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Lymphedema occurs as a result of lymphatic vessel damage or obstruction,
leading to the lymphatic fluid stasis, which triggers inflammation, tissue fibrosis,
and adipose tissue deposition with adipocyte hypertrophy. The treatment of
lymphedema is divided into conservative and surgical approaches. Among
surgical treatments, methods like lymphaticovenular anastomosis and
vascularized lymph node transfer are gaining attention as they focus on
restoring lymphatic flow, constituting a physiologic treatment approach.
Lymphatic endothelial cells form the structure of lymphatic vessels. These
cells possess button-like junctions that facilitate the influx of fluid and
leukocytes. Approximately 10% of interstitial fluid is connected to venous
return through lymphatic capillaries. Damage to lymphatic vessels leads to
lymphatic fluid stasis, resulting in the clinical condition of lymphedema
through three mechanisms: Inflammation involving CD4+ T cells as the
principal contributing factor, along with the effects of immune cells on the
VEGF-C/VEGFR axis, consequently resulting in abnormal lymphangiogenesis;
adipocyte hypertrophy and adipose tissue deposition regulated by the
interaction of CCAAT/enhancer-binding protein α and peroxisome
proliferator-activated receptor-γ; and tissue fibrosis initiated by the
overactivity of Th2 cells, leading to the secretion of profibrotic cytokines such
as IL-4, IL-13, and the growth factor TGF-β1. Surgical treatments aimed at
reconstructing the lymphatic system help facilitate lymphatic fluid drainage,
but their effectiveness in treating already damaged lymphatic vessels is
limited. Therefore, reviewing the pathophysiology and molecular mechanisms
of lymphedema is crucial to complement surgical treatments and explore novel
therapeutic approaches.

KEYWORDS

lymphedema, lymphatic system, physiopathology, molecular biology, inflammation,
fibrosis, adipose tissue

Introduction

Lymphedema is a condition characterized by the accumulation of lymphatic fluid due to
the obstruction or destruction of lymphatic vessels. This leads to progressive fibrosis,
adipocyte hypertrophy and adipose tissue deposition. It is classified into two main types:
primary lymphedema, which is caused by genetic or developmental abnormalities, and
secondary lymphedema, which is triggered by external factors such as trauma, radiation
therapy, recurrent infections, cancer surgery, obesity, and other causes (Zampell et al.,
2012a; Duhon et al., 2022; Sleigh and Manna, 2024). Secondary lymphedema arises due to
injury or obstruction of the lymphatic system, and globally, the most common cause is
attributed to filariasis, a condition in which parasitic worms invade lymphatic vessels,
leading to their blockage (Douglass et al., 2016). In developed countries, the most significant
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contributing factor to secondary lymphedema is often complications
arising after cancer treatments such as surgery, radiation therapy,
and chemotherapy (Brown et al., 2023a).

Lymphatic capillaries possess a discontinuous basement
membrane, facilitating the influx of immune cells, cell debris,
proteins, and other substances. When injury occurs to the
lymphatic system, the inflow of interstitial fluid into lymphatic
capillaries becomes impaired, leading to lymphatic fluid stasis.
This condition can result in significant processes such as
inflammation, fibrosis, and deposition of adipose tissue (Null
et al., 2024).

Early-stage lymphedema can often be cured with non-surgical
treatments, while advanced-stage lymphedema typically requires
surgical intervention for management. However, there is
currently no clinically proven effective drug therapy available.
Recently, surgical procedures aimed at restoring lymphatic
circulation, such as lymphaticovenular anastomosis and
vascularized lymph node transfer, using super-microsurgery
techniques, have been performed in lymphedema patients.
Nevertheless, these physiologic procedures have their limitations
in terms of surgical outcomes, necessitating the development of new
treatment modalities to complement them.

The main objective of this paper is to thoroughly analyze the
complex pathophysiology and molecular mechanisms of
lymphedema in order to explore strategies for complementing
and improving current treatment methods. By reviewing current
conservative and surgical treatment approaches, it is pointed out
that while the latest surgical treatments can restore lymphatic
drainage function, their effectiveness in treating already damaged
lymphatic vessels may be limited. Based on this, the emphasis of this
review lies in the pursuit of developing more effective treatment
strategies by gaining a deeper understanding of the
pathological processes.

Structure and function of lymphatic vessels

Lymphatic capillaries differentiate from venous endothelial cells.
After arteriovenous differentiation is regulated by Notch and
chicken ovalbumin upstream promoter transcription factor II
(COUP-TFII), SRY-box 18 (SOX 18) activates prospero
homeobox-1 (Prox-1), which interacts with COUP-TFII to
promote the differentiation into lymphatic endothelial cells
(LECs) and increase the expression of VEGFR-3 (François et al.,
2008; Srinivasan et al., 2010). It functions as a receptor tyrosine
kinase for the lymphangiogenic growth factors VEGF-C and VEGF-
D (Mäkinen et al., 2001). Lymph sacs develop while maintaining a
connection to adjacent veins, a critical site where lymphovenous
valves form and interstitial fluid is collected into blood circulation
(Knowlton, 1970; van der Putte, 1975). VEGFR-3 plays a pivotal role
in this process through an autoregulatory feedback mechanism that
regulates Prox-1, essential for maintaining the specification and
identity of Prox-1+ LEC progenitors in the cardinal vein (Wigle and
Oliver, 1999; Oliver, 2004; Srinivasan et al., 2014). Subsequently,
VEGF-C undergoes proteolytic processing by calcium-binding EGF
domain-1 protein (Ccbe1) and metalloproteinase with
thrombospondin motifs 3 (Adamts3), binding to VEGFR-3 and
inducing the sprouting of initial lymphatic vessels from the cardinal

vein (Karkkainen et al., 2004; Hogan et al., 2009; Bui et al., 2016).
During this process, the co-receptor neuropilin-2 (NRP-2) binds to
VEGF-C, while the Eph tyrosine kinase ligand ephrin-B2 promotes
VEGFR-3 internalization, and β1-integrin, responding to increased
interstitial fluid, facilitates VEGFR-3 phosphorylation, contributing
to the sprouting of lymphatic capillaries (Wigle and Oliver, 1999;
Yuan et al., 2002; Mäkinen et al., 2005; Srinivasan et al., 2010; Xu
et al., 2010; Planas-Paz et al., 2012). In the process of lymphatic
vessel maturation, the regulation of cell polarity and valve
development is influenced by key proteins such as Celsr1,
Vangl2, Pkd1, Pkd2, and FAT4. Moreover, the integrity of LEC
junctions critical for controlling lumen size is managed by the Ras-
interacting protein-1 (Rasip1) (Oliver et al., 2020).

Lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)
serves as a hyaluronan receptor in lymphatic capillaries but is less
expressed in collecting vessels (Rinaldi and Baggi, 2018). Therefore,
LYVE-1 expression can be used as a marker of lymphatic vessels;
however, it is important to distinguish it from its presence in certain
macrophages within various tissues (Karinen et al., 2022). The
angiopoietins and Tie receptors also play roles in lymphatic
sprouting and vessel defects (Augustin et al., 2009).

Lymphatic capillaries, characterized by their discontinuous
basement membranes and lack of pericytes, feature button-like
junctions, unlike blood capillaries that have zipper-like junctions
(Baluk et al., 2007). These endothelial cells open in response to
increased interstitial pressure, utilizing anchoring filaments to adjust
‘flap valve’ openings to facilitate the entry of various substances
(Tammela and Alitalo, 2010; Alitalo, 2011; Zhang et al., 2020; Baluk
and McDonald, 2022; Null et al., 2024). The lymphatic system plays
crucial roles in draining interstitial fluid, fat absorption, and
immune surveillance (Bittar et al., 2020), with about 90% of the
fluid being reabsorbed into the venous system and the remaining
high-protein fluid navigating through lymph nodes before
reentering the bloodstream near the right atrium (Moore and
Bertram, 2018).

Collecting lymphatic vessels, distinct from lymphatic capillaries,
are equipped with smooth muscle layers, continuous zipper-like
interendothelial junctions, and bileaflet valves to propel lymph
forward and prevent backflow, in contrast to the more permeable
lymphatic capillaries. These features ensure directional lymph flow
and exclude fluid absorption from surrounding tissues (Norden and
Kume, 2020; Null et al., 2024) (Figure 1.)

Fluid shear stress (FSS) affects lymphatic vessels by activating
mechanotransduction in lymphatic endothelial cells (LECs), involving
sensors like platelet endothelial cell adhesion molecule (PECAM),
vascular endothelial (VE)-cadherin, VEGFR2, and VEGFR3. This
activation triggers pathways such as phosphoinositide 3-kinases/
protein kinase B (PI3K/Akt), leading to cytoskeleton reorganization
and Yes-associated protein/transcriptional coactivator with PDZ-
binding motif (YAP/TAZ) signaling, which responds to ECM
stiffness and shear. PIEZO1, another mechanosensor, activates
ORAI1, causing calcium influx that promotes valve formation via
proteins like forkhead box C2 (FOXC2), connexin 37 (CX37),
integrin alpha 9 (ITGA9), and GATA binding protein 2 (GATA2).
Defects in FOXC2 result in abnormal vessel responses and
hyperproliferation. (Geng et al., 2021; Geng and Srinivasan, 2022;
Angeli and Lim, 2023). Additionally, FOXP2 and FAT4 regulate FSS-
dependent LEC polarization, while TGF-β signaling, vital for proper
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lymphatic function, requires more research due to its complex roles in
vessel expansion and fluid drainage (Betterman et al., 2020; Hernández
Vásquez et al., 2021; Itoh and Watabe, 2022).

Pathophysiology of secondary
lymphedema: inflammation

In the pathophysiology of lymphedema, the inflammatory
response involving CD4+ T cells is the most crucial mechanism,
leading to the development of lymphedema (Li et al., 2020). In a

mouse tail surgery and popliteal lymph node dissection (PLND)
model, more than 70% of the inflammatory response was composed
of CD4+ T cells, and when CD4+ T cells were depleted, the onset of
lymphedema could be prevented. However, depletion of
macrophages or CD8+ T cells did not have the same effect
(García Nores et al., 2018). Research involving human specimens
from unilateral upper extremity breast cancer-related lymphedema
demonstrated that the number of CD4+ T cells was associated with
the severity of lymphedema, and even a small number of these cells
were sufficient to induce lymphedema (Zampell et al., 2012b;
Avraham et al., 2013; Ly et al., 2019). These studies indicate that

FIGURE 1
Schematic illustration of lymphatic circulation and lymphatic vessel structure. The lymphatic capillary possesses a discontinuous basement
membrane and lacks pericytes that typically envelop blood endothelial cells, resulting in a button-like junction pattern. This structural characteristic
facilitates the ingress of small molecules, fluid, and leukocytes. The collecting lymphatic vessel, on the other hand, features a smooth muscle layer,
bileaflet valves, and zipper-like junctions, allowing lymph propulsion forward through wall contraction. Consequently, the lymph progresses
through lymph nodes and lymphatic ducts, ultimately merging into venous return, completing systemic circulation.
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CD4+ T cells play a significant role in the development of
lymphedema.

When mechanical interruptions occur in the lymphatic system,
various growth factors and cytokines become upregulated, leading to
lymphatic stasis. Among these growth factors, VEGF-C primarily
activates VEGFR-3 to promote lymphangiogenesis and VEGFR-2 to
enhance vascular permeability. This dual action is crucial for
regenerating collateral lymphatic vessels. However, in cases of
lymphatic system obstruction, elevated levels of VEGF-C can
induce lymphatic hyperplasia, resulting in less efficient drainage
and exacerbating lymphatic fluid stasis (Gousopoulos et al., 2017b).
Due to fluid stasis, naive CD4+ T cells in the skin draining lymph
nodes interact with antigen-presenting cells (APCs), leading to their
activation. Subsequently, these activated CD4+ T cells infiltrate
lymphedematous skin, promoting impaired lymphangiogenesis
and fibrosis. Furthermore, they contribute to an increase in
inducible nitric oxide synthase (iNOS), negatively affecting
lymphatic pumping (Scallan and Davis, 2013; García Nores
et al., 2018).

The CD4+ T cell infiltration process involves a mixed CD4+ T
helper cell (Th) response, consisting of Th1, Th2, Th17, and T
regulatory (Treg) cells (Kataru et al., 2019). Among these, Th2 cells
are the most dominant, secreting TGF-β1, IL-4, and IL-13. These
cytokines promote fibrosis through the differentiation of fibroblasts
into myofibroblasts and production of extracellular matrix (ECM)
products. Additionally, IL-4 and IL-13 enhance Th2 cell
differentiation and stimulate the activation of M2 macrophages,
which have anti-inflammatory and regenerative functions. Recent
studies indicate that chemotherapeutic agents such as docetaxel,
doxorubicin, paclitaxel, and cyclophosphamide can generate
damage-associated molecular patterns (DAMPs), which lead to a
predominance of Th2 responses and promote the transition to
M2 macrophages (Roh et al., 2020; Nurlaila et al., 2022).

In the early stages of lymphedema, there is an increase in
M1 macrophages, but differentiation towards M2 macrophages is
more pronounced. This shift elevates the expression of VEGF-C and
VEGF-A, thereby promoting lymphangiogenesis, and increases
iNOS expression, inhibiting contraction of collecting lymphatics
(Park et al., 2018; Fu and Liu, 2023). Th1 cells activate macrophages
via IFN-γ and modulate chronic inflammation through IL-6. The
macrophages also promote lymphangiogenesis by expressing
VEGF-C and VEGF-A. Th17 cells secrete IL-17A, which binds to
the IL-17R complex, activating NF-κB activator 1/TNF receptor-
associated factor 6 (Act1-Traf6) pathway and ultimately leading to
the activation of NF-κB signaling. Additionally, Th17 cells inhibit
lymphatic vessel formation, resulting in reduced expression of LEC
markers such as Prox-1 and LYVE-1 (Park et al., 2018; Fu and Liu,
2023). At this stage, macrophages are the major type of VEGF-C
expressing cells (Gousopoulos et al., 2017b). In animal models, it has
been revealed that during the initial stages of lymphedema,
inflammation involving macrophages contributes to the
modulation of hypoxia-inducible factor-1α (HIF-1α). However, it
is not necessarily expressed in later stages and can be utilized as a
supplemental tool during the initial inflammatory phase. These cells
play a role in upregulating the VEGF-C/VEGFR-3 signaling
pathway during the early stages of lymphedema. (Ogata et al.,
2016; Sung et al., 2022). Although VEGF-C levels increase in
lymphedematous tissue, T-cell derived cytokines such as IL-4, IL-

13, IFN-γ, and TGF-β1 directly affect LECs, reducing their
responsiveness to lymphangiogenic factors. This ultimately
inhibits the formation of functional lymphatic vessels and leads
to the development of immature and leaky lymphatic vessels,
exacerbating lymphatic fluid stasis. These factors highlight the
limitations of therapies targeting VEGF-C in treating
lymphedema (Shin et al., 2015; Ogata et al., 2016).

In the late stages of lymphedema, where the condition is fully
established, macrophage depletion results in reduced VEGF-C
expression, increased Th2 cell accumulation, and collagen
deposition. Consequently, this leads to an increase in fibrosis and
a decrease in lymphatic pumping and collateral lymphatic
formation, exacerbating the severity of lymphedema.
Additionally, T reg cells increase in number within
lymphedematous tissues and help regulate the immune response.
They mitigate chronic inflammation by inhibiting various immune
cells, including Th1, Th2 cells, macrophages, neutrophils, and
dendritic cells, contributing to a homeostatic mechanism that
controls disease progression (Duhon et al., 2022; Brown
et al., 2023b).

Using a mouse lymphedema model, researchers studied the
changes in the types of immune cells present over time. CD45+

cells, which play a crucial role in the activation and
differentiation of T cells through the T cell receptor,
continued to increase for up to 6 weeks. At 2 weeks after
surgery, they exhibited twice as many cells compared to
normal mice that did not undergo surgery. At the same time,
Ly6G+ and CD4+ cells, representing myeloid and lymphoid cells,
respectively, were the predominant cell types and increased
compared to pre-surgery levels. CD8+ cells, monocytes
(Ly6C+), and macrophages (CD11c+F4/80+) also increased
during this period, which coincided with the reduction in
lymphatic vessel contractility. F4/80−CD68+ macrophages, and
CD206+ cells peaked at 4 weeks (Gousopoulos et al., 2016).

In another study, the blockade of leukotriene B4 (LTB4) resulted
in a reduction in the infiltration of macrophages, neutrophils, and
CD4+ T cells. LTB4, a biologically active lipid, is an arachidonic acid
metabolite produced by pro-inflammatory immune cells, including
dendritic cells, macrophages, eosinophils, mast cells, and
neutrophils. Upon binding to its cognate G protein-coupled
receptor, LTB4 elicits a potent inflammatory response (Jo-
Watanabe et al., 2019). It was observed that LTB4, when binding
to the BLT1 receptor, mediated the recruitment of CD4+ and CD8+

T cells to inflammatory tissues and promoted the differentiation of
Th17 cells. This indicated that LTB4 is involved in both innate
immunity and T cell responses (Jiang et al., 2018). LTB4 acts as a
strong chemoattractant and leukocyte activator, particularly
exerting its role as one of the most potent lipid chemotactic
factors for neutrophils. The recruitment of monocytes and
macrophages mediated by LTB4 is associated with chronic
diseases such as obesity, insulin resistance, and type 2 diabetes
(Jiang et al., 2018). Recent studies have revealed that LTB4 elevation
contributes to increased insulin resistance in obese mice, raising the
speculation that it may also impact adipose deposition in secondary
lymphedema following surgery (Murtomaki et al., 2014). Moreover,
at a low concentration of 10 nM, LTB4 exhibits a pro-
lymphangiogenic effect. In contrast, at a higher concentration of
400 nM, it inhibits VEGFR3 mRNA expression and
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VEGFR3 protein phosphorylation while also interfering with Notch
signaling, thereby hindering the development and maintenance of
lymphatic vessels (Jiang et al., 2018). A study in a mouse model
revealed that NSAIDs like ketoprofen effectively diminish
inflammation by inhibiting 5-lipoxygenase (5-LO), the enzyme
responsible for LTB4 synthesis. This inhibition also leads to the
induction of pro-lymphangiogenic factors (Nakamura et al., 2009;
Bertelli et al., 2020).

As a mechanism of lymphedema, inflammation is involved, but
from a different perspective, one can also consider the changes in
lymphatic vessels that occur during inflammatory responses. In one
study, acute inflammatory reactions and chronic inflammatory
diseases such as psoriasis, atopic dermatitis, and inflammatory
bowel disease were associated with lymphangiogenesis in
lymphatic vessels and the hyperplasia and expansion of pre-
existing lymphatic vessels, resulting in an increase in lymphatic
vascular density (Kunstfeld et al., 2004). Inflammatory responses
involve the infiltration of CD11+/Gr-1+ macrophages, leading to the
upregulation of VEGF-C, VEGF-D, and VEGF-A expression, which
play a role in antigen clearance and inflammation resolution (Kataru
et al., 2009). VEGF-C binds to VEGFR-3 and NRP-2, and through
proteolytic cleavage, it also binds to VEGFR2, thereby inducing
inflammatory lymphangiogenesis (Tammela and Alitalo, 2010).
Furthermore, in inflammatory lymphatic vessel expansion,
VEGF-A acts as a major inducer and is highly expressed in
inflammatory diseases (Nagy et al., 2002). Through the
upregulation of VEGF-C and VEGF-D expression in skin
inflammatory responses, it has been demonstrated that lymphatic
vessel activation, subsequent lymphatic expansion, fluid drainage,
and anti-inflammatory effects occur in both acute and chronic
inflammation (Dieterich et al., 2014).

Pathophysiology of secondary
lymphedema: adipose expansion and
remodeling

Adipose tissue deposition is a pathological feature observed in
the late stages of lymphedema, and it has attracted significant
attention from researchers in recent years. Some studies have
reported that lymphatic fluid stasis promotes adipose
differentiation (Azhar et al., 2020; Li et al., 2020). In response to
lymphatic fluid stasis, there is an increased expression of CCAAT/
enhancer-binding protein α (C/EBP-α) and peroxisome
proliferator-activated receptor-γ (PPAR- γ) (Aschen et al., 2012;
Koc et al., 2021; Sung et al., 2022; Hsiao et al., 2023). These factors
are known to be key regulators of adipogenesis, which includes the
differentiation, proliferation of adipocytes and lipid accumulation.
In particular, macrophages respond to lymphatic fluid stasis by
inducing the expression of PPAR-γ, which contributes to the
generation of inflammatory cytokines and adipose tissue
inflammation. PPAR-γ is also expressed by other cell types such
as adipocytes, pericytes, and LECs (Aschen et al., 2012). C/EBP-α is
primarily required for the activation of PPAR-γ, and continuous
PPAR-γ expression is essential for adipocyte differentiation and
lipid accumulation, making it the principal transcription factor in
adipogenesis (Rosen, 2002; Gesta et al., 2007). Furthermore, C/EBP-
α-mediated PPAR-γ expression is known to act as a positive

feedback loop, further promoting adipogenesis (Cook and
Cowan, 2008).

Accumulated lymph contains higher levels of insulin and
insulin-like growth factor-2 (IGF-2), which promote the
expression of adipogenesis genes such as C/EBP-α, PPAR-γ, and
fatty acid-binding protein 4 (FABP4), inducing adipogenesis and
differentiation of adipose-derived stem cells (ASCs) into adipocytes.
Furthermore, this process leads to the accumulation of adipose
tissue, resulting in increased secretion of adipokines such as
adiponectin and resistin. This, in turn, leads to increased
secretion of insulin, contributing to the vicious cycle of
lymphedema (Hsiao et al., 2023).

In response to lymphatic fluid stasis, adiponectin expression
increases, and it is expressed not only by macrophages but also by
adipocytes and fibroblasts. Adiponectin acts as a peptide hormone
and serves as a late marker of activated adipocytes, with its
expression remaining high during periods of lipid accumulation.
However, its expression decreases in cases of adipose tissue
hypertrophy or hypoxia (Harford et al., 2011; Aschen et al.,
2012). It plays a dual role in the context of lymphatic
obstruction. In the early stages, it initiates an inflammatory
response through macrophage activation. Conversely, in the later
stages, it has a dual effect by reducing monocyte adhesion, thereby
inhibiting macrophage activation (Aschen et al., 2012).

Prox-1 serves as the master regulator of lymphatic development.
Prox-1 knockout mice developed chylothorax, and its inactivation
led to obesity (Sosa-Pineda et al., 2000; Escobedo et al., 2016).
Haploinsufficiency of the Prox-1 gene caused adult-onset obesity
because of abnormal lymph leakage from irregularly patterned and
ruptured lymphatic vessels (Harvey et al., 2005). Recent studies have
shown that fatty acids from lymphatic fluid directly contribute to
adipocyte proliferation and differentiation. This corresponds to the
increased expression of adipogenic markers like adiponectin and
C/EBP-α in a mouse lymphedema model (Aschen et al., 2012;
Cuzzone et al., 2014). Furthermore, the proinflammatory
cytokine IL-6 acts as both a negative and positive regulator of
adipose deposition, playing a homeostatic role in limiting the
extent of adipose accumulation (Avraham et al., 2013).
Considering the effects of CD4+ T cell deficiency and
Th2 differentiation inhibition in reducing adipose deposition, the
extent of adipose deposition is closely related to the severity of
lymphatic dysfunction and inflammation (Li et al., 2015) (Figure 2.).

Obesity can impact the structure of lymphatic vessels even in the
absence of lymphatic injury. In mice models, exposure of LECs to
free fatty acids (FFAs) increases the expression of apoptosis-related
genes such as caspase-3 and Annexin V. Additionally, in obese mice,
there is downregulation of Prox-1, VEGFR-3, and chemokine ligand
21 (CCL21) expression, along with upregulation of the pro-
apoptotic gene Bcl-2 associated X protein (Bax) and the
inflammatory cell receptor intercellular adhesion molecule-1
(ICAM-1). This leads to increased vulnerability of LECs to
apoptosis, as APCs become trapped in peripheral tissues (García
Nores et al., 2016; Khan et al., 2022). In obesity, diet-induced effects
compromise the lymphatic system by disrupting lymphatic
transport and lymph node structure, as well as dendritic cell
mobility. This is partly due to obesity-induced inflammation
from T and B cells (Weitman et al., 2013). Moreover, an increase
in nitric oxide production within the perilymphatic tissues, driven
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bymacrophages and smooth muscle cells producing iNOS under the
influence of prostaglandin E2 (PGE2), causes lymphatic vessels to
dilate and reduces their pumping capacity, which can further
contribute to the development of lymphedema (Torrisi et al., 2016).

A high-fat diet without obesity (HFD) does not exacerbate
lymphedema, as it has been elucidated that the impairment of
lymphatic function is determined by adiposity rather than the
content of the diet (Gousopoulos et al., 2017a). Furthermore,
recent research utilizing a mouse tail lymphedema model has
demonstrated that a HFD increases serum β-hydroxybutyrate (β-
OHB) levels, leading to the induction of VEGF-C and subsequently
increasing lymphangiogenesis. Given that VLNT involves
lymphangiogenic mediators such as VEGF-C, the study suggests
that combining VLNT with HFD may enhance the effectiveness of
the surgery (Choi et al., 2023).

In a study on obesity-associated lymphedema, exposure of
LECs to FFAs was treated with agents targeting intracellular
signaling pathways, including PTEN inhibitor (PTENi)
inhibiting the conversion of phosphatidylinositol-3,4,5-
trisphosphate (PIP3) to phosphatidylinositol-4,5-bisphosphate
(PIP2), recombinant VEGF-C, and insulin indirectly activating
PIP3. The results of culture experiments showed normalization
of the expression levels of VEGFR-3, p-AKT, p-eNOS, and Prox-
1 (Khan et al., 2022).

Pathophysiology of secondary
lymphedema: tissue fibrosis

The activation of CD4+ cells due to lymphatic vessel damage
promotes differentiation into Th2 cells more than Th1 cells.
Consequently, this leads to the induction of profibrotic cytokines
and growth factors such as IL-4, IL-13, and TGF-β1, resulting in
tissue fibrosis and leaky lymphatics. This, in turn, reduces lymphatic
pumping and collateral lymphatic formation (Savetsky et al., 2014).
In the progression of lymphedema, the inflammatory response is
closely linked to an increase in iNOS, which elevates nitric oxide
(NO) levels. This elevation inhibits lymphatic contraction, crucial
for the lymphatic system’s function. As lymphedema advances,
smooth muscle cells (SMCs) in the lymphatic vessels
progressively lose their contractile function. This loss is due to a
phenotypic shift from a contractile to a synthetic form, reducing
their ability to contract and contributing instead to collagen fiber
synthesis. This process leads to the remodeling of surrounding
tissues and, ultimately, to the progressive fibrosis of collecting
lymphatic vessels in the end-stage of the disease. Such fibrosis
results in the replacement of normal lymphatic tissue with scar
tissue, a process known as lymphangiosclerosis, which narrows the
lumen of the lymphatic vessels and can lead to end organ failure
(Ogata et al., 2015; Sung et al., 2022).

FIGURE 2
The process of adipose tissue deposition and remodeling. Lymphatic fluid stasis leads to an upregulation in the expression of CCAAT/enhancer-
binding protein α (C/EBP-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ). C/EBP-α is a prerequisite for the activation of PPAR-γ, and they
mutually establish a positive feedback loop. The activation of PPAR-γ facilitates adipogenesis, which includes processes such as adipose differentiation,
proliferation, and lipid accumulation. Interleukin-6 (IL-6) possesses a dual role in regulating lipid accumulation. In addition, the activation of
adipocytes triggers the secretion of adiponectin, which exhibits distinct effects on inflammatory responses at both the early and late stages.
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Blocking the differentiation of Th2 cells using IL-4 and IL-13
antibodies resulted in reduced lymphatic fibrosis and improved
lymphatic function. (Avraham et al., 2013). Furthermore, in vitro
and in vivo studies have demonstrated that IL-4 and IL-13
downregulate the LEC-specific transcription factor Prox-1 and
the LEC marker LYVE-1, adversely affecting LEC survival,
proliferation, and tubule migration (Savetsky et al., 2015). In one
study, hyaluronidase was shown to increase the activity of Th1 cells
and reduce the activity of Th2 cells in a hindlimb postsurgical

lymphedema model, thus reversing tissue fibrosis. This finding
confirmed the significant role of Th2 cells in fibrosis (Cho
et al., 2017).

TGF-β1 is a profibrotic and anti-lymphangiogenic growth factor
that, when activated, promotes the differentiation of fibroblasts into
myofibroblasts. In this process, the formation of gap junctions and
the expression of contractile proteins such as α-SMA and non-
muscle myosin result in a contractile phenotype, making it a cellular
effector of fibrosis. Originally, myofibroblasts play a role in tissue

FIGURE 3
The mechanism of tissue fibrosis occurring in lymphedema. When lymphatic vessels are damaged due to cancer surgery, radiation, trauma, or
obesity, the smooth muscle cells within these vessels thicken and transform. This transformation leads to the narrowing of the lymphatic lumen.
Additionally, an increase in inner pressure within the lymphatic vessels causes the junctions between lymphatic endothelial cells to weaken, which in turn
leads to increased lymph leakage and exacerbates lymphatic fluid stasis. This stasis activates CD4+ T cells, favoring differentiation into Th2 cells over
Th1 cells. Th2 cells secrete profibrotic cytokines (IL-4, IL-13) and growth factors (TGF-β1). TGF-β1 induces the differentiation of fibroblasts into
myofibroblasts, promoting the accumulation of the extracellular matrix (ECM) and the production of contractile proteins, while reducing matrix product
turnover, ultimately leading to tissue fibrosis.
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repair during wound healing. However, as mentioned earlier, in
pathological conditions like lymphedema, they are associated with
fibrosis. As a result, it increases collagen production and reduces
matrix product turnover, promoting the deposition of ECM
components such as fibronectin, collagen types I, II, and IV. In
particular, collagen type III has been found to exhibit a 39-fold
higher gene transcription level compared to collagen type I in stage
III lymphedema. Further research targeting this aspect is warranted
(Biernacka et al., 2011; Karayi et al., 2020; Nurlaila et al., 2022)
(Figure 3.). TGF-β1 forms a complex with fibroblasts by binding to
type II and III receptors, subsequently phosphorylating the
downstream effector, Smad. This activation of the TGF-β1/Smad
pathway enhances the production of ECM components and inhibits
fibroblast expression of matrix metalloproteinase-1 (MMP-1). This
inhibition prevents the degradation of collagen fibers within the
matrix, a crucial process in tissue remodeling and fibrosis (Yuan and
Varga, 2001; Meng et al., 2016).

In skin biopsies from unilateral breast cancer-related
lymphedema patients, increased expression of TGF-β1, CD26+

fibroblasts, and ECM molecules was observed. In mouse models,
inhibition of TGF-β1 led to a reduction in ECM deposition, an
increase in collateral lymphatics, and a suppression of T-cell
infiltration. There have been studies in mouse models using a
TGF-β1 receptor kinase inhibitor, which reduced the severity of
lymphedema and increased lymphangiogenesis. Additionally,
Pirfenidone, an FDA-approved drug for inhibiting TGF-β1
activity, originally used for the treatment of pulmonary fibrosis,
showed a reduction in mRNA expression of TGF-β1 signaling
molecules, fibrotic genes, decreased staining of type 1 collagen,
and a decrease in the number of pSmad3+ cells when topically
applied to mouse models. Furthermore, it was found to inhibit the
infiltration of CD4+ T cells, Th1 cells, and Th2 cells, excluding
macrophages (Yoon et al., 2020; Baik et al., 2022).

During embryogenesis, exposing LEC progenitors emerging
from the cardinal vein to the soft matrix of embryonic tissue
increases the expression of the transcription factor GATA2,
facilitating cellular migration and enhancing sensitivity to VEGF-
C. It has recently been discovered that LECs, similar to BECs, are
sensitive to the degree of matrix stiffness. This suggests that when
fibrosis occurs due to TGF-β1, an increase in ECM stiffness may
hinder the proper binding and network formation between cells,
thereby impairing lymphatic function (Frye et al., 2018; Baik
et al., 2022).

Pharmacologic treatment of secondary
lymphedema

The pathophysiology of lymphedema is intricate, rendering
lymphangiogenesis promotion alone inefficient. Therapeutic
strategies are diversified into lymphangiogenic interventions
using cytokines, anti-inflammatory treatments, and anti-fibrotic
therapies, all of which are under both preclinical and clinical
investigation (Brown et al., 2022). Lymphangiogenic growth
factors like VEGF-C and VEGF-D activate VEGFR-3 and have
been applied in various forms such as recombinant human
VEGF-C, virus-mediated gene therapy, topical formulations,
integration with nanofibrillar collagen scaffolds, combinations

with adipose-derived stem cells, or as VEGF-C mRNA lipid
nanoparticle injections to enhance functional lymphatic vessel
formation (Karkkainen et al., 2001; Hwang et al., 2011; Kim
et al., 2013; Nguyen et al., 2021; Nguyen et al., 2022). A
combined treatment involving VLNT and Lymfactin® (adenoviral
type 5-based gene therapy vector that expresses human VEGF-C)
has undergone phase I and II clinical trials (Hartiala et al., 2020).
However, the efficacy of VEGF-C as a standalone treatment is
questionable due to its increased levels in lymphedema and its
balance with anti-lymphangiogenic cytokines (Jensen et al., 2015;
Brown et al., 2022). Additionally, agents like fibroblast growth factor
2 (FGF2), Hepatocyte growth factor (HGF), and retinoic acid
agonists like 9-cis retinoic acid have been identified to promote
lymphangiogenesis through their respective pathways (Javerzat
et al., 2002; Kajiya et al., 2005; Onishi et al., 2014; Daneshgaran
et al., 2020).

Anti-inflammatory approaches include drugs like Ketoprofen,
an NSAID that inhibits the leukotriene B4 pathway, and Bestatin, a
selective antagonist, both showing potential in animal models and
ongoing clinical trial (Tian et al., 2017; Rockson et al., 2018).
Tacrolimus works by inhibiting nuclear factor of activated T-cells
(NFAT) signaling, reducing IL-2 expression and exerting an
immunosuppressive effect on CD4+ T cells; when used topically,
it has been shown to enhance lymphatic function (Clipstone and
Crabtree, 1992; Chow et al., 1999; Liao et al., 2013; Gardenier et al.,
2017). The role of Th2 differentiation in lymphedema
pathophysiology suggests that using neutralizing antibodies
against IL-4 and IL-13 can reduce inflammation and improve
lymphatic function (Avraham et al., 2013; Mehrara et al., 2021).
Doxycycline has shown effectiveness particularly in filariasis-
induced lymphedema by inhibiting Th2 differentiation, monocyte
recruitment, and macrophage polarization (Furlong-Silva et al.,
2021). Lastly, the contribution of TGF-β1 to lymphedema fibrosis
can potentially be mitigated with small molecule inhibitors or
neutralizing antibodies, which have been shown to reduce the
severity of lymphedema and enhance collateral lymphatic
formation (Sano et al., 2020; Yoon et al., 2020).

Conservative and surgical treatment of
secondary lymphedema

The treatment approach for lymphedema varies based on the
severity of the condition, with the International Society of
Lymphology (ISL) staging system commonly employed
(International Society of Lymphology, 2013). This staging system
categorizes lymphedema based on the dominance of lymphatic fluid
and fibroadipose tissue. Stage 0, known as subclinical lymphedema,
is characterized by the patient experiencing symptoms without
visible edema. Stage I presents as reversible limb swelling and
pitting edema, indicating fluid predominance. Stage II marks the
transition to Irreversible limb swelling, signifying the onset of
fibroadipose tissue dominance, and hence, the absence of pitting
edema. Stage III is the end-stage of lymphedema, exhibiting severe
swelling, trophic skin changes, and elephantiasis. Consequently,
when considering surgical interventions, it is essential to take
into account the dominance of fluid and fibroadipose tissue.
According to one study, for up to stage I, lymphaticovenular
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anastomosis (LVA) is suggested, while for stage I and beyond,
vascularized lymph node transfer (VLNT) can be considered. For
stage II and higher, additional methods like liposuction and excision
may be viable options (Lin et al., 2022).

In the treatment of lymphedema, non-surgical interventions
such as compression, massage, skin care, and exercise are prioritized
(Lurie et al., 2022). Complete decongestive therapy (CDT), a
multimodal approach, plays a central role as the primary non-
surgical treatment for lymphedema and should be individualized
based on the patient’s severity and condition (Senger et al., 2023).
Treatment progresses to the maintenance phase, Phase II, once
Phase I is completed, aiming for maximal volume reduction and
improved skin texture. Phase I focuses on educating patients about
lymphedema, particularly as an inflammatory condition leading to
interstitial fibrosis, subcutaneous fibrous tissue formation, and
subcutaneous fat deposition. Phase I also includes skin and nail
care, manual lymph drainage (MLD) and 24-h multilayered low-
stretch bandaging (MLB) to enhance lymph collector transport
capacity (Michopoulos et al., 2020). Phase II includes
compression garments and lymphedema exercises. When
compression garments were worn for over 24 weeks following
MLB, there was a significant improvement, with a volume
reduction of 31% observed after 24 weeks. In contrast, when
compression garments were used alone without prior MLB, the
volume reduction was approximately halved, reaching only 15.5%
after 24 weeks (Badger et al., 2000). Complementary therapies such
as low-level laser therapy (LLLT), elastic taping, ultrasound, and
acute puncture are available, but according to the Putting Evidence
into Practice guidelines, only LLLT and elastic band therapy have
been classified as ‘likely to be effective’ (Rodrick et al., 2014).

In cases where conservative treatment is ineffective for
lymphedema, surgical intervention is considered (Allen Jr. and
Cheng, 2016; Masià et al., 2016; Schaverien and Coroneos,
2019b). Surgical treatment options can be categorized into
excisional treatment, which includes procedures such as
liposuction and direct excision with skin grafting (such as the
Charles procedure, Sistrunk operation, and Thompson’s
operation), and physiological treatment, which encompasses flap
interposition and lymphatic bypass. Physiological treatment
involves methods for restoration of the lymphatic drainage. It is
divided into flap interposition and lymphatic bypass. Lymphatic
bypass includes lymphatic-lymphatic bypass, lymphovenous bypass
(LVB), LVA, and VLNT. Excisional treatment is considered in
severe cases of lymphedema, including those with recurrent
infections, skin ulcers, chronic pain, and a substantially
diminished quality of life due to its significant morbidity. In
recent times, combinations of excisional and physiologic
treatment have been proven to have better results compared to
stand-alone procedures (Schaverien and Coroneos, 2019a; Viviano
and Neligan, 2022).

Lymphaticovenular anastomosis (LVA) is a super-microsurgery
technique that involves anastomosis between lymphatic vessels and
venules to drain stagnant lymphatic fluid in lymphedema patients
(O’Brien et al., 1977; Poumellec et al., 2017). This procedure
connects lymphatic vessels smaller than 0.8 mm in diameter to
corresponding venules and has gained international recognition as
an effective surgical treatment for lymphedema. The process
includes making incisions on the affected limb, identifying

lymphatic channels and suitable veins with dyes or indocyanine
green (ICG), and ensuring the veins demonstrate no backflow.
Various anastomotic techniques, including end-to-end, end-to-
side, and side-to-end, are employed, with the choice of technique
depending on the specific case requirements (Gallagher et al., 2020).
The patency of the anastomoses is typically confirmed with intra-
operative ICG, but the optimal number of anastomoses remains
under debate (Schaverien and Coroneos, 2019b). While there is no
standardized method for comparing the results of LVA and LVB,
both approaches have shown long-term volume reduction, with a
reduction of 73% in 75% of patients and 44% in 42% of patients,
respectively. Furthermore, a significant reduction in cellulitis has
also been observed with both methods (O’Brien et al., 1990; Campisi
et al., 2010; Chang, 2012; Cormier et al., 2012; Yamamoto and
Koshima, 2014).

VLNT represents the most recent and advanced method. While
the indications are not yet well-defined, it may be considered in cases
of total occlusion observed in lymphoscintigraphy, recurring
cellulitis in ISL stage II, the absence of acute cellulitis, and no
improvement even after 6 months of CDT (Poon and Wei, 2014). It
is a sophisticated microsurgical method that relocates lymph nodes
along with their blood vessels from one part of the body to another
to enhance lymphatic drainage in limbs that have impaired function.
It is believed to facilitate the regeneration of lymphatic drainage
primarily by stimulating the growth of new lymphatic vessels
through the secretion of growth factors, such as vascular
endothelial growth factor (VEGF) (Aschen et al., 2014; Suami
et al., 2016) and by acting as a “pump” that aids in redirecting
the lymphatic fluid back into the circulation, thus improving
lymphatic system function in the affected limbs (Cheng et al.,
2014). Vascularized lymph nodes are harvested from regions
such as the groin, thoracic, submental, and supraclavicular areas
and then transplanted to the upper extremities—specifically the
wrist, elbow, and axillary regions—or to the lower extremities,
including the ankle and groin, using a free transfer technique
(Gallagher et al., 2020). It is well-recognized that preserving
vascular supply during the transfer process significantly
influences the extent of improvement in lymphedema and the
enhancement of lymphatic vessel function (Tobbia et al., 2009).
Although the vessels are very small, flap elevation requires a highly
precise technique using the free-style free flap method, and studies
on VLNT are still in their early stages, a reported volume reduction
of 47% has been documented (Cormier et al., 2012; Michopoulos
et al., 2020). Generally considered safe, VLNT may present
complications such as flap loss, donor site lymphedema, seroma,
lymphocele, infection, and more. Nonetheless, VLNT has
introduced new possibilities for physiological treatment in
advanced-stage lymphedema (Michopoulos et al., 2020).

Conclusion

While existing surgical and conservative treatments aim to restore
lymphatic function, they often do not fully address the damage already
done to lymphatic vessels. Recentmolecular research has shed light on
potential gene and protein therapies by focusing on the signaling
pathways critical to lymphedema’s pathophysiology. Although most
current research is in preliminary stages, using in vitro or animal
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models, these studies pave the way for future applications in humans
and the development of effective drug therapies. Currently, there are
no FDA-approved drug treatments for lymphedema, however
ongoing research holds promise. Understanding the complex
interactions of inflammatory responses that drive the pathogenesis
of lymphedema is essential. Further dissecting the cellular and
molecular aspects of this condition will help refine existing
treatments and foster the creation of innovative therapeutic
strategies. Future research should not only deepen our
comprehension of these mechanisms but also include clinical trials
to evaluate new treatments’ effectiveness and safety in human subjects.
Given the diverse clinical presentations and the complex nature of
lymphedema, personalized treatment strategies are likely necessary for
effective management. Integrating detailed molecular insights with
clinical practice is crucial for developing tailored approaches that
optimize patient outcomes.
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