotherapy and metronomic
photodynamic therapy have both shown similar results in terms
of their efficacy, metronomic therapy can be considered a promising
temporal regimen that is not only limited to the chemotherapeutic
administrations. This promising hypothesis calls for more studies
concerning the use of metronomic administration in other
therapeutic administrations also.

6 Limitations and challenges associated
with MCT

As in all therapeutic efforts, MCT presents both merits and
drawbacks. Recognizing cancer’s multifaceted and complex
nature, the suitability of MCT may not be universal across all
cases. Particularly in instances where the tumor burden is high,
the MCT approach is usually not prioritized as it does not result
in rapid shrinkage of the tumor. MCT may not be very suitable
for aggressive tumor types also due to the aforementioned
rationale. MCT is considered to be a minimally toxic and less
resistance-inducing treatment approach, but it comes with the
trade-off of the rapid and potent tumor shrinkage that MTD
therapy is typically associated with. It is important to recognize
the necessity of implementing precision medicine notion here by
tailoring treatment strategies to the specific needs and
characteristics of the individual medical cases, appreciating the
nuances governing therapeutic decision-making by medical
professionals.

Both the terms ‘‘metronomic therapy’’ and ‘‘metronomic
chemotherapy’’ are used broadly, and there are no clear
boundaries for their descriptions. In light of the success of
metronomic PDT, we believe that metronomic therapy should be
clearly defined as an umbrella term that refers to a certain
administration regimen of cancer therapies of many kinds.
Hence, metronomic therapy includes MCT, but it is not limited
to chemotherapeutic administration alone. We believe there needs
to be a clear distinction between the two terms in the literature.

Furthermore, administration of a chemotherapeutic drug at
doses lower than MTD within short intervals is considered MCT,
but different outcomes emerge when the drug is given under
different parameters. The intervals between drug administrations,
the dosage, are all among critical factors contributing greatly to the
outcome of the treatment. In addition, as in many other therapeutic
cases, when the drug is used in combination with another drug or
therapy, the effects differ vastly. In a study performed in 2013,

Tongu et al. reported that when Cetuximab was administered at 4-
day intervals, it weakened the anti-tumor T cell response in mice
models, whereas when the drug was administered at 8-day intervals
along with Gemcitabine, an increased sensitivity of T-reg cells was
observed (Tongu et al., 2013). This phenomenon highlights the need
for the optimization of metronomic chemotherapeutic schedules
and calls for more research to be performed to overcome
this challenge.

Mathematical modeling is another powerful tool that aids in the
optimization of MCT. Efforts made within this area help determine the
parameters of MCT administration that give rise to the best outcomes
without the need for trial-error and countless individual research efforts.
Kweon et al., established a mathematical model to optimize the oral
metronomic Doxorubicin regimen. Their model evaluated the
relationships of several cases and determined the dose, frequency,
formulation, and administration parameters that are optimal from
both tumor suppression (pharmacodynamic) and cardiac toxicity
(toxicodynamic) aspects of metronomic Doxorubicin administration
(Kweon et al., 2022). We firmly believe that the mathematical modeling
efforts to optimize metronomic chemotherapeutic administrations as
such are key to the advancement of metronomic chemotherapy
research in the upcoming era.

7 Conclusion and future perspectives

Considerable progress has been made in the treatment of cancer,
each with its own set of successes and setbacks. Given the diverse
and complex nature of cancer, it is clear that there is no one-size-fits-
all treatment plan, which highlights the importance of precision
medicine framework and the ongoing need for better therapeutic
approaches. Although MTD chemotherapy has demonstrated
efficacy in many conditions, there is increasing recognition that,
in many cases, it may not only be ineffective but also have the
potential to exacerbate the course of the disease when
compared to MCT.

A collective amount of evidence from research over the past
2 decades has strengthened the rationale for MCT as a viable
treatment option for a variety of cancer types. MCT’s unique
benefit, its comparatively low cytotoxicity, opens the door for
combinations with other treatment modalities. The efficacy of
combining MCT with radiation therapy or immunotherapy indicates
that these combinations should be taken into consideration as potential
solutions. Furthermore, acquired therapeutic resistance can be
efficiently managed with the metronomic administration of
treatment modalities beyond standard chemotherapy, as exemplified
by metronomic photodynamic therapy.

It is our opinion and firm belief that metronomic therapy must
be viewed as an umbrella term and should not be limited to
chemotherapeutic administrations (MCT) alone rather applicable
to numerous regimens of cancer therapies of several types.
Subsequently, this ought to be reflected in the literature.

In conclusion, MCT has many benefits, including cost-
effectiveness, favorable toxicity and resistance profiles, and
characteristics that support anti-tumor immune responses and
anti-angiogenesis. These discoveries have opened up new
therapeutic possibilities, which emphasize the significance of
additional biological cancer research, clinical trials, and

Frontiers in Cell and Developmental Biology frontiersin.org11

Basar et al. 10.3389/fcell.2024.1369597

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1369597


mathematical modeling approaches. These efforts are essential to
thoroughly investigate and leverage on the possible advantages
provided by MCT, impacting the course of cancer treatment in
the future.
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