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Multiple myeloma (MM), a stage-developed plasma cell malignancy, evolves from
monoclonal gammopathy of undetermined significance (MGUS) or smoldering
MM (SMM). Emerging therapies including immunomodulatory drugs, proteasome
inhibitors, monoclonal antibodies, chimeric antigen-T/natural killer (NK) cells,
bispecific T-cell engagers, selective inhibitors of nuclear export, and small-
molecule targeted therapy have considerably improved patient survival.
However, MM remains incurable owing to inevitable drug resistance and post-
relapse rapid progression. NK cells with germline-encoded receptors are involved
in the natural evolution of MGUS/SMM to active MM. NK cells actively recognize
aberrant plasma cells undergoing malignant transformation but are yet to
proliferate during the elimination phase, a process that has not been revealed
in the immune editing theory. They are potential effector cells that have been
neglected in the therapeutic process. Herein, we characterized changes in NK
cells regarding disease evolution and elucidated its role in the early clinical
monitoring of MM. Additionally, we systematically explored dynamic changes
in NK cells from treated patients who are in remission or relapse to explore future
combination therapy strategies to overcome drug resistance.
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1 Introduction

Multiplemyeloma (MM), the thirdmost common hematologicmalignancy, is characterized
by the clonal proliferation of plasma cells, bone injury, anemia, renal failure, and hypercalcemia
(Sung et al., 2021). Active MM frequently emerges as a result of the progression of monoclonal
gammopathy of undetermined significance (MGUS) and smolderingmultiplemyeloma (SMM),
with approximately 1% of patients with MGUS and 10% of patients with SMM progressing to a
clinical stage requiring treatment each year. Current therapeutic advances, including
immunomodulatory drugs (IMiDs), proteasome inhibitors (PIs), and anti-CD38 antibodies,
have markedly improved the outcomes of patients with newly diagnosed MM (NDMM).
However, MM remains incurable; an effective approach to optimizing patient survival is to stop
progression from the precancerous state to the active stage.
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Myeloma arises fromB lymphocytes located in the germinal centers
(GC) of the lymph nodes. The GC contains the dark zone (DZ) and
light zone (LZ). In the DZ, antigen-stimulated B and T cells recognize
each other, rapidly proliferate, and generate huge amounts antibodies
through class switch recombination (CSR) and somatic hypermutation
(SHM) (Basso, 2021). Activated cytidine deaminase coordinates this
process. Subsequently, such B lymphocytes either bind with follicular
dendritic cells (FDCs) in the LZ or become apoptotic cells (Basso, 2021).
B cells selected by FDCs continue to undergo repeated CSR and SHM
between the DZ and LZ, a process called “cyclic re-entry.” Eventually,
these cells leave the GC as memory B cells or long-lived plasma cells
(Pasqualucci and Klein, 2022). Among the abovementioned processes,
B cells exhibit hyperdiploidy if there are errors in chromosome
segregation during rapid proliferation, CSR is susceptible to IgH
translocations, and SHM is mainly in the form of single base
substitutions. As a result, these three mutation types are common
initiating mutations in MM (Ho et al., 2022). During the process of
“cyclic re-entry,” genetic mutations accumulate from generation to
generation; eventually, a clone that has acquired a critical mutation
leaves the GC and re-enters the GC to acquire the initiating mutation.
This is the long pre-MGUS phase (Maura et al., 2021). Finally, the clone

migrates to the bone marrow (BM) independently of the GC in the
presence of chemokines, where it evolves from MGUS to SMM and
then to MM (Figure 1). MGUS had identical copy number aberrations
and somatic mutations as MM, although with a lower frequency
(Gonsalves and Rajkumar, 2022). MM progression proceeds in a
branching rather than in a linear manner, leading to substantial
clonal diversity and coexistence of wide genetic heterogeneity
(Gonsalves and Rajkumar, 2022). Some patients with MGUS who
exhibit persistent clinical inertia carry driver mutations and intraclonal
evolution in MM. Moreover, subclones with potentially high-risk
lesions do not become the dominant lesions in the MGUS phase
(Dhodapkar, 2016). Therefore, the choice of B cells to differentiate
into malignant or normal cells depends on the accumulation of genetic
mutations. The higher significance of genetic alterations possibly lies in
the ultimate risk assessment of malignant transformation. The
reciprocal remodeling occurring between myeloma cells and
immune cells plays a crucial role in regulating the process of
malignant transformation. This remodeling contributes to clonal
selection and creates the microenvironment that facilitates the
transition from MGUS to MM. In the “immune editing” theory of
cancer, MGUS and SMMare stages of immune homeostasis, suggesting

FIGURE 1
The origins of multiple myeloma (MM). Before developing MM, abnormal cells in the germinal center (GC) endure a lengthy pro-monoclonal
gammopathy of undetermined significance (MGUS) phase. B cells originating from GC proliferate rapidly in the dark zone (DZ), undergo class switch
recombination (CSR) and somatic hypermutation (SHM), and are subsequently selected by follicular dendritic cell (FDC) in the light zone (LZ), re-entering
the DZ to undergo repeated cyclic re-entry processes (Basso, 2021; Pasqualucci and Klein, 2022). After accumulating generation by generation, a
clone that has acquired a critical mutation leaves the GC and, subsequently, re-enters the GC to acquire the initiating mutation (Maura et al., 2021; Ho
et al., 2022). Finally, the clone, independent of the GC, moves to the bone marrow (BM) by chemokines and then begins to evolve from MGUS to
smoldering MM (SMM) to active MM.
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the presence of an immune elimination phase before these stages.
Myeloma exhibits an increase in the expression of HLA class I
molecules during the process of transitioning from MGUS to MM
(Bernal et al., 2009). This upregulation is associated with target cell
recognition by germline-encoded receptors on the NK cell surface.
Based on the reciprocity of immune editing, abnormal plasma cells may
trigger the recognition of NK cells during the early immune elimination
phase. Focusing on NK cells can help identify plasma cells that have
achieved “malignant transformation” but have not undergone major
clonal proliferation as well as determine precancerous lesions that may
require early intervention.

2 NK cells change parallel to myeloma
progression

With MM progression, NK cells exhibit changes in number and
phenotype. NK cells are generally increased or unchanged in the
peripheral blood in early disease stages but begin to decline in the
advanced stages (Khan et al., 2019; Ho et al., 2022). Based on the present
study, immune editing between NK and tumor cells may occur in the
early stages and throughout disease evolution. As the disease progresses
from the MGUS stage, plasma cells in patients upregulate MHC class I
expression to evade NK cell recognition and overexpress Erp5 to
promote MHC class I polypeptide-related sequence A (MICA)
shedding into soluble MICA to induce the functional inhibition of
NKG2D, an activating receptor (Vulpis et al., 2022). Subsequently, anti-
MICA antibodies are present in high titers during the MGUS phase
(Schneiderova et al., 2017). The degranulation level of
CD56lowCD16lowNK cells is already impaired in patients at this stage
(Vulpis et al., 2018). Moreover, the heterogeneity of cytotoxic cells at the
SMM stage is associated with the advancement of the disease and the
effectiveness of treatment for patients with HR SMM. The first phase is
dominated by abundant NK cell numbers and depleted CD8+ T cell
numbers, reflecting the innate or transitional immune environment. In
the second phase, activated cytotoxic T cells become abundant, with a
decrease in tumor load. In the third stage, the immune
microenvironment is characterized by the widespread suppression
and inactivation of cytotoxic cells and disease progression (Fernandez
et al., 2022). Another study has reported similar alterations (Isola et al.,
2021). Patients with HR SMM is not only characterized by the
enrichment of gene sets associated with cytotoxic responses,
including Tbet, perforin, granzyme b (GZMB), and granulysin, but
also by the overexpression of suppressor molecules such as LAG-3,
TIGIT, and IDO1 (17). Therefore, during the SMM stage, antitumor
immune responses are activated while the immunosuppressive
microenvironment is actively constructed. During the follow-up of
patients with HR SMM progressing from an “asymptomatic” state to
a stage requiring clinical treatment, only NK cells underwent remarkable
changes. The absolute number of CD158a+CD56dim NK cells decreased
to half of that in the asymptomatic stage, with downregulation of
CD16 in CD56bright NK cells (Paiva et al., 2016). Furthermore,
patients with HR SMM who responded to combination therapy with
lenalidomide and dexamethasone primarily exhibited phenotypic
changes in CD56dim NK cells, for example, downregulation of
CD158a and killer cell inhibitory receptors (KIRs) (Paiva et al., 2016).

After progression to activeMM,NK cells are progressively depleted,
with a decrease in numbers, inhibitory and activating receptor

imbalance, functional inhibition, and chemokine imbalance
(Figure 2). Preclinical studies have shown that myeloma cells release
microvesicles comprising MICA-related genes. Such microvesicles
induce the downregulation of NKG2D and transfer of NKG2DL to
the surface of cells after internalization by NK cells. Subsequently, the
NKG2D–NKG2DL axis facilitates NK cell fratricide (Vulpis et al.,
2022). Moreover, there is a significant decrease in the NK cell
activating receptors NCR3, NKG2D, 2B4, and DNAM-1 and
upregulation of the inhibitory receptor PD-1 in patients (Seymour
et al., 2022). The inhibitory ligands MHC I and PD-L1 are upregulated
in target cells. Severe imbalance of activating and inhibiting receptors
leads to functional inhibition. This alteration is associated with
cytokines and hypoxia. In vitro preclinical studies have shown that
physical contact between osteoblasts and NK cells increases interleukin
(IL)-6 and IL-10 production (Uhl et al., 2022). Regulatory T cells (Tregs)
and BM-derived suppressor cells release TGF-β (Ghiringhelli et al.,
2005). This results in the formation of an extensive immunosuppressive
microenvironment. Hypoxia decreases NKG2D and CD16 expression
and impairs NK cell degranulation in preclinical studies (Sarkar et al.,
2013). Furthermore, preclinical studies have shown that the sialic acid-
binding immunoglobulin-like lectin (Siglec) ligand (PSGL-1/CD43) on
MM cells binds to inhibitory Siglec-7 on NK cells, inhibiting
cytotoxicity and cytokine production by activating SHP-1/2 in NK
cells in vitro (Daly et al., 2022a). Downregulation of the chemokine
C-X-C motif chemokine (CXCL)12 and its ligand C-X-C chemokine
receptor type 4 (CXCR4) affects NK cell trafficking in the BM, and
weakens antitumor immune responses at the primary tumor site in
patients (Tomaipitinca et al., 2021) (Figure 2).

Studies on stage-related NK cells after progression to the clinical
stage are lacking. Similar to the heterogeneity within SMM,
myeloma cells possibly induce specific NK cells that can
overcome the inhibitory microenvironment to exert antitumor
effects within different stages. Activation or exogenous infusion
of such cells could be a promising therapeutic approach. In
summary, NK cells most likely recognize early abnormal plasma
cells and participate in the entire process of immune editing
(i.e., elimination, homeostasis, and escape) in MM. NK cells
screen for clonal subpopulations resistant to innate immune
attack by flexibly altering the autoimmune phenotype and
subpopulation ratios. This clonal subset is often dormant at the
primary tumor site and is looking for an opportunity to recur in a
highly immunosuppressive microenvironment. Disease progression
to the active stage could potentially be prevented at an early stage by
elucidating the changes in NK cells during disease progression. In
addition to the changes that occur during the natural course of the
disease, treated tumors also experience functional dormancy
[complete remission (CR)] and tumor proliferation (disease
recurrence) associated with NK cells. Such changes are often
associated with the strike or activation of the tumor
microenvironment by the treatment strategy.

3 Involvement of NK cells in the anti-
tumor response of existing therapies
for MM

Currently available therapies for MM directly or indirectly
influence NK cells to exert antitumor activity and result in
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various adaptive changes in prognosis-related NK cells after the
intervention. The main therapies include the use of PIs, IMiDs,
monoclonal antibodies (mAbs), autologous hematopoietic stem cell
transplantation (auto-HSCT), chimeric antigen receptor (CAR)
cells, bispecific antibodies (BsAbs) or trispecific antibodies,
dendritic cell (DC) vaccination, histone deacetylase inhibitors
(HDACis), selinexor, and venetoclax.

3.1 Changes in NK cell and potential
applications during PI treatment

Bortezomib exerts anti-myeloma effects by directly inducing
MM cell apoptosis and inhibiting NF-κB activation and adhesion to
BM stromal cells. However, this mechanism of PIs sensitizing
MM cells to the recognition of NK cells remains unexplored.
HLA class I on myeloma cells often leads to the inhibition of NK

cell activity. PIs downregulate HLA class I molecules to induce a
“self-deficient” state to activate NK cells (Yang et al., 2015). PI-
treated myeloma cell lines have suppressed expression of HLA-E
and are more easily targeted by NKG2A+ NK cells (Carlsten et al.,
2019). Furthermore, bortezomib upregulates NKG2D in NK cells
and DNAM-1-related ligands in myeloma cells by activating ataxia-
templated mutation and RAD3-related protein (ATR)-dependent
senescence program (Soriani et al., 2009; Niu et al., 2017).
Endoplasmic reticulum (ER) stress induced by Bortezomib
activates the unfolded protein response. This aids myeloma cells
in avoiding apoptosis and developing tolerance to drugs. This
mechanism results in the exposure of calreticulin and the
upregulation of DR5 in myeloma cells (Zitvogel and Kroemer,
2021). Recent studies have shown that NK cells eliminate ER-
stressed cells by recognizing calreticulin via NKp46 (Sen Santara
et al., 2023). The upregulation of DR5 enhances tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL)-mediated NK

FIGURE 2
Interplay betweenmyeloma cells and natural killer (NK) cells. After progression to activemultiplemyeloma (MM), NK cells are progressively depleted,
with a decrease in numbers, inhibitory and activating receptor imbalance, functional inhibition, and chemokine imbalance. The combination of impaired
NK cell proliferation and NKG2D-NKG2DL axis-induced fratricide led to decreased cell numbers (Seymour et al., 2022). The levels of NK cell activating
receptors NCR3, NKG2D, 2B4, and DNAM-1 are reduced, while inhibiting receptor PD-1 are increased (Seymour et al., 2022). On the target cells, the
inhibitory mediators MHC I and PD-L1 are also upregulated. Severe imbalance of activating and inhibiting receptors leads to functional inhibition. This
alteration is associated with cytokines and hypoxia. Physical contact between osteoblasts and NK cells increases interleukin (IL)-6 and IL-10 production
(Uhl et al., 2022). Regulatory T cells (Tregs) and bone marrow (BM)-derived suppressor cells release TGF-β (Ghiringhelli et al., 2005). This results in the
formation of an extensive immunosuppressive microenvironment. Hypoxia decreases NKG2D and CD16 expression and impairs NK cell degranulation
(Sarkar et al., 2013). Sialic acid-binding immunoglobulin-like lectin (Siglec) ligand (PSGL-1/CD43) on MM cells binds to inhibitory Siglec-7 on NK cells,
inhibiting cytotoxicity and cytokine production by activating the phosphatase SHP-1/2 in NK cells (Daly et al., 2022a; Daly et al., 2022b). Downregulation
of C-X-C motif chemokine (CXCL)12 and its ligand C-X-C chemokine receptor type 4 (CXCR4) affects NK cell trafficking in the BM and weakens
antitumor immune responses at the primary tumor site (Ponzetta et al., 2015; Tomaipitinca et al., 2021).
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cytotoxicity (Carlsten et al., 2019). Taken together, bortezomib
sensitizes myeloma cells to NK cell recognition by up- or
downregulate expression of ligands associated with NK cell
activation (Figure 3). However, effector cells that work well
against sensitizing myeloma cells may be absent in patients. In
vitro studies have reported that bortezomib affects the antitumor
capacity of NK cells via the following mechanisms: inducing the
apoptosis of quiescent NK cells via the reactive oxygen species-
dependent pathway; decreasing the activating receptor NKp46
(Wang et al., 2009); and downregulating TRAIL by inhibiting the
NK-κB pathway, which decreases the apoptosis of target cells and
significantly inhibits nonperforin killing (Feng et al., 2010).
Furthermore, previous studies have reported that at clinically
relevant concentrations (10 nM), bortezomib does not affect the
function of NK cells (Shi et al., 2008). However, another in vitro
study has reported that primary quiescent NK cells are sensitive to

bortezomib-induced apoptosis at a concentration of 12.2 nM (Wang
et al., 2009). During bortezomib treatment, the proportion of
circulating NK cells decreases significantly (Kakoo et al., 2021).
The role of such changes in driving clinical infections, including
herpesvirus reactivation, cannot be excluded. In conclusion,
bortezomib inhibits the responses of NK cells to sensitized tumor
cells by inducing apoptosis, decreasing activating ligand expression,
and inhibiting non-perforin killing (Figure 3). The
immunosurveillance function of NK cells may be impacted by
the negative regulatory effect of bortezomib on them. Therefore,
this negative regulatory effect should be considered when exploring
NK cell-based combination therapies. In addition, co-infusion of
NK cell donor lymphocytes after bortezomib therapy may be an
effective strategy to eradicate bortezomib-escaped myeloma cells,
facilitating deeper therapeutic remission and delaying disease
recurrence.

FIGURE 3
Natural killer (NK) cell changes after proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs) andmonoclonal antibodies (mAbs) treatment. (A).
Bortezomib can up- or downregulate the expression of ligands associated with NK cell activation sensitizing myeloma cells to recognize NK cells (Soriani
et al., 2009; Yang et al., 2015; Niu et al., 2017), meanwhile, bortezomib inhibits the responses of NK cells to sensitized tumor cells by inducing apoptosis,
decreasing activating ligand expression, and inhibiting non-perforin killing (Wang et al., 2009). (B). Directly, lenalidomide alters NK cell immune
phenotype and adjusts the ratio of CD56bright/dim NK cell subsets; lenalidomide activates Zap-70 in NK cells to upregulate GZM-B and increases the
porous region of the actin-network to promote the release of interferon (IFN)-γ-containing vesicles (Giuliani et al., 2017; Hideshima et al., 2021);
indirectly, lenalidomide promotes the proliferation and activation of NK cells by regulating the complex signaling pathways of effector cells such as T cells,
NK cells, and natural killer T (NKT) cells to promote IL-2 and IFN-γ release (LeBlanc et al., 2004; Zhu et al., 2019). (C). Daratumumab induced CD38+ NK
cell fratricide via the antibody-dependent cell-mediated cytotoxicity effects of NK–NK cells (Wang et al., 2018). (D). elotuzumab activates NK cells by
directly binding to SLAMF7; SLAMF7-SLAMF7 interaction between NK cells and myeloma cells induced NK cell activation and promoted cytotoxicity
(Malaer and Mathew, 2017).
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3.2 IMiDs positively regulate the
immunosurveillance of NK cells

IMiDs exert anti-myeloma effects via immunomodulatory,
antiangiogenic, anti-inflammatory, and antiproliferative
mechanisms. The co-activating effect of IMiDs on NK cells could
be an important mechanism for enhancing anti-myeloma
immune activity.

Lenalidomide treatment upregulates CD16, CD40L, and
LFA1 in NK cells to promote antibody-dependent cytotoxicity
(ADCC) and increases the number of CD56dim NK cells as well
as changes the ratio of CD56bright/dim NK cell subpopulations (Tai
et al., 2005; Fionda et al., 2018). Preclinical research revealed that
after 2 weeks of lenalidomide treatment, an NK cell subpopulation
with overexpression of CD56 and downregulation of NKp30,
NKp46, and KIR2D emerged. Notably, this subpopulation
disappeared after 4 weeks of therapy (Le Roy et al., 2018). How
this dynamic change is specifically related to the therapeutic
response remains unknown. Combined with the development
and maturation of NK cells, this subgroup may be the primary
group that exerts immunomodulatory effects during treatment. In
addition, lenalidomide decreases PD-1 in NK cells and PD-L1 in
MM cells, promoting NK cell identification of target cells (Giuliani
et al., 2017). Lenalidomide can also activate Zap-70 triggering the
phosphorylation and upregulation of GZM-B in NK cells
(Hideshima et al., 2021). Furthermore, lenalidomide modulates
the nanoscale rearrangement of actin in the immune synaptic
cortex of NK cells. Subsequently, porous regions of the actin-
network increase, promoting the release of interferon (IFN)-γ-
containing vesicles. In summary, lenalidomide alters the immune
phenotype via many pathways, adjusts the ratio of NK cell
subpopulations, promotes the secretion of GZM-B and IFN-γ,
and directly enhances the cytotoxicity of NK cells (Figure 3).

IMiDs indirectly promote the proliferation and activation of NK
cells by regulating the complex signaling pathways of effector cells
such as T cells, NK cells, and natural killer T (NKT) cells to promote
IL-2 and IFN-γ release (Figure 3). The possible mechanisms are as
follows: (a) IMiDs release inhibition of the IL-2 promoter in T cells
via the CRBN–crl4–IKZF1/3–c-MYC/IRF4 pathway (Gandhi et al.,
2014; Awwad et al., 2018; Asatsuma-Okumura et al., 2019; Zhu et al.,
2019); (b) IMiDs stimulate T cells by CD28–NF-κB pathway
(LeBlanc et al., 2004); (c) IMiDs promote the nuclear
translocation of activated nuclear factor-2 and activator protein-1
by activating PI3K- PKCζ/Akt pathway in T cells (Hayashi et al.,
2005); and (d) IMiDs activate the IL-2/IFN-γ-dependent JAK–Stat
pathway after downregulation of suppressor of cytokine signaling
1 in effector cells (CD4/8 + T, NK, and NKT cells) (Görgün et al.,
2010; Bhutani et al., 2019). Taken together, NK cells are the key
effector cells of IMiDs. In patients with NDMM treated with
lenalidomide and dexamethasone, those with low NK cell/Treg
ratios had a significantly shorter PFS (19.8 months versus
57.3 months) than those with high ratios (Kim et al., 2022). The
mature NK cell population of patients receiving maintenance
therapy with IMiDs after transplantation exhibited a significant
imbalance between activating and inhibiting receptors
(NKG2D+Tim3+KIR2DS4–KIR3DL1–) (Bhutani et al., 2019).
Furthermore, KIR2DS4+ NK cells were persistently elevated in
patients with minimal residual disease (MRD) positive (Bhutani

et al., 2019). Therefore, NK cells are a reasonable predictor of PFS
during IMiD treatment. However, lenalidomide does not exert an
effect on NK cells after microenvironmental immunosuppression or
heavy pretreatment. According to a clinical trial (NCT01191060),
chemotherapy or transplantation typically depletes mature NK cells,
biasing NK cell lines toward an immature state. Longitudinal
immunoassays were performed 1 month after completing
lenalidomide monotherapy maintenance. No changes in NK cell
counts were observed, and maturation status was independent of
lenalidomide maintenance; furthermore, no improvement in
depleted ADCC was noted (Besson et al., 2018). Next-generation
immunomodulators are currently in the clinical trial phase. In MM
settings, novel cereblon E3 ligase modulators (CELMoDs) in
development include iberdomide (IBER) and mezigdomide (CC-
92480). IBER increases the number of NK cells (NCT02773030)
(Amatangelo et al., 2019). Mezigdomide activates NK cells and can
induce proliferative NK cell populations even at concentrations 100-
fold lower than pomalidomide. This immune activation capacity is
not antagonized when combined with bortezomib (Bjorklund et al.,
2021). A promising induction/maintenance therapy could be the
exploration of more potent NK cell activation pathways to assist
CELMoDs to coactivate the innate immunity of patients.

3.3 Basis of daratumum (Dara) efficacy:
Functional NK cells

Dara is an anti-CD38 mAb. It exerts antimyeloma activity via
antibody-dependent cell phagocytosis, ADCC, complement-dependent
cytotoxicity, and immunomodulatory effects. The median time from
DARA treatment to DARA-refractory recurrence (T0) in patients with
NDMM was 50.1 months. The subsequent median OS (mOS) time
from T0 was 8.6 months, 9.3 months for patients who received at least
one follow-up treatment, and only 1.3 months for those who did not
receive further treatment (Gandhi et al., 2019). This clearly indicates
that disease progression was accelerated after Dara resistance and that
patients eventually developed resistance-related disease relapse and
died of MM.

NK cells, the major effector cells of mAbs, exhibit
CD38 expression, second only to myeloma cells. After Dara
monotherapy (SIRIUS and GEN501), CD38+ NK cells were
decreased in a rapid, reversible, dose-dependent manner,
dominated by the depletion of CD56bright NK cells (Casneuf et al.,
2021). However, NK cell populations recovered to approximately
50% within 3 months after the end of treatment (Casneuf et al.,
2017). The remaining NK cells exhibited increased expression of
CD69, CD127, CD25, CD27, and CD137 and decreased expression
of CD45RA and GZM-B (Adams et al., 2019). Increased
CD27 expression represents a higher cytolytic potential (Bullock,
2017). Decreased CD45RA expression is associated with immature
CD56bright NK cells (Krzywinska et al., 2016). Moreover, increased
CD69, CD25, and CD137 expression is associated with an activated
NK cell stage (Sabry et al., 2019). These findings suggest that
persistent NK cells are in an activated state with cytotoxic
potential but remain immature. Wang et al. have reported that
Dara induced CD38+ NK cell fratricide via the ADCC effects of
NK–NK cells, which is the main mechanism underlying NK cell
reduction during treatment (Figure 3). CD38−/low NK cells are
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selected via this mechanism. Compared to CD38+ NK cells,
CD38-/low NK cells had increased mitochondrial respiratory
capacity, glycolytic rate, and glycolytic reserve, as well as
compensatory transcriptomic features favoring OXPHOS
metabolism and cholesterol synthesis (Naeimi Kararoudi et al.,
2020; Woan et al., 2021). Increased levels of cytotoxic genes, such
as IFNG and GzmB, were seen in iPSC-derived CD38 knockout
(CD38KO) NK cells (Nagai et al., 2019). The aforementioned
alterations suggest an increase in the metabolic activity of
CD38-/low NK cells, consistent with a rise in cytotoxicity. In
addition, CD38-/low NK cells resisted cell death induced by
oxidative stress by increasing cysteine-glutathione disulfide
synthesis, resulting in increased in vivo persistence (Cichocki
et al., 2019; Woan et al., 2021).

Adaptive NK cells (KLRC2hi FCrγ−) with low CD38 expression
in patients with NDMM are effective in killing tumor cells in the

presence of Dara (Cho et al., 2021). Patients with HRMM have a
significantly lower proportion of adaptive NK cells, possibly
explaining the poor response of this subpopulation to Dara (Cho
et al., 2021). Therefore, CD38−/low NK cells may be an outcome
indicator for predicting Dara efficacy. Relatively recent preclinical
studies have confirmed this hypothesis. Combination therapy of
amplified NK cells with Dara was applied toMM tumor models. The
anti-myeloma effect of untreated amplified NK cells was limited
compared with that of CD38−/low NK cells. Such cells may still be
eliminated by Dara-mediated cellular self-mutilation (Table 1).
Furthermore, CD38+ NK cells are rapidly eliminated but still
relevant. Dara activates CD38+ NK cells, thereby inducing
monocytes to increase the expression of T cell adaptor molecules
(CD86/80) and differentiate into M1 macrophages with antitumor
activity. This may represent the initial activation of the immune
system by mAbs (Viola et al., 2021). The selection of CD38−/low NK

TABLE 1 A summary of typical preclinical studies regarding the combination of Dara and expanded NK cells for MM.

NK cells
source

NK cells
modification

Cells Animals Treatment Result cells animals Ref.

PB–NK cells of
healthy donors

Experimental: Knock out CD38
(CD38KO NK cells) Control:
n-NK cells

MM.1S; H929;
OPM-2; KMS-11,
U266; DARA-
resistant primary
MM cells

NSG mice Experimental: Dara +
CD38KO NK cells Control:
Dara + n-NK cells

Higher
ADCC(II)

No NK cells
consumption

Naeimi
Kararoudi
et al. (2020)

Human iPSC Experimental: express CD16a
and IL-15/IL-15R (high affinity
and non-cleavable; Knock out
CD38 (iADAPT NK cells)
Control: n-NK cells

MM.1R NSG mice Experimental: Dara +
iADAPT NK cells

Higher
Specific
lysis (II)

Tumor load
decreased by 89%

Woan et al.
(2021)

Control: Cell: Dara + n-NK
cells

Mice: Dara

PBMC of
patients

No U266; RPMI8226 NSG mice Experimental: Dara + n-NK
cells

Higher
ADCC (I)

Experimental: All
died on day 91

Thangaraj
et al. (2021)

Control: Dara Control: All died
on day 70

PBMC of
patients treated
with Dara

CD38-/low NK cells MM.1S NSG mice Experimental:
Dara+CD38-/low NK cells

Higher
Specific
lysis (III)

Experimental:
Survival rate:60%
(day 60)

Wang et al.
(2018)

Control: Dara Control: All died
on day 50

KHYG1
(aggressive NK
cell leukemia
patient)

CD38-/lowCD16F158V NK cells JJN3; H929 — Experimental: Dara+
CD38-/lowCD16F158VNK cells

Higher IFN-γ
and TNF-α
release (H929:
II JJN3: I)

— Sarkar et al.
(2020)

Control: Dara+ CD38-/low

NK cells

CMV-
seropositive
donors

FcεRIγ-negative NK cells
(g-NK cells)

KMS11; KMS34;
AM01; MM.1S;
KMS18; LP1

NSG mice Experimental: Dara + g-NK
cells

Higher
ADCC (II)

Experimental:
Survival rate:100%
(day 60)

Bigley et al.
(2021)

Control: Dara + n-NK cells Control: All died
on day 57

PBMC of
healthy donors

No RPMI8226; U266 SCID Experimental: Dara + n-NK
cells

Higher
Specific
lysis (I)

Tumor volume
decreased:
Experimental:
6.6 times

Motais et al.
(2021)

Control: n-NK cells Control:43 times

Abbreviations: Dara: daratumumab; NK, cells: natural killer cells; PB: peripheral blood; NSG, mice: NOD. Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice; n-NK, cells: normal NK, cells; BLI: bioluminescent

imaging; ADCC: antibody-dependent cellular cytotoxicity; iPSC: induced pluripotent stem cell; PBMC: peripheral blood mononuclear cells; CMV: cytomegalovirus; I: Increase but less than

1 times (compared to the control group); II: More than 1 times (compared to the control group); III: More than 2 times (compared to the control group); SCID: severe combined

immunodeficient mice.
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cells, potential immunomodulatory activity, and multiple
mechanisms of killing myeloma cells explain why the direct effect
of Dara treatment is not associated with a decrease in NK cell
numbers in the Casneuf et al. study (Casneuf et al., 2017). However,
multiple lines of attack may result in immune system exhaustion,
and the recovery of depleted NK cells becomes challenging. This
severely affects the efficacy of subsequent mAbs, results in
treatment-related adverse effects and drug tolerance. Nahi et al.
have reported that 39% of patients with progressive MM developed
viral reactivation and infection-related complications during the
period of decreased NK cell counts after Dara treatment (Nahi et al.,
2019). In addition, the remaining myeloma cells during Dara
treatment have low CD38 expression. They are not only not
easily detectable but also not eliminated by mAbs and are a
potential threat to disease relapse. Even when CD38 expression
levels are restored, drug-resistant patients do not respond to DARA
retreatment due to NK cell exhaustion (Nijhof et al., 2015). Recent
studies have demonstrated in more detail that both primary
(inadequate response to monotherapy) and acquired (disease
progression after prior response) resistance to Dara is associated
with NK cell dysfunction, as evidenced by reduced expression of
CD16 and granzyme B, and increased expression of TIM-3 and
HLA-DR (Verkleij et al., 2023). NK cells from healthy donors
partially reversed drug resistance. Gene-edited NK cells with
CD3−/low CD16F158V and CD38KO-NK cells can target and
eliminate CD38−/low myeloma cells (Nagai et al., 2019; Sarkar
et al., 2020). This may be because NK cells contain another set of
germline-encoded receptor recognition mechanisms. Therefore,
focusing on NK cells may prolong the timeline of patient
resistance to mAbs and provide effective therapeutic approaches
after resistance.

3.4 NK cells are themain effector cell type of
elotuzumab

The Food and Drug Administration (FDA) has approved
elotuzumab in combination with lenalidomide and
dexamethasone for the treatment of relapsed and refractory MM
(RRMM) after 1–3 lines of treatment. SLAMF7-mediated myeloma
killing depends on NK cell-mediated ADCC (Hsi et al., 2008).
Conversely, SLAMF7 can activate NK cells directly via the EAT-2
signal pathway (Cruz-Munoz et al., 2009; Chen and Dong, 2019). In
in vitro preclinical studies, the survival rate of NK cells co-cultured
with elotuzumab was greater than 95% (Pazina et al., 2017). This was
considerably different from the effect of Dara. Moreover, preclinical
studies have reported that elotuzumab activates NK cells by directly
binding to SLAMF7. SLAMF7-expressing NK cells do not die of
fratricide. Instead, a unique activation pathway promotes
SLAMF7–SLAMF7 interaction between NK and myeloma cells
(Malaer and Mathew, 2017) (Figure 3). Compared with Dara,
elotuzumab is more dependent on well-functioning NK cells.
Because ADCC and NK cell activation are its primary
antimyeloma mechanisms. When exploring the optimal sequence
of the combination of the two mAbs, researchers observed that
patients who first received Dara had a significantly lower response to
elotuzumab compared with controls owing to the high depletion and
slow recovery of NK cells (Hoylman et al., 2020). However, patients

with RRMMwho were treated with the combination of elotuzumab,
carfilzomib, lenalidomide, and dexamethasone did not have
activated NK cells. The highly immunosuppressive
microenvironment of these patients may make NK cells
hyporeactive and less prone to activation (Foureau et al., 2021).
In such patients, no objective response was observed with
elotuzumab monotherapy. Nevertheless, other drug combinations,
such as PIs to sensitize myeloma cells or IMiDs to activate NK cell
function, were effective in improving this nonresponsive state
(Campbell et al., 2018). Preclinical research has partially
explained the synergistic antimyeloma effect of elotuzumab and
lenalidomide. According to this study, cross-talk between NK cells,
monocytes, and myeloma cells increased adhesion between
myeloma cells and NK cells by upregulating the adhesion
molecule CD54 and stabilised the immune synapse (Richardson
et al., 2023). During combination therapy with elotuzumab/IMiDs,
the effective ratio of NK cells to myeloma cells was associated with a
longer PFS and was a more accurate predictor of efficacy than
cytogenetic HR status (Danhof et al., 2019). Elotuzumab/
lenalidomide/amplified NK cells exhibited a very good partial
response (VGPR) rate of 97% and an MRD-negative rate of 75%
in patients who relapsed after transplantation (NCT01729091).
Clinical trials have also validated the efficacy of combining
amplified NK cells with elotuzumab in patients who did not
achieve MRD negativity after transplantation, however, the
results remain unreported (UMIN000033128). Elotuzumab can
activate innate immunity. Therefore, exploring effective NK cell
activation in vivomay restore the single-agent activity of elotuzumab
and expand clinical use. Furthermore, exogenous NK cell infusion
can help patients with RRMM maintain a good effector–target cell
ratio and ensure the therapeutic efficacy of mAbs.

3.5 Recovery of NK cells after auto-HSCT is
closely associated with efficacy
maintenance

For patients who can undergo transplantation, auto-HSCT
remains the first-line treatment option. However, recurrence and
drug resistance after transplantation remain unavoidable.
Furthermore, normal humoral and cellular immunity is restored
after >1 year of transplantation. However, rapidly recovering NK
cells can exert immune surveillance during this window. Therefore,
several studies have comprehensively examined the association
among NK cell counts, activation, specific immune
reconstitution, and disease control after transplantation.

The higher the NK cell count, the longer the PFS, and it is also an
independent predictor ofMRDnegativity after HSCT (Keruakous et al.,
2022). After 2–3 months of HSCT, patients with normal NK cell counts
have a 7.5-fold higher MRD-negative rate than those with low cell
counts (Keruakous et al., 2022). Further, the relative balance of NK cell
inhibitory or activating receptors may be an important factor for
determining MRD status. Six years after auto-HSCT, researchers
observed redistribution of NK cell inhibitory and activating
receptors in patients with persistent CR, including decreased
NKp46 and increased NKG2A and KIR2DL1 (Arteche-López et al.,
2017). MRD-positive patients had fewer circulating NK cells following
transplantation compared to MRD-negative patients. Circulating NK

Frontiers in Cell and Developmental Biology frontiersin.org08

Zhang et al. 10.3389/fcell.2024.1359084

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1359084


cells retained activation capacity, with upregulation of KIR2DS4 and
downregulation of NKG2A (Bhutani et al., 2019). In a small clinical
study (NCT02519114), whether stem cell transplantation with KIR
ligand-mismatched NK cells can decrease the risk of myeloma
recurrence was investigated. It was observed that patients relapsed
within 90 days. However, post-transplantation cyclophosphamide
treatment rapidly removed early mature graft-derived NK cells;
therefore, the late reconstitution of functionally mature NK cells is
responsible for the lack of response (Van Elssen et al., 2021).

During leukocyte recovery after transplantation, a distinctive
pattern of immune reconstitution characterized by a markable
decrease of CD56dim NK cell and a marked expansion of CD56bright

NK cells was observed (Jacobs et al., 2015; Orrantia et al., 2021). The
increased presence of CD56bright NK cells was accompanied by elevated
GZMB levels and upregulation of KIR2DL2/3/S2 and KIR3DL1 (Jacobs
et al., 2015). In general, CD56bright cells are immature NK cells that do
not express CD57. However, during leukocyte recovery, the
CD57+CD56bright subset was expanded; furthermore, an immature
NKG2A+CD57− cell subpopulation was dominant in CD56dim NK
cells (Jacobs et al., 2015; Orrantia et al., 2021). NK cells undergo
rapid division during leukocyte recovery. Genes related to biological
processes such as cell cycle, DNA replication, and energy metabolism,
including glycolysis and tricarboxylic acid cycle, were significantly
enriched and returned to normal transcript levels after 1 month
(Orrantia et al., 2022). Furthermore, during this period, decidual-like
NK cells were expanded, characterized by CD9 expression. Compared
with CD9− NK cells, they had higher perforin and GZMB levels.
However, the significance of the expansion of this subpopulation
remains unverified (Orrantia et al., 2022). CD56low CD16low NK cells
may represent an intermediate stage of differentiation and returns to
peak at 2 weeks after transplantation, which is approximately the
leukocyte recovery period (Vulpis et al., 2018). Taken together, the
above changes suggest that NK cells recovered early after
transplantation originate from immature cell populations rather than
activatedmature populations. However, during immune reconstitution,
the cytotoxic potential and proliferation rate of these cells increase; this
change may be owing to the reconstituted cytokine environment
(Orrantia et al., 2021). After transplantation, adaptive NK cells are
characterized by NKG2C−FCϵRγ− (Orrantia et al., 2021). Patients with
low NKG2Chi NKG2Alow adaptive NK cell counts had more than two-
fold higher recurrence rates than those with high counts (Merino et al.,
2021). CD57+ NK cells tend to under-express the chemokine receptor
CXCR4, affecting the homing of NK cells to the tumor primary site. At
30 and 100 days after auto-HSCT, patients who have a lower frequency
of NKG2A−CD57+ NK cells have better PFS than those with a higher
frequency. In summary, NK cells can identify and target residual
myeloma cells during the critical window (first 3 months) of
assessing MRD status. Combination therapies that activate NK cells
before transplantation or combining NK cell infusions after
transplantation can help restore immune surveillance and maintain
a deeper remission state.

3.6 NK cells serve dual purposes as helper
and effector cells in CAR therapy

CAR is a recombinant antigen receptor that facilitates antigen
binding and effector cell activation. NK cells help maintain CAR-T

cell function, as well as act as effector cells along with T cells. In
March 2021, the FDA approved idecabtagene vicleucel (bb2121,
targeting BCMA) for treating RRMM in adult patients after more
than four treatment lines, including PIs, IMiDs, and anti-CD38
mAbs (Sharma et al., 2022). The favorable response rate of CAR-T
cells in RRMM has been summed up in several reviews (Holstein
et al., 2023; Parikh and Lonial, 2023; Zhang et al., 2023). However,
the development of a sustained CAR-T cell response is still
challenging, important potential processes include antigen loss,
the generation of anti-CAR antibodies, and CAR-T cell
exhaustion. Studies have indicated that 6%–8% of patients with
MM undergoing BCMA CAR-T cell therapy experience antigen loss
(NCT02215967; NCT02215967) (Ali et al., 2016; Brudno et al.,
2018). These patients have a deletion in the BMCA gene and do
not respond well to treatment (Da Vià et al., 2021; Samur et al.,
2021). High levels of anti-CAR antibodies were produced in 7 out of
the 17 RRMM patients treated with the bi-epitopic BCMA CAR-T
(Cilta-cel). Six of them experienced relapses or progression within
6 months after infusion (Xu et al., 2019). Furthermore, a higher
CD4:CD8 ratio and an increased frequency of
CD45RO−CD27+CD8+ T cells were linked to patient responses to
CAR-T cells, indicating that T-cell exhaustion is still a significant
factor in efficacy (Garfall et al., 2019). Bachiller et al. combined
CAR-T cell therapy with a low-dose infusion of expanded NK cells
and revealed that NK cells promote early activation of CAR-T cells,
enhance migration to tumor cells, and decrease the expression of the
depletion markers PD-1, TIM3, and LAG-3 in CAR+ and CAR-T
cells (Bachiller et al., 2021). T cell senescence affects the long-term
persistence of CAR-T cells (Bluhm et al., 2018). Nevertheless,
clinical trials of immune checkpoint inhibitors have been
terminated owing to high toxicity (Castella et al., 2018).
Therefore, NK cell infusion may be a promising strategy to
improve the targeting and persistence of CAR-T cell.

Compared with CAR-T cells, CAR-NK cells are significantly less
toxic and costly and do not present with graft-versus-host disease.
They can recognize tumor cells via multiple mechanisms (natural
receptors and CARs) to decrease off-target effects. Furthermore, in
in vitro preclinical studies, the antitumor activity of CAR-NK cells
was noted to be consistently higher than that of parental cells
(Maroto-Martín et al., 2019). Compared with NKG2D CAR-T
cells, NKG2D CAR-NK cells eliminated myeloma cells without
targeting healthy cells in a mouse model (Leivas et al., 2018;
Leivas et al., 2021). CD19 CAR-NK cells can target CD138−/
CD19+ MM cells exhibiting some stem cell properties in in vitro
preclinical studies (Zhao et al., 2018). On the other hand,
CD38 CAR-NK cells efficiently lyse MM cells refractory to Dara
without targeting other nonhematopoietic tissues expressing
CD38 in vitro. Moreover, lysis efficiency is nonlinearly correlated
with CD38 expression (Stikvoort et al., 2021). This nonlinear
correlation may be a separate therapeutic benefit from NK cells.
CXCR4–BCMA (dual targeting) -NK cells increase migration to the
BM via the CXCR4–CXCL12/SDF-1α axis in a mouse model (Ng
et al., 2022). Genetic engineering techniques can be employed for
constructing CAR-NK cells. In in vivo preclinical studies, NK cells
derived from induced pluripotent stem cells were genetically edited
to exhibit the following characteristics: (a) expression of
recombinant IL-15/IL-15 receptor signaling complexes; (b)
expression of high-affinity, non-cleavable CD16; and (c)
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knockdown of CD38. Subsequently, these cells were transduced to
the target CARs of BCMA (FT576) (Goodridge et al., 2020) and
GPRC5D (FT555) (Reiser et al., 2022). These engineered cells do not
require cytokine support during the expansion phase and provide
continuous control of tumor growth when used alone; when
combined with Dara, they clear myeloma cells. Preclinical studies
on CAR-NK cells against other targets such as CD138 (Wei et al.,
2018), and SLAMF7 are currently ongoing (Wang et al., 2020).

At present, three CAR-NK cell trials (NCT05008536,
NCT03940833, and NCT05182073) are registered at
ClinicalTrials.gov. In all these trials, BCMA was the target. These
trials, which are currently in Phase I/II, are focusing on BCMA. The
safety and initial efficacy of the iPSC-derived BCMA-CAR-NK cell
phase I trial (NCT05182073) have been reported (Huang et al.,
2023). The results of the remaining clinical trials are awaited.
Compared with CAR-T cell-related clinical trials
(149 enrollments and 8 completions), this approach is still in its
infancy. Common challenges with expanded NK cell infusion
remain, including low CAR transduction efficiency, poor in vivo
persistence, and the need for multiple doses to ensure efficacy.
Previous studies have reported that the BM microenvironment of
patients with RRMM inhibits NK cell function. Therefore, we
cannot ignore the possibility that CAR-NK cell activity is
impaired at the tumor primary site. The use of nanobody-based
CARs can be a promising approach for transducing highly soluble
and stable CAR-NK cells (Hambach et al., 2020). This can be
overcome in the future via effective NK cell activation or using
advanced genetic engineering techniques that encode genes favoring
sustained expansion.

3.7 BsAbs or trispecific antibodies targeting
NK cells

BsAbs and trispecific antibodies simultaneously target effector cells
(T/NK cells) and tumor cells to generate immune synapses, resulting in
effector cell activation and tumor cell destruction. At present, 28 related
clinical trials have been registered, and one trial has been completed
(NCT00938626). Furthermore, there are ongoing preclinical
investigations focused on the activation of NK cells. The novel
NKG2D ligand–antibody fusion construct (ULBP2-BB4) improves
specific cell lysis in in vivo and in vitro studies (von Strandmann
et al., 2006). AFM26 targets BCMA and CD16A and induces effective
lysis of primary myeloma cells in vitro, independent of CD16A
polymorphism and not limited by the low copy number of BCMA
(Ross et al., 2018). CS1-NKG2D BsAb activates the
NKG2D–DAP10 complex on NK cells, thereby activating the
phosphorylation of AKT to induce IFN-γ production and specific
lysis of myeloma cells and significantly prolonging survival in mice
(Chan et al., 2018). Moreover, CTX-8573/4,419 targets BCMA and
NKp30 and promotes the lysis ofNK againstmyeloma cells and exhibits
potent antitumor efficacy in vitro and in vivo, with a broad therapeutic
window (Draghi et al., 2019; Watkins-Yoon et al., 2019). 2A9-MICA
efficiently recruited NK cells to specifically target tumor tissue and
induced IFN-γ and tumor necrosis factor-α release inmice (Wang et al.,
2020). NKG2D-2B4 BsAb promotes IFN-γ production to induce direct
cytotoxicity and may be used in clinical settings to assess the functional
activity of NK cells (Song et al., 2021). These BsAbs are the first to

combine BCMA-targeted therapy with the NKG2D–NKG2DL axis.
Nevertheless, there are no ongoing relevant clinical studies.

3.8 Adjuvant NK cells are essential for the
functioning of DC vaccines

DC vaccine-based immunotherapy is in the clinical research stage.
In total, 14 related clinical trials have been registered, 9 of which have
been completed (Clinical Trials. gov). However, the clinical efficacy of
these trials is limited (Verheye et al., 2022). Preclinical studies have
investigated the role of NK cells in DC activation. CD83+CCR7+CD56−

NK cells can activate DCs as immunomodulatory helper cells (Mailliard
et al., 2005). Furthermore, NK cells induce the maturation of Th1-
polarized DCs, provide antigenic substances, and maintain cytotoxic
activity against immature DCs. Reciprocally, DCs can facilitate cytokine
production and the proliferation and cytotoxicity of NK cells (Van
Elssen et al., 2014). In addition, the cytotoxic action of NK cells on
immature DCs can prevent the interaction between immature DCs and
T cells, ensuring the activation of adaptive immune responses. NK cell
heterogeneity in different MM stages may lead to differences in DC
vaccine efficacy. Therefore, drugs that activate NK cells, such as IMiDs,
can improve the antitumor immune activity of vaccines, as
demonstrated by Nguyen-Pham. The group treated mouse models
with lenalidomide and DC vaccines, and observed that the proportion
of activated NK cells was significantly higher, as was the tumor-
suppressing effect (Nguyen-Pham et al., 2015). Therefore, treatment
with DC vaccines and lenalidomide may produce a synergistic NK cell
activation signal that positively correlates with tumor control.

3.9 HDACis bidirectionally regulate NK
cell activity

The FDA has approved the use of panobinostat, an oral HDACi, in
combination with bortezomib and dexamethasone for patients who
have received more than two treatments, including bortezomib and
IMiDs. In in vitro studies, HDACi can hamper the growth of
lenalidomide-resistant MM cell lines by upregulating NKG2D
ligands to enhance the ADCC effect (Hirano et al., 2021). Valproic
acid-treated myeloma cells exhibit increased sensitivity to NK cell lysis
owing to the upregulation of NKG2D ligands, which is caused by a
more active ERK signaling pathway (Wu et al., 2012). However,
HDACis significantly inhibit immune monitoring of NK cells by
inhibiting activating receptors such as NKG2D, NKp44, NKp46, and
CD25 and promoting cell apoptosis (Ogbomo et al., 2007; Rossi et al.,
2012). Fiegler et al. have reported that HDACis downregulated the
expression of NKp30 ligand B7-H6 and decreased the recognition of
NKP30-dependent tumor cells (Fiegler et al., 2013). Therefore, similar
to bortezomib, HDACis enhance NK cell-mediated lysis and negatively
regulate cellular activity.

3.10 Unique NK cell subsets are an efficacy
indicator of selinexor

The FDA has approved selinexor, a selective XPO1 inhibitor, for
RRMM. In Fisher et al. ‘s study, lymphoma cells pretreated with
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selinexor exhibited markedly decreased HLA-E expression and
increased sensitivity to NK cell-mediated killing (Fisher et al.,
2021). Furthermore, they reported that increased numbers of
immature CD56bright subpopulations of patients with colorectal
cancer treated with selinexor are associated with inferior
treatment response (Fisher et al., 2021). Moreover, ABCC4 as a
biomarker for predicting the treatment response and prognosis of
patients withMMwho received selinexor was significantly positively
correlated with NK cell infiltration and TIM3 expression (Hu et al.,
2022). ABCC4 belongs to the ATP binding box transporter family
(Wen et al., 2015) and plays an important role in clinical multidrug
resistance via drug efflux from tumor cells. NK cells may be
associated with the clinical response to selinexor. Identifying the
relevant predictors of selinexor efficacy may involve focusing on NK
cell subsets associated with tumour control.

3.11 Venetoclax combined with NK cell gives
patients with t (11; 14) individual treatment

Members of the B-cell lymphoma (BCL)-2 family regulate the
apoptotic mechanism of myeloma cells in a stringent manner.
Plasma cells of the CCDN1 subset carrying the t (11; 14)
translocation express BCL-2 abundantly and are dependent on
BCL-2 for survival (Lernoux et al., 2021). Venetoclax is the first
FDA-approved BCL-2 inhibitor. In patients with RRMM carrying
the t (11; 14), both monotherapy and combination therapy with
venetoclax showed promising results Venetoclax monotherapy
resulted in an ORR of 40% and a VGPR of 27% (NCT01794520);
in combination with dexamethasone, that resulted in an ORR of 60%
and a VGPR of 30% (NCT01794520) (Parrondo et al., 2022).

After treatment with venetoclax of healthy donor NK cells, NK
cells with high expression of BCL-XL and MCL-1 were not inhibited
in proliferation, exhibited upregulated NKG2D, elevated
degranulation levels, and increased cytolytic toxicity. This
indicates that venetoclax has the potential to act in concert with
NK cells. In MM cell lines carrying the t (11; 14) and with elevated
levels of CD38 and BCL-2, venetoclax combined with Dara
increased ADCC activity (Nakamura et al., 2021). Venetoclax
promotes apoptosis by activating caspase via the mitochondrial
apoptotic pathway (Roca-Portoles et al., 2020). When NK cells
exert ADCC, granzyme entry into cells also activates caspase via
the mitochondrial apoptotic pathway (Prager and Watzl, 2019).
Consequently, mitochondria-driven apoptosis may be the
mechanism by which venetoclax and NK cells exert their
synergistic effects. The combination of venetoclax and NK cells is
expected to induce apoptosis at low concentrations and maintain
efficient tumor cell destruction while overcoming the toxicity of
venetoclax (Narni-Mancinelli and Vivier, 2022; Pan et al., 2022).
Several studies are actively investigating NK cells with increased
venetoclax resistance. For instance, NK cells can be stimulated by
feeder cells expressing mbIL-21 (Yano et al., 2022). Alternately, the
BCL2 G101V mutation was driven out of induced pluripotent stem
cells (iPSCs) using the CRISPR-Cas9 system, and iPSCs with the
BCL2G101V isotype were selected for differentiation into NK cells
(Bernareggi et al., 2022). The edited NK cells were 94 times more
resistant to venetoclax than their wild-type counterparts (Bernareggi
et al., 2022). The combination of safe concentrations of venetoclax

and NK cell is anticipated to result in superior individualized
therapy for patients with t (11; 14) MM in the future.

4 Applications of NK cell therapy

NK cells are important in anticancer immunity. The strategies
for restoring NK cells include endogenous recovery and exogenous
infusion. Endogenous recovery includes cytokine activation and
immune checkpoint suppression.

4.1 Cytokine-based activation

Cytokines are crucial for NK cell proliferation and activation.
Patient-derived NK cells did not kill autologous myeloma cells.
However, after the stimulation of the IL-2/15, they acquired an
activated phenotype, with upregulation of NKp30, CD57, and
TRAIL receptors, and regained lysogenic capacity (Tognarelli
et al., 2018). Furthermore, NKG2A is the only inhibitory receptor
that is upregulated upon cytokine stimulation. NKG2A blockade
along with cytokine stimulation further increases the cytotoxicity of
NK cells (Tognarelli et al., 2018). In in vitro and in vivo experiments,
recombinant human IL-15 stimulation significantly increased the
NKG2D+ NK cell population (Fernandez et al., 2023). In clinical
trials (NCT01572493), IL-15 expanded CD56dim and CD56bright cell
populations, enhanced the cytotoxicity of CD56dim NK cells,
accelerated the maturation of CD56bright NK cells (Dubois et al.,
2017). Moreover, in vitro preclinical studies have demonstrated that
IL-15 alone activates NK cells with a short-lived advantage in tumor
control and that co-activation with IL-12/15/18 helps to generate
NK cells with memory properties that may contribute to a long-
lasting antitumor effect (Bonanni et al., 2019). In this premise,
inhibition of the C-X-C motif chemokine receptor 3 (CXCR3)/
ligand axis increased the infiltration ability of IL-15-activated NK
cells in the BM, inducing a strong and long-lasting antitumor effect
in a mouse model (Bonanni et al., 2019). NKTR-255, an IL-15
receptor agonist that shifts the phenotypic balance of NK cells
towards the activated phenotype, inhibited MM cells in vitro and
in vivowhen combined with Dara (Fernandez et al., 2023). Presently,
IL-15 is widely used for NK cell activation (Table 2). A key limitation
of NK cell immunotherapy is the inability of activated/expanded NK
cells to enter the tumor site. Different stimulation regimens may
differentially modulate the antitumor function of NK cells by
affecting their tissue-homing properties. Cytokine-mediated
endogenous NK cell activation can support traditional therapies
to improve patient outcomes. Therefore, cytokine pretreatment of
infused NK cells can be a potential strategy for cellular
immunotherapy (Table 2).

4.2 Potential functions of immune
checkpoint inhibitor

The balance between the activating and inhibitory receptors on
the NK cell surface regulates the recognition and killing of target
cells. Therefore, inhibitory receptors targeting NK cells may restore
of immune surveillance in vivo. In MM, combination therapy with
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TABLE 2 Summary of clinical trials on NK cell infusion (Data obtained from ClinicalTrials.gov). Abbreviations: auto-exp-NK cells: Autologous Expanded NK cells; MM: Multiple myeloma; ENK cells: Expanded Natural
Killer; ASCT: Autologous Stem Cell Transplant; BMT: Blood and Marrow Transplant.

NCT
number

Phases Enrollment NK cells Combination Conditions Status Title Results
first
posted

Last
update
posted

NCT01884688 2 3 auto-exp-NK cells \ Asymptomatic
MM

Completed UARK 2013-05 A Study of Autologous
Expanded Natural Killer Cell Therapy for
Asymptomatic Multiple Myeloma

2017.04 2017.04

NCT01313897 2 10 auto-exp-NK cells Bortezomib MM Completed UARK 2010-35, A Study of Expanded Natural
Killer Cell Therapy for Multiple Myeloma

2017.04 2017.05

NCT03003728 2 0 ENK cells Elotuzumab\ASCT\
ALT-803

MM Withdrawn 2015-10: Expanded Natural Killer Cells and
Elotuzumab for High-Risk Myeloma Post-
Autologous Stem Cell Transplant (ASCT)

\ 2020.07

NCT01040026 1\ 2 10 Allogeneic Expanded
Haploidentical NK Cells

\ MM Unknown
status

Expanded Natural Killer (NK) Cells for Multiple
Myeloma Study

\ 2019.11

NCT02955550 1 15 PNK-007 rhIL-2 MM Completed A Safety Study of Human Cord Blood Derived,
Culture-expanded, Natural Killer Cell (PNK-
007) Infusion with or Without Subcutaneous
Recombinant Human Interleukin-2 (rhIL-2)
Following Autologous Stem Cell Transplant for
Multiple Myeloma (MM)

2020.07

NCT02481934 1 6 auto-exp-NK cells Lenalidomide\
Lenalidomide

MM Completed Clinical Trial of Expanded and Activated
Autologous NK Cells to Treat Multiple
Myeloma

2016.12 2016.12

NCT04558853 1 12 auto-exp-NK cells \ MM Active, not
recruiting

Clinical Study of Autologous Natural Killer
Cells in Multiple Myeloma

\ 2021.02

NCT03019666 1 24 Nicotinamide Expanded
Haploidentical or Mismatched
Related Donor NK cells

\ MM Recruiting Ph I Trial of NAM NK Cells and IL-2 for Adult
Pts with MM and NHL

\ 2021.08

NCT04309084 1 29 CYNK-001 \ MM/
Plasmacytoma

Active, not
recruiting

Natural Killer Cell (CYNK-001) Infusions in
Adults with Multiple Myeloma

\ 2022.05

NCT00185757 1 20 NK cells cytokine MM/BMT Unknown
status

Cytokine Induced Killer Cells as Post-
Transplant Immunotherapy Following
Allogeneic Hematopoietic Cell Transplantation

\ 2012.12

NCT00720785 1 35 auto-exp-NK cells Bortezomib MM Completed Natural Killer Cells and Bortezomib to Treat
Cancer

\ 2022.06

NCT04558931 2 60 auto-exp-NK cells Isatuximb MM Recruiting Clinical Trial for Autologus NK Cells Alone or
in Combination with Isatuximab as
Maintenance for Multiple Myeloma

\ 2022.03

NCT05400122 1 12 NK Cells IL-2\ TGF-β receptor I
inhibitor

MM Not yet
recruiting

Natural Killer (NK) Cells in Combination with
Interleukin-2 (IL-2) and Transforming Growth

\ 2022.06
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lenalidomide and anti-KIR mAb 1–7F9 (IPH2101) increased NK
cell-associated tumor clearance (Benson et al., 2011). However,
heterogeneity in KIR expression can hinder mAbs targeting KIRs,
which results in limited therapeutic responses (NCT01248455 and
NCT01217203). NK cell depletion is associated with high levels of
TIM3 in solid tumors. The anti-TIM3 antibody can improve cellular
function (Gallois et al., 2014). The interaction between TIM3 and its
ligand galectin-9 induces NK cell-mediated IFN-γ production,
increasing IDO1 levels in tumor cells to maintain immune escape
(Folgiero et al., 2015). Presently, the efficacy of anti-TIM3 antibodies
remains unclear as relevant studies regarding MM
microenvironments are lacking. NK cells from NDMM or
RRMM present moderate levels of TIGIT (Guillerey et al., 2018).
Whether NK cells with high TIGIT levels promote or inhibit
myeloma growth is controversial. In a preclinical study, the anti-
TIGIT antibody was more effective than the control and anti-PD-
1 antibody in reducing myeloma burden and prolonging mice
survival (Guillerey et al., 2018). However, a previous study has
reported that TIGIT on NK cells promoted cellular function and
may be a tumor protective factor for acute myeloid leukemia (Jia
et al., 2018). TIGIT and DNAM-1 share a common ligand, the
poliovirus receptor (Mekhloufi et al., 2020). DNAM-1 is a crucial
activation receptor for NK cells. High TIGIT levels may
competitively inhibit DNAM-1 activation, leading to the
“anergic” state of NK cells. Unknown is how elevated TIGIT
levels affect NK cell function and the immune microenvironment
in MM. Recent cellular experiments demonstrate that
EZH2 inhibitors augment the antitumor effects of TIGIT
monoclonal antibodies by modulating the TIGIT-CD155 axis
between NK and MM cells (Liu et al., 2023). Reportedly, NK cells
in patients with advanced MM express PD-1, and anti-PD-1 therapy
can increase the targeted lysis of MM cells. However, single-agent
clinical trials (NCT01222286/NCT00999830) have reported poor
efficacy. In RRMM, a combination regimen including anti-PD-
1 antibody and IMiDs was suspended because of its adverse
effects. Recently, Susek et al. reported the discovery of novel NK
cell specific PD1-based chimeric switch receptors (PD1-CSR), in
which transduced NK cells enhance and maintain potent antitumor
activity in the PD-L1+ microenvironment (Susek et al., 2023). A
clinical trial of BCMA–PD1–CAR-T cells (NCT04162119) is
ongoing; however, the efficacy is yet to be determined. LAG3 is
expressed on the surface of activated and mature NK cells and is a
negative regulator of cytokine production (Narayanan et al., 2020;
Chen et al., 2023). Understudied inMM is the inhibition of LAG3 on
the surface of NK cells. Inhibitory receptors may act differently in
different microenvironments. As a result, strategies for the safe and
effective use of immune checkpoint inhibitors in MM remain
unexplored. Lanuza et al. proposed NK cell adoptive transfer as a
novel strategy to overcome the abovementioned inhibitory
pathways. In particular, KIR ligand-mismatched allogeneic NK
cells may remain unaffected by the immunosuppressive effects of
host tumor cells (Fiegler et al., 2013; Lanuza et al., 2019).

4.3 Potential of expanded NK cell infusion

In contrast to the uncertain clinical benefits of cytokine
activation and immune checkpoint inhibition, preclinical andT
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clinical studies have provided promising results for NK cell
adoptive transfer.

In in vitro preclinical studies, cord blood-derived expanded
NK cells effectively lysed primary myeloma cells and could be
used alone, without mAbs, against MM (Reina-Ortiz et al.,
2020). NK cells depleted of the NKG2A-encoding gene
exhibited significant cytotoxicity against all myeloma cell
types (Bexte et al., 2022). KIR ligand-mismatched NK cell
from healthy donors downregulated inhibitory signaling
pathways and increased ADCC (Mahaweni et al., 2018). The
edited KHYG-1 NK cell line from patients with aggressive NK
cell leukemia presented CD16F158V+CD38low characteristics.
Subsequent, these cells can eliminate Dara-refractory
myeloma cells in vitro (Sarkar et al., 2020). Amplified
CD38−/low NK cells derived from Dara-treated patients
proliferated efficiently in vitro, exhibited increased lytic
toxicity against MM.1S cells, and significantly improved the
survival of mice (Wang et al., 2018). Expanded FcεRIγ− NK
cells from cytomegalovirus-seropositive donors effectively
targeted various MM cell lines and sustained tumor growth
control, with 100% survival in mice up to the observed
endpoint (Bigley et al., 2021).

PNK-007 is a CD56+/CD3− NK cell product expanded from
placental CD34+ cells. In a phase II clinical trial (NCT02955550), the
MRD-negative rate increased from 26% to 66% after PNK-007
infusion (Holstein et al., 2019). Another study (NCT01729091)
enrolled 30 patients with HRMM who received expanded
autologous NK cell infusion (cord blood-derived) after auto-
HSCT. The distribution of VGPR and MRD-negative rates
among these patients increased by 24% and 35%, respectively.
(Srour et al., 2022). Six patients were the infused with expanded
autologous NK (NKAE) cells after auto-HSCT (NCT04558853).
New subsets (NKG2Dhi, 2B4hi, TIM3hi, TIGIThi, and CD38low\−)
appeared within 4 h after infusion. Among the three patients
with a VGPR before infusion, one maintained the original state,
one relapsed in the fifth month, and one achieved CR (Nahi et al.,
2022). Five patients with RRMM who underwent 2–7 lines of
therapy received multiple infusions of NKAE cells
(NCT02481934). Four patients showed disease stabilization, two
patients showed a 50% decrease in BM infiltration, and one patient
experienced a long-term response (Leivas et al., 2016). Patients who
achieve an MRD-negative status after transplantation or
chemotherapy have the most favorable effector–target cell ratios
compared with those with higher tumor loads. To date, most clinical
studies on expanded NK cell infusion for MM are still in phase I and
II (Table 2), and effective expansion andmaintenance in vivo remain
unresolved. In clinical trials, cytokine activation therapy was
administered before infusion (Table 2) to maintain cell expansion
and function. The combination of expanded NK cell infusion and
endogenous activation remains a promising therapeutic strategy for
the future.

Individual genetic disparities among patients have been shown
to be associated with NK cell sensitivity. PFS is influenced by
personalized gene composition associated with the threshold of
NK cell function, as demonstrated in clinical studies
(NCT01749969). KIR3DL2+HLA−A3/11+ and the high-affinity
FCGR3A-158V allele promoted ADCC, whereas
KIR2DL1+HLA−C2C2+ inhibited ADCC (Sun et al., 2021).

Recent CRISPR-based single-cell analyses revealed that the
interaction between NK and myeloma cells induced distinct
transcriptional activation states. Myeloma-intrinsic genes that
control NK cell sensitivity and resistance have been identified.
Myeloma cells with NLRC5 mutations and overexpression of
selected genes including TNFRSF10D, NCR3LG1, ULBP1, PVR,
and PCGF5 were sensitive to NK cells. Myeloma cells with
TRAF3 and WHSC1 mutations and overexpression of
TNFRSF10D, NCR3LG1, ULBP1, PVR, and PCGF5 were
tolerance to NK cells. To create optimal NK cell-based therapies
for myeloma patients, it is necessary to take individual genetic
differences into account (Dufva et al., 2022).

5 Conclusion

In MM, post-treatment drug resistance is a pressing challenge
to overcome. NK cells play a key role in immunosurveillance and
targeted killing of tumor cells and are potential effector cells for
existing therapies. Comprehensive knowledge of NK cell
responses that facilitate disease control during the treatment,
including PIs, IMiDs, and mAbs, is warranted. Optimal
utilization of these responses may help overcome treatment-
related drug resistance. NK cells are present throughout MM
development. NK cell-based combination therapy may benefit
patients with HR or RRMM and holds promise for achieving
long-term MRD negativity. Additionally, the existing staging
system can no longer meet the requirements of risk
prediction; therefore, the establishment of a treatment
response-based dynamic and accurate risk prediction model is
an important prerequisite for developing individualized
treatment in the future. Because the flexibility of NK cells
varies with different treatments, they are an important
component of this model that may be developed in the future.
However, studies reporting the association between NK cells and
clinical staging and risk stratification are lacking, and additional
studies regarding the same are necessary. At present, how to
effectively promote NK cell recovery is a hot topic of research.
Finally, the development of genetic engineering technologies may
lead to safer and more effective NK cell-related therapeutic
strategies.
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