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The extracellular matrix (ECM) is a complex network of proteins and glycans,
dynamically remodeled and specifically tailored to the structure/function of each
organ. The malignant transformation of cancer cells is determined by both cell
intrinsic properties, such asmutations, and extrinsic variables, such as themixture
of surrounding cells in the tumor microenvironment and the biophysics of the
ECM. During cancer progression, the ECM undergoes extensive remodeling,
characterized by disruption of the basal lamina, vascular endothelial cell invasion,
and development of fibrosis in and around the tumor cells resulting in increased
tissue stiffness. This enhanced rigidity leads to aberrant mechanotransduction
and further malignant transformation potentiating the de-differentiation,
proliferation and invasion of tumor cells. Interestingly, this fibrotic
microenvironment is primarily secreted and assembled by non-cancerous
cells. Among them, the cancer-associated fibroblasts (CAFs) play a central
role. CAFs massively produce fibronectin together with type I collagen. This
review delves into the primary interactions and signaling pathways throughwhich
fibronectin can support tumorigenesis and metastasis, aiming to provide critical
molecular insights for better therapy response prediction.
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Introduction

The glycoprotein fibronectin (FN) is particularly abundant in the microenvironment of
malignant tumors (Castellani et al., 1986; Bae et al., 2013; Peng et al., 2022), is the first
extracellular matrix (ECM) protein found in specific pre-metastatic niches (Medeiros et al.,
2020), is present in the migration tracks used by metastatic cells (Erdogan et al., 2017) and
its transcription is induced by hypoxia conditions in certain tumors (Mao et al., 2023).
Consequently, FN is a constant presence during the process of matrix remodeling that
occurs during solid tumor growth and metastatic foci formation. In these processes, the FN
fibrillar structure harboring other ECM components, along with the expression of both FN
splice isoforms and FN modifier and cross-linker enzymes, play critical roles in influencing
angiogenesis, metastasis, and chemoresistance, thereby impacting the disease outcome.
Expanding our comprehension of FN biology within tumors promises improved
predictions of therapy responses. Furthermore, understanding these mechanisms has
particular relevance for crafting experimental tumor models, such as patient-derived
3D-organoids cultivated in vitro.
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In a number of tumors, as in 78% of the head and neck cancers,
FN may be absent within the tumor mass but is abundant in the
adjacent stroma (Beier et al., 2007). Within the stromal space,
cancer-associated fibroblasts (CAFs) are major FN producers
(Attieh et al., 2017). Originating mainly from resident tissue
fibroblasts under tumor stimuli, CAFs express high levels of α-
smooth muscle actin (αSMA) and exert contractile forces and
focalized proteolysis, contributing to ECM remodeling and
stiffening, and creating tracks that enable the invasion of cancer
cells (Kalluri, 2016; Sahai et al., 2020). Therefore, FN is also a key
factor mediating CAF functions (Jang and Beningo, 2019; Barbazan
et al., 2023; Galbo et al., 2023), and its elevated levels in tumor ECM
are often associated with poorer survival rates in cancer patients
(Barkan and Chambers, 2011; Bae et al., 2013; Balanis et al., 2013;
Fernandez-Garcia et al., 2014; Shinde et al., 2018).

FN is a large, multidomain glycoprotein present in soluble form
in blood (plasma FN; pFN) and as fibrillar networks in tissues
(cellular FN; cFN). The pFN is synthetized by hepatocytes, and
fibroblasts and endothelial cells are the major producers of cFN, but
many other cell types can synthesize FN at lower levels. FN is
encoded by a single gene (Fn1), is secreted as a dimer of two nearly
identical subunits of 230–270 kDa, and linked by two disulphide
bonds at the C-terminal region (Figure 1). FNmonomers vary due to
splicing, giving 20 different isoforms in humans and 12 in rodents
(Goossens et al., 2009). FN structure includes three types of Ig-like
repeats (FNI, FNII, and FNIII). FN includes 12 type I modules
located at the N- and C-terminus of the protein. The FNI modules
contain collagen (gelatin binding domain; GBD), fibrin and heparin
I (HepI) binding sites. In FN there are two repeats of type II. Type I
and II repeats contain two disulphide bonds and do not mediate cell
interactions, but facilitate FN fibril formation. FN contains 15 type
III repeats in addition to the alternatively spliced regions: the extra
domains A (ED-A) and B (ED-B) and the type III connecting
segment (IIICS). The FN type III secondary structure does not
have disulphide bonds conferring high elasticity to the molecule

(Potts and Campbell, 1996). FNIII modules contain several motifs
for cell binding including ED-A, III9-10, and IIICS, which bind
integrins, and the III12-14 (Hep II) which binds syndecans (Leiss
et al., 2008).

FN fibrils serve as scaffolds facilitating the assembly of other
ECM components, influencing its mechanical architecture and
regulating signaling to resident cells. This is accomplished
through the mosaic of binding sites provided by FN fibrils to a
multitude of molecules that in the oncogenic transformation can
play critical roles in processes of tumor proliferation,
neoangiogenesis, and metastatic invasion. This review examines
into the FN regions and principal interacting molecules,
exploring their contribution to the structure and biophysical
properties of oncogenic microenvironments.

Cell receptors binding FN play a pivotal
role as primary mechanosensors

Cell binding to FN is mediated by integrins and syndecans
(Figure 2). This adhesion triggers both biochemical and
bidirectional mechanical signaling between the ECM and the
cytoskeleton. About 11 different integrins can bind to FN (Leiss
et al., 2008). Among these, at least 8 (α5β1, αIIbβ3, α8β1 and all the
αv-class integrins) bind an Arginine-Glycine-Aspartate (RGD)
motif in FNIII10. In addition to the RGD motif, FNIII9 harbors
the “synergy site”. Unlike the RGD motif, the synergy site is not cell
adhesive by itself and has been shown that binds to the α subunit of
α5β1 and αIIbβ3 integrins (Bowditch et al., 1994) increasing the
lifetime of the integrin bond under mechanical forces, allowing the
formation of catch bonds (Friedland et al., 2009; Benito-Jardón et al.,
2017). Importantly, the binding of the synergy site by α5β1 triggers
the engagement of additional integrins, included αv-class integrins
that can withstand higher forces (Strohmeyer et al., 2017). Other
regions of FN such as ED-A, two sequences in IIICS, FNIII14 and

FIGURE 1
Structure of the fibronectin dimer with principal interacting molecules and potential biological function of the different modules in cancer. The FN
consists of two almost identical subunits, each weighing between 230–270 kDa, and interconnected by two disulfide bonds. The dimer features three
distinct types of modules (Types I, II and III), each characterized by unique elastic properties primarily influenced by the presence or absence of
intramodule disulfide bonds. The image highlights the cell receptors and ECM molecules that interact with FN dimers. These interactions are
determining the biological functions of FN in the context of cancer. In the upper part, the regions of interaction with other fibronectin molecules are
indicated. Abbreviations: FN, fibronectin; Syn, synergy region; LTBP, latent transforming growth factor β binding protein; VEGFR, vascular endothelial
growth factor receptor. Created with BioRender.com.
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the FNIII13-14 junction are bound by α4 integrins. The ED-A
module also binds α9β1, (Sharma, 1999; Pankov and Yamada,
2002; Leiss et al., 2008). These regions could have an important
contribution mediating infiltrated leukocyte adhesion (Guan and
Hynes, 1990).

The syndecan family, comprising four members (syndecan 1–4),
binds the heparin II FNIII12-14 region (HepII) by ionic contacts
between two clusters of positively charged amino acids in FN (in
FNIII13 and FNIII14) and the negatively charged groups of the
heparan sulphate (HS) substitutions of syndecans (Busby et al., 1995;
Sharma, 1999). Syndecans adhesion to FN triggers signaling events,
which promote focal adhesions (FAs) assembly and cytoskeleton
rearrangement reinforcing integrin signaling and FN fibrils
assembly (Woods and Couchman, 2000; Kim et al., 2001; Bass
et al., 2007; Mahalingam et al., 2007). The integrin α5β1 cross-talks
with syndecans through a cytosolic molecular bridge, between
paxillin and syndesmos, generating cooperative signaling between
these receptors (Kusano et al., 2000; Denhez et al., 2002; Bass et al.,
2007; Chronopoulos et al., 2020; Ahn et al., 2023). Interestingly, the
levels of syndecans in cancer cells correlate with tumor size,
invasiveness, and metastatic capacity (Kim et al., 2015; Poças
et al., 2023). Many of these actions are considered a consequence

of the cooperation with integrins (Beauvais and Rapraeger, 2004;
Choi et al., 2013).

Cancerous tissues often become unusually stiff as a result of
fibrotic changes in the ECM. This stiffness, combined with increased
interstitial pressure caused by rapid cell growth and blood vessel
leakage, creates an environment that stimulates tumor growth
(Basson et al., 2015). This stiffness is implicated in fostering
cancer progression through various mechanisms, including the
enlargement of FAs (Rubashkin et al., 2014) and modulation of
cell contractility. Integrins emerge as critical stiffness-sensors
activated by extracellular mechanical forces (Kechagia et al.,
2019) and there is ample literature documenting that the
increased expression and binding to FN by various integrins,
including α5β1, αvβ1, αvβ6, αvβ3, and α9β1, is linked to tumor
cell invasion and drug resistance (Koivisto et al., 2000; Barkan and
Chambers, 2011; Goodman and Picard, 2012; Gupta et al., 2013;
Cooper and Giancotti, 2019; Jang and Beningo, 2019; Li C. et al.,
2023; Wu et al., 2023).

The α5β1 integrin, which exclusively associates with FN, enables
cells to sense ECM rigidity, translating this mechanical information
into the focal adhesion kinase (FAK) activation and subsequent
signaling activation of Src kinase, which controls cytoskeletal

FIGURE 2
Integrins and syndecans binding FN cooperate in focal adhesion formation, cytoskeleton organization and mechanotransduction. α5β1, αIIbβ3,
α8β1 and all the αv-class integrins bind an Arginine-Glycine-Aspartate (RGD)motif in FNIII10. In addition to the RGDmotif, α5β1 integrins bind the synergy
site in FNIII9 allowing the formation of catch bonds and triggering the engagement of additional integrins. Syndecans bind the heparin II FNIII13-14 region
(HepII) by ionic contacts between positively charged amino acids in FN and the negatively charged groups of the heparan sulphate substitutions of
syndecans. Integrins binding to the FNIII9-10 repeats, and syndecans binding to the Heparin II modules can stablish cooperative signaling amplifying their
mechanoresponses to external forces, including reorganization of the actin cytoskeleton and YAP/TAZ entry into the nucleus. Created with
BioRender.com.
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dynamics and YAP/TAZ translocation to the nucleus. FN-mediated
FAK activation is dependent on the mechanical tension transmitted
by α5β1 with the contribution of the FN synergy site. In sharp
contrast, the ligation between the constitutively exposed binding
motif of type I collagen and its receptor integrin α2β1 is tension-
independently inducing FAK activation (Seong et al., 2013).
Moreover, the interplay between α5β1 and αv-class integrins,
upon FN-RGD binding, is essential for cell adaptation to FN
fibrils tension (Danen et al., 2002; Schiller and Fässler, 2013;
Zaidel-Bar, 2013), with α5β1 stimulating myosin II contractility,
while αv-class integrins are immobilized in large FAs providing
structural support to cell adhesion (Schiller and Fässler, 2013). This
interaction is considered pivotal in the formation of blood vessels in
tumors (Kim et al., 2000).

The FN fibrillar scaffold nucleates ECMs

The FN monomers contain six regions for FN-FN
intermolecular interaction (Schwarzbauer, 1991). The secreted
soluble FN dimer has a compact conformation mediated by
intramolecular interactions. Cytoskeletal forces, generated by
actin-myosin contraction and transmitted through integrins,
stretch and unfold the FN, generating extended thin fibrils that
expose cryptic FN assembly sites (Singh et al., 2010; Schwarzbauer
and DeSimone, 2011; Erickson, 2017). FN flexibility allows rotation
of individual repeats (Leahy et al., 1996) forming branched
networks. Syndecans have been proposed to make the initial
contacts with FN by their long HS chains (Woods and
Couchman, 1994; Bloom et al., 1999; Klass et al., 2000; Galante
and Schwarzbauer, 2007) and subsequently cooperate with integrins
bound to FN inducing cytoskeleton contraction and allowing FN

fibrils assembly (Huveneers et al., 2008). α5β1 integrins are
considered crucial for FN fibril formation. However,
αvβ3 integrins can assemble FN fibrils in the absence of α5β1
(Takahashi et al., 2007; Girós et al., 2011). FN lacking a
functional RGD site can partially be unfold and assembled into
fibrils by syndecans (Bultmann et al., 1998; Benito-Jardón et al.,
2020), although the fibrils were dysfunctional (Benito-Jardón et al.,
2020). The distribution of traction forces generated by the
combination of different receptors will be, therefore, important
for determining the final network structure and thus, the
molecules that will incorporate to develop a mature matrix
(Lemmon et al., 2009). In addition, FN fibrils will be
enzymatically crosslinked and grow in length and thickness
acquiring variable rigidity.

In tumors, ECM is intensively remodeled and its composition
differs from normal tissues and enables new interactions that affect
the function of cancer cells such as migration and growth (Figure 3).
For example, FN, tenascin-C (TNC), and type I collagen were
described to act as pro-metastatic cues (Aguirre-Ghiso et al.,
2001; Barkan et al., 2010; Oskarsson et al., 2011), or in patients
with breast cancer it was reported that an ECM signature consisting
of fibrinogen, elastin, FN, and vitronectin predicts the outcome of
the disease (Li S. et al., 2023). Here we focus on the proteins that are
more ligated to FN in oncogenic microenvironments.

In many cancers, the tumor stroma is enriched in collagens I and
III (Egeblad et al., 2010; Shields et al., 2012). Collagens bind the FN
GBD region (McDonald et al., 1982) and its deposition is dependent
on the presence of a previously established FN matrix (Sottile et al.,
2007; Kadler et al., 2008; Kubow et al., 2015), indicating that FN
matrix is an integral part of the collagen fibrillogenesis. In turn, the
fibrillar collagen scaffold regulates FN fibrils organization (Dzamba
et al., 1993).

FIGURE 3
The Heparin I and Gelatin/Collagen binding regions in the N-terminal part of FN: Roles in ECM assembly and crosslinking. The Heparin I region
nucleates soluble proteoglycans and fibrin, and the Gelatin Binding Domain (GBD) plays a crucial role interacting with collagens type I and III. Additionally,
the N-terminal part of FN binds Lysyl oxidases (LOX) and transglutaminase 2 (TG2). LOX enzymes activity induces FN clustering, leading to increased RGD
density and FN fibril formation. In addition, LOX contributes to the crosslinking of collagen, a critical step for ensuring structural stiffness to the ECM.
TG2 is a cell co-receptor that forms complexes with the β subunit of integrins. Extracellular TG2 binds FN fibrils and is involved in crosslinking ECM
components and LTBPs with FN and fibrillin-1, further stabilizing the ECM and promoting TGFβ activation. Created with BioRender.com.
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During cancer development, the ECM undergoes persistent
remodeling characterized by FN and collagen degradation,
deposition, and cross-linking. High expression of matrix
remodeling genes and cross-linkers is also predictive of a poor
prognosis in cancer (Slattery et al., 2013). Among cross-linkers,
lysyl oxidases (LOX) play a crucial role in ECM stiffening.
Experimental reduction of LOXs prevented MMTV-Neu-induced
fibrosis and lowered tumor incidence in a mouse model (Levental
et al., 2009), and reduced invasion of glioma cells (Laurentino et al.,
2021). In addition to collagen, recently LOX was shown to oxidate
FN lysine residues prior to the fibril assembly, inducing FN
clustering and leading to increased RGD density and integrin
grouping promoting FN fibrillation (Melamed et al., 2023). The
aberrantly elevated expression and activity of LOX enzymes that has
been reported in several cancer types, predominating in invasive
types (Barker et al., 2012), may be a relevant factor accelerating
formation of FN-rich heavily cross-linked ECMs around tumors.

Other enzymes bound by FN, such as bone morphogenetic
protein 1 (BMP-1) and tissue transglutaminase 2 (TG2) can also
stimulate FN-collagen fibril formation. Assembly of the collagen
fibrils requires the proteolytic processing of procollagen. Saunders
and Schwarzbauer (2019) identified a BMP-1 binding site in the FN
HepII domain, whose effect was enhanced by heparin. FN binding of
BMP-1 proteinase enhances its processing activity against type I
procollagen accelerating its fibril formation (Huang et al., 2009).

TG2 is amultifunctional protein that can be found in the cytosol,
in the nucleus, at the cell surface and in the ECM (reviewed by Telci
and Griffin, 2006). TG2 forms complexes with β1 and β3 integrins
inside the cell during their transport, accumulates on the surface in
FAs and functionally collaborates with these receptors, increasing
cell contractility (Akimov et al., 2000; Janiak et al., 2006; Chen et al.,
2010; Bordeleau et al., 2019) and mediating cell binding to FN via
interaction with the FN GBD (Selcuk et al., 2023a). This interaction
prevented the anoikis due to the lack of RGD-dependent adhesion
(Verderio et al., 2003). In healthy tissues, most secreted TG2 is
bound to FN fibrils and catalytically inactive, but will be activated by
matrix remodeling (Siegel et al., 2008). Activated TG2 alters the
ECM properties by enzymatically cross-linking ECM proteins
(Martinez et al., 1994; Stephens et al., 2004; Fortunati et al.,
2014) that leads to ECMs stiffening, induces platelet derived
growth factor receptor (PDGFR)-integrin association (Zemskov
et al., 2009) and cross-links the latent transforming growth factor
β binding proteins (LTBPs) to FN and fibrillin, thus promoting the
transforming growth factor β (TGFβ) activation (Kumar et al., 2010;
Ayinde et al., 2017; Lockhart-Cairns et al., 2022). Increased
TG2 expression in several types of cancer has been linked to
invasiveness in collaboration with α5β1 integrins (Caffarel et al.,
2013) promoting cell adhesion, spreading and contributing to FAs
enlargement and FN fibril formation (Akimov et al., 2000; Akimov
and Belkin, 2001). TG2 was also linked to cancer cell survival, poor
prognosis and chemotherapy resistance (Akimov and Belkin, 2001;
Grigoriev et al., 2001; Iacobuzio-Donahue et al., 2003; Martinet et al.,
2003; Mangala et al., 2007; Chen et al., 2010; Meshram et al., 2017;
Lee et al., 2018; Valdivia et al., 2023).

Dysregulated RNA splicing is a molecular feature that
characterizes almost all tumor types and arises from both
recurrent mutations and altered expression of trans-acting factors
governing splicing (Bradley and Anczuków, 2023). One of the most

consistent isoform changes in the ECM of tumors is the
upregulation of TNC and of FN splice isoforms (Chiquet-
Ehrismann et al., 1991; Orend and Chiquet-Ehrismann, 2006).
TNC is a hexameric extracellular matrix glycoprotein. High TNC
levels in tumors are linked with increased invasion, metastasis, and
often shorter patient survival (Saupe et al., 2013; Gocheva et al.,
2017). Inhibiting TNC expression by tumor cells reduces
proliferation and can reverse the mesenchymal phenotype to
epithelial cells (Wawrzyniak et al., 2020). TNC and FN ED-B are
significant components of the angiogenic vasculature in tumors, but
are scarce in quiescent adult vessels. TNC is associated with an
increase in leaky blood vessels in tumors (Saupe et al., 2013; Rupp
et al., 2016; Sun et al., 2019). TNC deposition is also present in the
peripheral margins of invasive carcinomas (Giuffrida et al., 2004;
Nagaharu et al., 2011). TNC was shown to have an anti-adhesive
effect as it induces cell rounding in vitro, suppresses actin stress
fibers, and promotes actin-rich filopodia formation. These changes
were linked to the suppression of RhoA activation and increased
endothelin receptor type A (EDNRA) expression (Wenk et al., 2000;
Lange et al., 2007). In addition, TNC binds to FNIII13, blocking
syndecan-4 binding to FN (Huang et al., 2001), which could
contribute to the described changes in matrix patterning and
may alter growth factor/chemokine sequestration and
presentation (Radwanska et al., 2017). The TNC anti-adhesive
effect has shown to affect differently to fibroblasts from tumor
cells. In normal cells, TNC slows cell cycle progression (Orend et al.,
2003), while in tumor cells, it stimulates proliferation and migration
(Huang et al., 2001; Wawrzyniak et al., 2020). The interplay between
FN and TNC in tumor angiogenesis is complex and puzzling. While
not expressed by endothelial cells, TNC exposure stimulates Wnt
signaling and FN expression, promoting the assembly of a dense,
branched matrix that supports tubulogenesis, reinforces cell-cell
junctions, and protects against anoikis (Radwanska et al., 2017).
Additional pro-tumoral actions of TNC include the release of a
fragment, activated by MMP-2 processing, that binds the
ectodomain of syndecan-4, inducing α5β1 integrin activation,
anoikis resistance and cell proliferation and migration (Saito
et al., 2007). Moreover, TNC binds LTBPs (Aubert et al., 2021),
which in turn releases TGFβ that stimulates epithelial-to-
mesenchymal transition (EMT) (Takahashi et al., 2013).

Other ECM components such as perlecan that bind FN are
upregulated in tumors and play important roles in the oncogenic
microenvironment due to their capacity to bind and cooperate in
growth factor (GF) activation (Iozzo and Sanderson, 2011), or
Fibrillin1 that binds FN HepI and traps LTBPs, contributing to
TGFβ release (Cierna et al., 2016; Ma et al., 2016; Lien et al., 2019;
Wang et al., 2022).

Oncofetal FN, the FN splicing isoforms

Three sites of alternative splicing within the FN molecule have
been identified: ED-A, ED-B and IIICS (Goossens et al., 2009). The
term oncofetal FN (onfFN) was coined by Matsuura and Hakomori,
(1985) to describe a specific FN recognized by the FDC6monoclonal
antibody. This antibody targets an epitope formed by the addition of
an O-glycan to the threonine residue in the VTHPGY sequence at
the IIICS domain. OnfFN, abundant in fetal and cancer tissues but
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scarce in normal adult tissues, has expanded its definition and
includes the FN isoforms containing ED-A or ED-B (Singh et al.,
2010). These isoforms are highly expressed in fetal tissues and solid
tumors, highlighting their significance in these contexts.

In studies of human prostate epithelial cell lines, it was observed
that TGFβ treatment upregulates onfFN and GalNAc transferase
(GALNT6) activity, which is responsible for O-glycosylation of the
IIICS domain. This upregulation is linked to enhanced
transformational potentials in mammary epithelial cells,
promoting cell proliferation (Freire-de-Lima et al., 2011).
O-glycosylated onfFN is also expressed by M2-polarized
macrophages (da Costa Santos et al., 2023). However, the specific
mechanisms by which onfFN contributes to malignancy remain
unclear. It is suggested that FNIIICS O-glycosylation could interfere
with FN degradation, thus stabilizing the molecule (Park
et al., 2011).

The analysis of tumor matrixomas from 435 patients revealed
that both ED-A and ED-B FNs are major and essential components

of the matrix produced by CAFs in head and neck squamous cell
carcinomas (HNSCC). Their presence correlates with poor
prognosis (Gopal et al., 2017). The FN ED-B isoform is present
at the abluminal sites of endothelial linings in newly formed blood
vessels and is prevalent in almost all human solid cancers,
lymphomas and some leukemias, and absent in normal tissues. A
negative correlation exists between FN ED-B expression and patient
survival (Hall et al., 2023). Crystallographic studies have shown that
the insertion of ED-B induces a significant twist in the longitudinal
orientation of FN monomers, facilitating the formation of tightly
packed head-to-tail homodimers (Figure 4). This unique
conformation allows simultaneous binding to two integrins with
both the RGD and the synergy motif remaining accessible,
potentially promoting α5β1 integrin clustering and
mechanosignaling (Schiefner et al., 2012).

In contrast to ED-B, ED-A FN is abundant in non-malignant
tissues during healing and fibrosis (Serini and Gabbiani, 1999; Kelsh
et al., 2015) and its expression together with LTBP-1 is essential for

FIGURE 4
The FN isoforms generated by alternative splicing can impact on FN fibrillogenesis. The inclusion of the ED-B, located between FNIII7 and
III8 modules, facilitates the formation of tightly packed head-to-tail homodimers. This structural arrangement promotes simultaneous access to the
synergy and RGD motifs on FN, leading to the clustering of integrins, and thus to FN fibril formation and mechanosignaling. The inclusion of ED-A,
between FNIII11 and III12 modules, in addition to facilitate fibrillogenesis, also provides specific binding sites to α4β1 and α9β1 integrins expressed by
hematopoietic cells. Moreover, ED-A offers a binding site for the LTBP-1. The interaction with LTBP allows for the storage, and TGFβ1 release and
signaling under conditions of fibril strengthening or proteolytic degradation. Created with BioRender.com.
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myofibroblast activation (Klingberg et al., 2018). In the context of
tumors, ED-A FN plays a crucial role in establishing a metastasis-
permissive stromal architecture (Hall et al., 2023), and its expression
is closely linked to TGFβ1 activity (Figure 4). A correlation between
SNAIL1 levels, a target of TGFβ, and ED-A FN expression has been
observed in epithelial cancers. Notably, the absence of the ED-A
domain prevents lung metastasis in a mouse breast cancer model
(Franco-Valls et al., 2023). FN ED-A is known to bind α4β1 and
α9β1 integrins, which are highly expressed on activated neutrophils
(Dhanesha et al., 2020). ED-A has been identified as an endogenous
damage associated molecular pattern (DAMP) molecule, triggering
innate immune responses (Ambesi et al., 2022), suggesting its
significant role in tumor infiltration. Further studies have
highlighted the potential of FN ED-A in promoting metastasis. A
study from Gopal et al. (2017) demonstrated that the migration of
head and neck squamous cell carcinoma collectives was facilitated
through the engagement of αvβ6 and α9β1 integrins. Beyond ED-A
potential role facilitating cancer cell migration and leukocyte
infiltration, the inclusion of ED-A may also play a pivotal role in

FN fibril formation. This is based on the observation that, under
normal physiological conditions, pFN lacks the ED-A domain.

The FN HepII region binds
growth factors

The interplay between growth factor (GF) signaling and FN-
binding integrins is a pivotal regulator of cellular signal transduction
within the tumor ECM. The HepII region binds GFs profusely in a
fashion apparently modulated by syndecans and by the ECM
elasticity (Figure 5). The repertoire of GFs that can bind HepII
includes several representatives of the platelet-derived growth factor
(PDGF), vascular endothelial growth factor (VEGF), fibroblast
growth factor (FGF) and TGFβ superfamilies (Martino and
Hubbell, 2010). Wijelath et al. (2006) demonstrated that the
physical linkage of the RGD and HepII regions is both necessary
and sufficient to promote endothelial cell proliferation, migration,
and ERK activation induced by VEGF. It was shown that the VEGF

FIGURE 5
Syndecans modulate growth factors recruitment to FNIII14 region. The HepII region of FN exhibits a remarkable affinity for binding growth factors.
This interaction occurs in amanner that apparently ismodulated by the presence of syndecans, aswell as the elasticity of the ECM. The chemical structure
and length of the heparan sulphate chains of syndecans determine the strength of their interaction with the FNIII13 and FNIII14 domains. It is known that
these interactions facilitate the opening of the FNIII14 region, enabling the recruitment of VEGF and its receptor. This recruitment is essential for
stimulating VEGFR activation, a critical step in promoting angiogenesis. Other growth factors binding the FNIII14 region like PDGF and FGFs might use
similar mechanisms for activation of their receptors. Created with BioRender.com.
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does not directly bind to HS; rather, the HS chains of syndecans
facilitate the transformation of FN into an open conformation which
in turn allows the GF binding to the FNIII14 region (Mitsi et al.,
2006). Furthermore, the efficacy of heparin/HS to enhance VEGF
binding to FN is modulated by its chemical composition and chain
length. Hypoxia and low extracellular pH, conditions known to
stimulate the formation of new blood vessels, trigger alterations in
the chemical structure of HS produced by endothelial cells. These
changes are closely associated with enhanced accumulation of VEGF
in FN. This process, in turn, facilitates the interaction between
VEGF and its receptor VEGFR2, effectively promoting angiogenesis
(Goerges and Nugent, 2004; Buczek-Thomas et al., 2019).

It is well established that GFs bound to FN retain the ability to
bind to their respective receptors. Usuelli et al. (2021) demonstrated
that FN provides interaction motifs to the extracellular domain of
the VEGF receptor 2 (VEGFR2), akin to the VEGF-binding sites that
were also exposed upon heparin-induced conformational changes in
FN. This suggests that a triple complex formation could occur,
initiated either by VEGF or VEGFR2 binding to FN, followed by the
recruitment of the third binding partner, thereby activating
angiogenic signaling pathways. While most of these studies
focused on VEGF, it remains an open question whether this
activation mechanism is common to other GFs that bind the
HepII region. Therefore, factors like matrix stiffness and the
composition of syndecan HS chains are crucial in inducing
conformational changes in FNIII13-14, thereby controlling GF
interactions with FN, bioavailability and spatiotemporal
cellular signaling.

The FN HepII region also binds several members of the TGFβ
superfamily such as TGFβ1, BMP-1, BMP-2 and -7 (Martino and
Hubbell, 2010). TGFβ triggers the EMT in epithelial-origin cancers.
This transition leads to the development of pro-metastatic traits, such
as a fibroblastic morphology, diminished expression of epithelial
markers and increased expression of mesenchymal markers
including FN and matrix-metalloproteinases (MMPs), which
collectively enhances cell motility. In the stroma, TGFβ drives the
transformation of CAFs into highly contractile myofibroblasts that
express αSMA and secrete substantial quantities of FN and collagen I.
Disrupting TGFβ1 is linked to reduced macrophage polarization to
M2 and associated with reduced tumor growth (Zhou et al., 2023).
TGFβs follow a complex activation mechanism: cells secrete TGFβs
noncovalently bound to the latency-associated propeptide (LAP),
which in turn attaches to LTBP, stored in the ECM bound to
various molecules. Fibrillin-1 binds LTBP-3 and -4, while FN fibrils
store LTBP-1 (Zilberberg et al., 2012), which bonds to ED-A and the
FN HepII region. Unlike other GFs, LTBP-1 binding to FN HepII can
be hindered by HS (Griggs et al., 2017), suggesting that FN ED-A
might boost LTBP-1 incorporation into the FN matrix (Klingberg
et al., 2018). Inhibiting FN fibrillogenesis in malignant breast cancer
cells blocked TGFβ activation and signaling, thus impeding EMT
(Griggs et al., 2017). The active TGFβ1 form is released either via
MMP-mediated cleavage of the ECM or by cell-induced FN fibrils
strengthening leading to conformational changes in LAP (Buscemi
et al., 2011; Shi et al., 2011; Klingberg et al., 2014), highlighting the
contribution of CAFs to TGFβ release. TG2, which has been shown to
cross-link fibrillin and LTBPs and to stimulate cell contractility
(Bordeleau et al., 2019), enhances TGFβ activation (Lockhart-Cairns
et al., 2022).

Among BMPs, BMP-2 and BMP-7 exhibit robust interactions
with the HepII domain of FN (Martino and Hubbell, 2010). BMP-2,
commonly overexpressed in diverse cancers and tumor cell lines,
predominantly contributes to processes such as in metastasis, EMT
and invasion (Singh and Morris, 2010; Wu et al., 2022), whereas
BMP-7 acts as an inhibitor of metastasis in certain cancers like
melanoma (Na et al., 2009). The involvement of distinct BMPs in
either promoting or inhibiting tumor progression hinges on BMP
dosage, microenvironment and genetic background of the cell. The
binding to FN emerged as a potential regulatory element influencing
the action of BMPs. It has been shown that the secretion of FN by
cells is critical for BMP-2-mediated signaling (Fourel et al., 2016).
Furthermore, several studies have shown that FN-bound BMP-2
regulates cellular behavior in a manner distinct from soluble BMP-2.
This effect was attributed to the close proximity and interplay of
integrin-binding and BMP-2-binding domains within FN (Crouzier
et al., 2011; Wei et al., 2015).

FN in tumor cell dissemination
and dormancy

Distinct tumors exhibit varied mechanisms of dissemination,
highlighting the intricate nature of cancer progression. One crucial
factor is the FN present in the migration tracks employed by
metastatic cells (Erdogan et al., 2017). However, FN role in
dissemination extends beyond migration tracks. A compelling
illustration is found in high-grade serous ovarian cancer
(HGSOC), where metastasis to the abdominal space occurs
through the formation of tumor cell aggregates that contain
CAFs, and FN expressed by CAFs plays a crucial role in the
aggregation process. Importantly, FN expression was dependent
on PDGFR-β (Gendrau-Sanclemente et al., 2023). On the other
hand, it has been described that TG2 and cross-linked FN within
extracellular vesicles (EVs) produced by metastatic breast cancer
cells, determines the formation of the metastatic niche in lungs
(Shinde et al., 2020). Vascular invasions are described as clusters of
proliferating epithelial tumor cells enveloped by a luminal
endothelial cell monolayer and by Fsp1-positive fibroblasts
containing FN, laminin and TNC between the two stromal cell
layers. The endothelial layer integrity would support tumor cell
survival and overall metastasis (Sun et al., 2019). This multifaceted
involvement of FN in diverse mechanisms of dissemination
emphasizes its significance for cancer metastasis.

Cancer cells disseminate from primary tumors and establish
themselves in distant organs, where they can lay dormant or
quiescent for extended periods before manifesting detectable
metastases. The dynamic interplay between ECM-derived
mechanical forces and composition significantly influences
specific cell states within tumor tissues. These factors, in turn,
dictate the likelihood of tumor relapse. Increased matrix stiffness
and aligned fibers are identified as hallmarks in various cancers, such
as breast, pancreatic or colorectal cancers. Microenvironments
mirroring the normal softness of healthy tissues can impede
oncogene-mediated cell reprogramming and tumor emergence.
However, certain oncogenes, such as RTK-Ras, confer a
disproportionate cellular response to even subtle changes in ECM
rigidity, converting cells into tumor-initiating cells (Panciera et al.,
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2020), a process that has been assigned to YAP/TAZ mobilization to
the nucleus induced by mechanical signals.

Dormancy and the transition from dormancy to proliferative
metastatic growth involve complex mechanisms. Three-dimensional
cell culture environments are shown to induce quiescence (Barkan
et al., 2008), and cancer cells needed to organize a fibrillar FNmatrix
to maintain quiescence status (Barney et al., 2020). However, stiff
surfaces promote cell proliferation. Interestingly, following
treatment with cisplatin, surviving hepatocellular carcinoma cells
from soft substrates had significantly higher clonogenic capacity
than surviving cells from a stiff microenvironment (Schrader et al.,
2011; Kondapaneni and Rao, 2020). In breast, prostate, melanoma,
and fibrosarcoma cell lines, the ERK/p38 activity ratio was used to
predict the in vivo behavior, with a high ratio favoring tumor growth
and a low ratio inducing tumor dormancy. The ERK/p38 ratio was
under the regulation of the urokinase plasminogen activator
receptor (uPAR) complexed with α5β1 integrins leading to
integrin activation, which facilitates the formation of FN fibrils
and activates ERK (Aguirre-Ghiso et al., 2001; Aguirre-Ghiso et al.,
2003). ECM degradation driven by MMP-2 (Barney et al., 2020) or
MMP-9 (Albrengues et al., 2018) also was shown to disrupt
dormancy. ECM proteomics of human head and neck squamous
cell carcinomas andmurine mammary tumors identified collagen III
and I as key contributors to dormancy induction and maintenance
in vivo (Qiu et al., 2020; Di Martino et al., 2022). Interestingly, non-
canonical Discoidin Domain Receptor Tyrosine Kinase (DDR1)
signaling mediated by collagen I/III was implicated in cancer
stem cell self-renewal and metastatic reactivation (Gao et al.,
2016; Di Martino et al., 2022). Definitively, abundant evidences
point that matrix remodeling activities contribute to
interrupting dormancy.

Conclusion

FN plays an essential role in the assembly of ECMs, and FN
fibrils orchestrate signals that govern specific cell states within tumor
tissue, included metastatic reawakening. Their multifaceted
interactions with various ECM components and cell receptors, as
well as their capacity to undergo mechanical stretching by cell
receptors affects ECM rigidity and growth factor storage and
activation.

However, the role of FN in tumor genesis and malignant
dissemination is still under debate (Beier et al., 2007). In some
cancers, FN expression can act as a tumor suppressor, as observed
in tyrosine kinase receptor Met and its ligand, hepatocyte growth
factor (HGF)/scatter factor-mediated tumorigenesis (Taylor et al.,
1998). In vitro studies have shown that tumor cells surrounded by FN
fibrils, which support CAFs, experience reduced proliferation and
YAP nuclear export due to the compressive forces exerted by CAFs
(Barbazan et al., 2023). In breast cancer cells, autocrine FN expression
by tumor cells that have undergone EMT is associated with a non-
metastatic phenotype, yet the FN produced by them contributes to the
invasion and metastasis of their epithelial counterparts. Moreover,
genetic depletion of FN expression allows tumor cells to regain
epithelial characteristics and initiate lung tumor formation,
highlighting the concept of epithelial-mesenchymal heterogeneity
in promoting cancer metastasis (Shinde et al., 2018).

The tumor ECM is typically fibrotic and stiff. An unresolved
question is, however, whether FN fibrils in the tumor ECM are
strengthened. Recent studies using a tension nanoprobe specific to
the relaxed FN GBD region showed that FN fibers are under high
tension in healthy mouse organs, whereas tumor tissues have a
higher content of relaxed fibers (Fonta et al., 2020). Interestingly,
collagen I (Kubow et al., 2015) and TG2 (Selcuk et al., 2023b) can
only bind to relaxed FN GBD, and binding is lost when FN is
strengthened. Moreover, once assembled, collagen fibrils prevent FN
fibrils from being stretched by cellular traction forces (Kubow et al.,
2015). These results would suggest that relaxed FN fibrils in the
tumor might promote collagen and TG2 assembly, and other factors
such as collagen abundance itself and cross-linkers would contribute
to tumoral ECM stiffness (Egeblad et al., 2010). The abundance of
relaxed FN GBD in tumors could result from intense proteolytically
cleaved FN fibers and, otherwise, does not preclude that the rest of
the molecule remains relaxed. Unlike type I and II modules, FN type
III repeats lack intradomain disulfide bonds. This structural
difference endows them with an elastic conformation capable of
absorbing significant tension before strengthening the N-terminal
part of the FN dimers. Integrins are organized in nanoclusters within
FAs, with an optimal spatial arrangement for effective
mechanotransduction (Jain et al., 2023). Then, the integrin-
binding parts of FN are located in the middle of the FNIII region
and could transmit minimal variations on the tension supported by
the fibrils. In this line, it is unknown whether the double interaction
of the α5β1 integrin with the RGD motif and the synergy site is
favored with the conformation that FNIII9-10 acquires in tumors.
The inclusion of ED-B, but also ED-A, TG2 adhesive contribution,
or collagen fibers conformation might promote this interaction.

The most consistent cancer-specific feature is the exceptional or
overexpression of oncofetal FNs, as opposed to their expression
levels in normal tissue. Another question is whether the expression
of oncofetal FNs and TNC results from oncogenic mutations or is
induced by components like TGFβ in the tumor microenvironment,
as observed with oncfFN in human prostate epithelial cell lines
(Freire-de-Lima et al., 2011).

Currently, many efforts are ongoing to develop small molecule
inhibitors targeting TG2-FN interface (Yakubov et al., 2014; Sima
et al., 2019), block FN extra domains particularly ED-B (Menrad and
Menssen, 2005; El-Emir et al., 2007; Sauer et al., 2009; Schliemann
et al., 2009; Zhang et al., 2022) or impair FN exocytosis to reduce
tumor migration and invasion (Park et al., 2022). Among the
integrin blockers, Cilengitide is a cyclic pentapeptide containing
RGD that blocks αvβ3 and αvβ5 integrins, has been studied as anti-
angiogenic in diverse tumors in mouse and reached to phase III, but
stopped, in patients with glioblastoma (Desgrosellier and Cheresh,
2010). Other α5β1 integrin inhibitors include velociximab, an
α5β1 function-blocking murine antibody (Ramakrishnan et al.,
2006) and ATN-161 (Livant et al., 2000), which was initially
designed to block the synergy interaction, although later was
shown to bind to the β subunits of several integrin heterodimers,
including α5β1, αvβ3, and αvβ5 (Donate et al., 2008). We
demonstrated that fibroblasts lacking FN expression exhibited a
decrease in phosphorylated FAK (pY397-FAK) when cultured on
FN with an impaired synergy sequence (FNsyn), compared to cells
on wild-type FN (Benito-Jardón et al., 2017). Furthermore, we also
showed that the inactivation of the synergy site was partially
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compensated by αvβ3 integrins. Additionally, skin wounds in mice
genetically modified to express FNsyn (Fn1syn/syn mice) displayed
reduced TGFβ1-mediated cell signaling (Gimeno-LLuch et al.,
2022). Altogether these data suggest the potential of targeting the
synergy region, either alone or in conjunction with inhibitors of αv-
class integrins, as a strategic approach to disrupt α5β1 integrin-
mediated mechanotransduction in tumors.

Finally, an interesting area for future research is investigating the
potential of FN to attract leukocytes that express α4β1/β7 and
α9β1 integrins, particularly in the context of cancer progression.
Moreover, to potentiate this effect in conjunction with check-point
immunotherapy, especially when targeted using peptides containing
RGD, RGE or FN synergy sequences, may prove to be a highly
effective strategy to combat cancer progression.
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Glossary

ECM extracellular matrix

CAFs cancer-associated fibroblasts

FN fibronectin

αSMA α-smooth muscle actin

pFN plasma FN

cFN cellular FN

GBD gelatin binding domain

HepI heparin I binding site

ED-A extra domain A

ED-B extra domain B

HepII heparin II binding region

HS heparan sulphate

FAs focal adhesions

FAK focal adhesion kinase

TNC tenascin-C

LOX lysyl oxidases

BMP-1 bone morphogenetic protein 1

TG2 tissue transglutaminase 2

PDGFR platelet-derived growth factor receptor

LTBPs latent transforming growth factor β binding proteins

TGFβ transforming growth factor β

EDNRA endothelin receptor type A

EMT epithelial-to-mesenchymal transition

onfFN oncofetal FN

GALNT6 GalNAc transferase

HNSCC head and neck squamous cell carcinomas

DAMP damage associated molecular pattern

GF growth factor

PDGF platelet-derived growth factor

VEGF vascular endothelial growth factor

FGF fibroblast growth factor

VEGFR2 VEGF receptor 2

MMPs matrix-metalloproteinases

LAP latency-associated propeptide

HGSOC high-grade serous ovarian cancer

EVs extracellular vesicles

uPAR urokinase plasminogen activator receptor

DDR1 discoidin domain receptor Tyrosine Kinase

HGF hepatocyte growth factor
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