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Breast cancer metastases exhibit many different genetic alterations, including
copy number amplifications (CNA). CNA are genetic alterations that are
increasingly becoming relevant to breast oncology clinical practice. Here we
identify CNA in metastatic breast tumor samples using publicly available datasets
and characterize their expression and function using a metastatic mouse model
of breast cancer. Our findings demonstrate that our organoid generation can be
implemented to study clinically relevant features that reflect the genetic
heterogeneity of individual tumors.
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1 Introduction

While breast cancer is the most prevalent cancer among women, most patients are
diagnosed with early-stage breast cancer and cured by multi-modality treatment (Siegel
et al., 2022). However, around 10% of patients will develop metastatic breast cancer (MBC),
which is the main driver of breast cancer related deaths (Scully et al., 2012; Esposito et al.,
2021). Although breast cancer survival rates have substantially improved over 20 years, that
is largely attributed to increased screening and improved adjuvant therapies (Nolan et al.,
2023). However, the same improvements in survival have not been seen among patients
with metastatic breast cancer (Hashim et al., 2016). A reason for therapeutic resistance of
MBC is partly due to the relative lack of targetable genetic vulnerabilities that act as intrinsic
mediators of breast cancer cell metastasis. Recent literature suggests that cancer cell
metastasis is defined by copy number alterations and not sufficiently by genetic
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mutations alone (Zack et al., 2013; Martelotto et al., 2017; Siegel
et al., 2018; Priestley et al., 2019). Recent and early literature have
suggested that metastatic events are spurred by only a small number
of cells from genetically heterogeneous primary tumors, and that
only a few genetically predisposed cells are capable of metastasis
(Fidler, 1978; Merino et al., 2019). Both intratumoral and
intertumoral heterogeneity has been cited as the largest roadblock
to the development of individualized therapy (Bedard et al., 2013;
Dagogo-Jack and Shaw, 2018; LeSavage et al., 2022; Xu et al., 2024).
However, the functional value of heterogeneity within tumors has
been hard to model using traditional cell lines and mouse models
(Dai et al., 2017; Pasha and Turner, 2021; Gui and Bivona, 2022).
Patient-derived organoid-based methods provide an ideal and
representative platform to study human tumor heterogeneity
(Drost and Clevers, 2018). They model morphologic and
structural properties of the original tumor and also mirror the
tumor’s epigenetic, phenotypic, and metabolic diversity. Our
group and others have used organoid-based platforms to model
cell-cell signaling and interactions with the tumor
microenvironment (Hwang et al., 2019; Chan and Ewald, 2022;
LeSavage et al., 2022; Hogstrom et al., 2023). Organoids also have
been used to accurately predict therapeutic response, suggesting
their potential role in personalized medicine (Chan and Ginsburg,
2011; Vlachogiannis et al., 2018; Larsen et al., 2021; Guillen et al.,
2022; Wang et al., 2023). These strengths set them apart from
traditional clonal breast cancer cell lines, which do not
specifically capture the genetic diversity in breast cancer and do
not recapitulate individual patient’s tumor microenvironment
(Sharma et al., 2010). Furthermore, patient-derived organoids are
useful models to use for pre-clinical drug screening given that they
can accurately predict clinical outcomes (van de Wetering et al.,
2015). In this study, we show it is technically feasible to evaluate
copy number (CN) heterogeneity of tumors and organoids at
various resolutions, including pooled organoid samples, single
organoids, and invading organoids, using clinically relevant
target genes.

2 Results

2.1 Organoid generation retains clinically
relevant tumor genomic heterogeneity

To identify potential CNA enriched in metastatic breast cancer,
we used the Project GENIE database (Pugh et al., 2022) and
cBioPortal (Cerami et al., 2012). For analysis, genes with copy
number alterations in invasive ductal carcinoma (IDC) patient
samples were selected, as it is the most common histologic class
of breast cancer in humans. Genes were filtered first by copy number
amplification in >10% of metastatic IDC samples, defined as having
distant organ metastasis, unspecified metastasis site, or lymph node
metastasis. While these sites of metastasis have distinct biology, the
purpose of this study aims to provide a framework to study how
genetic heterogeneity at a primary tumor site may be reflected in the
metastatic process. Thus, primary tumor samples were compared
against all other metastatic samples grouped together. From those,
the top 10 differentially amplified genes in metastatic over primary
samples were identified. In order by logarithmic ratio, they include

ADGRA2, RAD21, PAK1, FGF4, NSD3, FGF19, FGF3, CCND1,
FGFR1, and MYC (Figure 1A; Supplementary Table S1).

We then hypothesized that in a primary tumor there may be a
heterogeneous mix of cancer cells highly copy number amplified in
select genes as well as those that are not. In order to study the genetic
heterogeneity of mammary tumors using the genes identified in
Figure 1A, we chose to utilize the PyMT mouse model, due to its
similarity to IDC evolution in humans and high potential for
metastasis [(Lin et al., 2003; Attalla et al., 2021)]. Further, recent
whole genome sequencing of the MMTV-PyMT model
characterized key copy number alterations (Rennhack et al.,
2019). We then identified genes that both were overexpressed in
metastatic samples over primary breast cancer and were also altered
in the MMTV-PyMT mouse model (Rennhack et al., 2019). From
the top 10 differentially expressed genes, we found four genes that fit
these criteria (Rennhack et al., 2019). These genes include ADGRA2,
FGFR1, NSD3, and PAK1.

Next, we generated mammary tumor organoids derived from
MMTV-PyMT mice using differential centrifugation (Chan et al.,
2020; Chan and Ewald, 2022; Cornelius et al., 2022). Using this
approach, organoids are generated by digesting the entire tumor
tissue, and thus could represent its overall genetic heterogeneity. To
demonstrate our organoid generation method captures intratumoral
heterogeneity, we processed mouse mammary tumors and collected
genomic DNA (gDNA) from whole tumor tissue, pooled organoids
generated from tumor tissue, single cell digests of organoids, and
single organoid samples (Figure 1B). Digital droplet PCR (ddPCR)
was then used to identify the copy number of FGFR1, ADGRA2,
NSD3, and PAK1 within each collected sample compared to
reference gene RPP30. Notably, in all but PAK1, tumor tissue
copy number was significantly increased from pooled organoid
samples (Mann-Whitney, p < 0.05) (Figure 1C; Supplementary
Figures S2–S4). A potential reason could be that pooled organoid
samples include only malignant mammary epithelium and exclude
any stroma, muscle, or other cells present in tissue samples (Chan
and Ewald, 2022; Cornelius et al., 2022). Thus, CN reads from tumor
tissue would be closer to a diploid state. Interestingly, cancerous
organoids have an overall copy number deleted state in select genes.
While it was unsurprising that they were not copy number amplified
given they are derived from primary tumor samples, future studies
may examine the significance of a heterogeneous copy number
deleted state. Additionally, no single cell digest copy number was
statistically distinct from the pooled organoid sample from the same
tumor in any tested gene. However, single cell digests lose the
potential for functional testing and risk skewed genetic profiles
through imperfect digestion or straining.

Interestingly, pooled organoid samples differed from a normal
diploid state, suggesting the sample was heterogeneous and included
cells with CN variants reflective of an aneuploid state (i.e., CN 0 or
1 or 3). To identify whether this heterogeneity was consistent at the
organoid level, we isolated gDNA from single organoids and
analyzed the CN of ADGRA2, FGFR1, NSD3, and PAK1. CN of
select genes differed widely among individual organoids (Figure 1D;
Supplementary Figures S2–S4). Additionally, in single organoids,
CN was rarely identified as exactly 2 (normal diploid state),
suggesting: 1) organoids are genetically distinct from each other,
and 2) they also must contain cells with CN alterations in different
proportions. In summary, our single organoid isolation method
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captures both the intra- and inter-organoid genetic heterogeneity in
tumor samples.

2.2 FGFR1 is copy number amplified in both
human metastasis and in vitro model of
metastasis

Next, to determine whether these genes are involved in
metastasis, we generated organoids from MMTV-PyMT mice and
randomly split them into a control group grown in suspension and
an experimental group grown in 3D culture. Growing organoids in
3D culture allows ex vivo assessment of their invasive potential
through collective migration into collagen (Chan et al., 2020; Chan
and Ewald, 2022; Cornelius et al., 2022). Organoids were either kept
in media suspension (Figure 2A) or embedded in 3D collagen I gels
and assessed for invasion (Supplementary Figure 1B). Both the
control and experimental groups were allowed to grow for 48 h.

Then, we digested the ECM in the experimental group and isolated
genomic DNA from both groups. Interestingly, invasive organoids
retain their morphology after removal from collagen gels (Figure 2A;
Supplementary Figure 1C). Of the genes enriched in metastatic sites
from Figure 1A, FGFR1 is the most clinically mature target (Babina
and Turner, 2017). We reasoned if FGFR1 CN is amplified in
metastatic lesions, it could potentially be amplified starting at the
earliest stages of metastasis, invasion out of the primary tumor. To
test whether FGFR1 copy number amplification is associated with
invasion, we determined gene CN of FGFR1 in control and invasive
samples using ddPCR. We found that invasive organoids have
statistically significant CNA compared to control organoids
(Mann-Whitney, p = 0.0022) (Figure 2B). These findings
demonstrate that higher FGFR1 CNA correlates with organoid
invasion, suggesting that FGFR1 is heterogeneously expressed in
the earliest stages of metastasis in addition to the developed
metastases. Although we observed increased CN of FGFR1 in
invasive organoids over non-invasive organoids, the average CN

FIGURE 1
Organoid generation retains clinically relevant tumor genomic heterogeneity. (A) Copy number amplified genes in IDC patients found in distant
organmetastasis, unspecifiedmetastasis site, or lymph nodemetastasis compared to primary breast cancer samples in the GENIE database. Of the genes
(dots) amplified in greater than 10% of primary or metastatic samples, the top 10 statistically significant (blue dots) differentially amplified in metastatic
samples are circled. These include ADGRA2, RAD21, PAK1, FGF4, NSD3, FGF19, FGF3, CCND1, FGFR1, and MYC. (B) Schema of workflow for sample
generation. Large primary mammary tumors are dissected from the fat pad. Tissue segments are excised from 4 distinct regions of the tumor to ensure
adequate sampling. Organoids generated from the tumors were sampled and dissociated and strained to single cells, taken as pooled organoid samples,
or isolated to single organoids. All samples were then used to isolate gDNA and perform ddPCR. (C) FGFR1 copy numbers in tissue, pooled organoids
(Org), and single cell digests (Digest) from two different mice normalized to the housekeeping gene RPP30. Tissue sample copy number alterations are
statistically different than pooled organoid samples (Mann-Whitney, p < 0.05). Each point represents separate batches of organoids generated from
primary tumor (n = 2, r = 2). Each primary tumor was split into 4 samples for separate organoid generation to ensure adequate sampling over the whole
tumor. (D) FGFR1 copy numbers in single organoids from tumors from two different mice. Among each tumor there exist statistically distinct copy
numbers (Kruskall-Wallis, p = 0.0222; p = 0.0032).
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of each condition was below 2. This finding suggests cells with
FGFR1 CN deletion could also be present at the primary tumor site.
Additionally, the average CN of each condition was not an integer
value, indicating heterogeneity of FGFR1 alterations between
organoids in the sample, as a sample of uniform organoids
would have copy number of 0, 1, 2, 3, and so on. While it is
possible that cells with CN deletions are dying in the invasive
condition, it is also possible that FGFR1 copy number amplified
cells are expanding in the invasive condition.

3 Discussion

In this study, we demonstrate proof-of-concept for ddPCR
analysis of tumor organoids, cell suspensions, and single cells.
We determine ten copy number amplifications enriched in
metastatic site tumors over primary breast tumors using Project
GENIE (Pugh et al., 2022). In assessing FGFR1, we found that it is
amplified in invading organoids, suggesting the importance of
FGFR1 in the early stages of metastasis. Lastly, given the
increasing clinical importance of cancer epithelial heterogeneity
within the breast tumor, we demonstrate that these methods of
organoid generation and isolation capture intratumoral genetic
diversity between individual organoids. As far as we know, this is
the first study to analyze the copy number state of individual breast
organoids. Further, one main challenge to using organoids in
preclinical models is genetic drift (Lo et al., 2020). Here we show
that generating and isolating organoids without passaging captures

both intratumoral heterogeneity and reduces the chance of genetic
drift as organoids are used soon after tumor digestion. Given that
functional models are lacking in the literature to test the impact of
tumor heterogeneity on tumor metastasis (Lawson et al., 2018) and
immune interactions (Xu et al., 2022), this model could be useful for
further experimentation. Using ddPCR on our organoid models
could be used to assess tumor genomic heterogeneity and evaluate
therapeutic response and resistance. For example, patient derived
organoids collected at different time points could be used to identify
moments of acquired resistance and inform therapeutic
decision-making.

This work is limited by the number of tumors evaluated and the
number of genes experimentally validated. In addition, only 1 mouse
model was used to assess copy number heterogeneity, which may
differ from other mouse models of breast cancer and also from
human tumors. Future studies should aim to evaluate and validate
CNAs in human organoid samples and additional animal models to
uncover additional mechanisms of metastasis and therapeutic
resistance. Further, single organoids are typically comprised of
50–100 cells, and thus the quantity of gDNA extracted is limited,
restricting the replicate number, positive droplets in ddPCR, and
ultimately statistical power of the analysis. Additionally, several
studies have described genetic drift of organoids in long-term
culture environments (Sachs et al., 2018; LeSavage et al., 2022).
In this study, we assessed organoid CNAs without passaging,
however organoid CNAs could evolve over time through long-
term culture and passaging, as previously described (Sachs et al.,
2018). Future work is needed to refine the appropriate use-case for
each organoid culture method.

Our results also provide a potential method to functionally
validate the role of FGFR1 in metastatic development. The
implications of FGFR1 manipulation should be assessed in both
in vitro tumor organoid models as well as in vivo metastasis models
to test the necessity and sufficiency of FGFR1 in the metastatic
cascade. Of the genes evaluated in this study, therapeutic agents
targeting FGFR1 and FGFR4 are the most clinically mature. As of
5 April 2024, ClinicalTrials.gov lists 105 trials evaluating FGFR
inhibitors for the treatment of various cancers, including breast
cancer (Katoh et al., 2024). Furthermore, alterations in FGFR family
genes in cancer are considered potential biomarkers for therapeutic
response to tyrosine kinase inhibitors (TKIs) (Liu et al., 2020). In the
future, using ddPCR on patient-derived organoids to assess
FGFR1 expression could help predict responsiveness to TKI or
novel FGFR inhibitors. The organoid-based workflow described
in our paper could also be used to validate other targets
identified in our screen. Overall, our work contributes to the
growing need for improved modeling of intratumoral cancer
epithelial cell heterogeneity, which has broad implications on
clinical practice and cancer biology.

4 Materials and methods

4.1 Copy number amplifications in
metastatic over primary breast cancers

We analyzed the GENIE Cohort v13.0-public dataset from
invasive ductal carcinomas (IDC) tumors. We selected all

FIGURE 2
FGFR1 is copy number amplified in both human metastasis and
in vitro model of metastasis. (A) Representative image of a non-
invading, control group organoid in liquid media (top). Representative
image of an invading, experimental group organoid post-
collagenase digestion in liquid media (bottom). Both of these
organoids were initially allowed to grow either in media (control) or
type-1 collagen ECM (experimental) for 48 h. These images are
representative of the conditions assessed in this figure (B). (B)
FGFR1 copy number is amplified in invading organoids vs. control
organoids from PyMT mouse primary mammary tumor samples
(Mann-Whitney, p = 0.0022). Each point represents copy number
measured from duplicate control or invasive organoid samples from
2 PyMT mouse primary mammary tumor organoids. Duplicates were
performed for each sample in ddPCR. Duplicates were not included
for those >20% apart.
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samples for IDC, then stratified based on primary vs. metastatic
sample. We obtained copy-number amplification (CNA)
information from metastatic samples defined as distant
organ metastasis, unspecified metastasis site, or lymph node
metastasis (2,931 samples) and primary breast tumors
(6,254 samples). The alteration frequency was analyzed by
using cBioPortal.

4.2 Animals, tumor, organoid, and
cell samples

11–14-week-old MMTV-PyMT mice with large (>0.5 cm)
palpable mammary tumors were identified. Mice were
sacrificed according to IUCAC guidelines with
CO2 asphyxiation and secondary cervical dislocation. Tumors
were dissected and organoids generated following the protocol
described previously (Cornelius et al., 2022). For Figure 1A,
tumors were dissected into quadrants, and samples taken as
described in schema. Single cells were strained and harvested
after Tryple™ Express (Gibco™; cat: 12605036) digestion
and visual verification of single cell dissociation. Unless
performing an invasion assay, organoids and single cells were
harvested immediately upon generation and not cultured
or passaged. Organoid invasion assay was performed as
described previously (Cornelius et al., 2022). Collagenase
was used to digest 3D collagen I gels to isolate invasive
organoids. Single organoids were isolated from culture using
P20 pipettes set to ~5uL until a single organoid was isolated
into a well and visualized via microscope. If organoid
density was too high for single organoid isolation, ~20uL
was diluted into 500uL PBS in a 12-w plate. Microscope
verification was performed for each single organoid.
Genomic DNA was isolated using Quick-DNA Miniprep kit
(Zymo Research).

4.3 Droplet digital PCR

Primers and probes for ddPCR for reference housekeeping gene
(RPP30) and target genes (ADGRA2, FGFR1, NSD3, PAK1) were
purchased from Bio-Rad Laboratories (Assay IDs:
dMmuCNS822293939, dMmuCNS263266645,
dMmuCNS890129559, dMmuCNS681547140,
dMmuCNS429051281, respectively). RPP30 was chosen as a
reference gene as it is commonly used as a robust reference for
quantification of mammalian genomic DNA (Hindson et al., 2011;
Mancini et al., 2011; Lin et al., 2016; Imaizumi et al., 2019; Oscorbin
et al., 2019; Wen et al., 2021). Genomic DNA (up to 1ng/sample),
ddPCR supermix (no dUTP) (Bio-Rad; cat: 1863024), HaeIII
restriction enzyme and rCutsmart buffer (NEB; cat: R0108S), and
nuclease-free water were mixed with primer/probe for target and
reference gene according to manufacturer recommendations. FAM
labeled probes were used for target genes and a HEX labeled probe
was used for RPP30 to allow both target and reference reads to be
determined in the same sample. Droplets were generated using the
QX200 droplet generator (Bio-Rad) and subsequently thermocycled
according to manufacturer recommendations. Following PCR

amplification, droplet read data was acquired using the
QX200 droplet reader (Bio-Rad) and analyzed with QuantaSoft
software (BioRad). Droplets were plotted based on their
fluorescence amplitude of each probe, high in positive droplets
and low in negative droplets. Thresholds to determine positive
and negative droplets were visually set between the two clusters,
with the user blinded to sample identity. After threshold
determination, target positive droplet concentration, as
determined by QuantaSoft was normalized to RPP30 positive
droplet concentration for that sample. RPP30 copy number was
assumed to be equal to 2, as with previous studies. Copy number for
target gene was thus determined as follows:
Target CopyNumber � Target PositiveDroplet Concentration

RPP30PositiveDroplet Concentrationp2. Technical
duplicates were performed for every sample, and those with copy
number reads greater than 20% apart were excluded from analysis.
Unpaired non-parametric t-tests (Mann-Whitney tests) were
performed for each comparison of copy numbers between
conditions. Kruskall-Wallis tests were performed for each set of
single organoids.
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