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Signal regulatory protein-α (SIRPα, SHPS-1, CD172a) expressed on myeloid cells
transmits inhibitory signals when it engages its counter-receptor CD47 on an
adjacent cell. Elevated CD47 expression on some cancer cells thereby serves as
an innate immune checkpoint that limits phagocytic clearance of tumor cells by
macrophages and antigen presentation to T cells. Antibodies and recombinant
SIRPα constructs that block the CD47-SIRPα interaction on macrophages exhibit
anti-tumor activities inmousemodels and are in ongoing clinical trials for treating
several human cancers. Based on prior evidence that engaging SIRPα can also
alter CD47 signaling in some nonmalignant cells, we compared direct effects of
recombinant SIRPα-Fc and a humanized CD47 antibody that inhibits CD47-SIRPα
interaction (CC-90002) on CD47 signaling in cancer stem cells derived from the
MDA-MB- 231 triple-negative breast carcinoma cell line. Treatment with SIRPα-
Fc significantly increased the formation ofmammospheres by breast cancer stem
cells as compared to CC-90002 treatment or controls. Furthermore, SIRPα-Fc
treatment upregulated mRNA and protein expression of ALDH1 and altered the
expression of genes involved in epithelial/mesenchymal transition pathways that
are associated with a poor prognosis and enhanced metastatic activity. This
indicates that SIRPα-Fc has CD47-mediated agonist activities in breast cancer
stem cells affecting proliferation and metastasis pathways that differ from those
of CC-90002. This SIRPα-induced CD47 signaling in breast carcinoma cells may
limit the efficacy of SIRPα decoy therapeutics intended to stimulate innate
antitumor immune responses.
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1 Introduction

CD47 is a widely expressed integral membrane protein that serves as a counter receptor
for signal regulatory protein-α (SIRPα), which is highly expressed on phagocytes and other
myeloid lineages. Binding to CD47 triggers inhibitory signaling through SIRPα that
prevents macrophage phagocytosis of nonmalignant and cancer cells (Oldenborg et al.,
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2000; Jaiswal et al., 2009; Willingham et al., 2012; Barclay and Van
den Berg, 2014). Many studies have reported increased expression of
CD47 on neoplastic cells and associations of higher tumor
CD47 expression with decreased survival (Willingham et al.,
2012; Barclay and Van den Berg, 2014; Gholiha et al., 2022).
These studies generally focus on the role of CD47 as a passive
counter-receptor for SIRPα, which protects tumor cells from
phagocytic clearance or antigen presentation via SIRPα-
expressing macrophages, neutrophils and dendritic cells (Gardai
et al., 2005; Chao et al., 2010; Willingham et al., 2012; Matlung et al.,
2017). Therapeutic antibodies and a SIRPα-Fc fusion decoy designed
to block the interaction between CD47 and SIRPα have entered
multiple clinical trials and provided anecdotal evidence for efficacy
in some cancers (Advani et al., 2018; Sikic et al., 2019; Ansell et al.,
2021; Querfeld et al., 2021; Son et al., 2022; Zeidan et al., 2022).

CD47 is also a signaling receptor for the secreted matricellular
protein thrombospondin-1 (TSP1) (Kaur et al., 2021). CD47 has
multiple signaling functions in nonmalignant cells (Roberts et al.,
2015). TSP1 binding induces CD47 signaling that regulates growth
factor receptors, cell fate, viability, and responses to cellular stresses
such as radiation and chemotherapy (Kaur et al., 2021). Studies of
the crosstalk between T cells and dendritic cells indicate that SIRPα
binding can also induce CD47 signaling (Latour et al., 2001; Sarfati
et al., 2008). Some of these CD47 signaling functions may be
maintained or co-opted by malignant cancer cells. Thus, in
addition to blocking interactions with phagocytes, binding of
SIRPα-Fc fusion decoys could potentially alter CD47 signaling in
tumor cells.

In addition to blocking the binding of SIRPα and/or TSP1 to
CD47, some CD47 antibodies have agonist activities that alter
CD47 signaling in the absence of its physiological ligands (Kaur
et al., 2020). This could involve allosteric effects of antibody
binding on CD47 signaling, antibody-induced dimerization of
CD47, or perturbation of lateral signaling interactions between
CD47 and other membrane signaling proteins including integrins
and tyrosine kinase receptors. Specific CD47 antibodies directly
induced death of malignant cells (Kikuchi et al., 2005; Puro et al.,
2020), pancreatic cancer stem cells (CSC) (Cioffi et al., 2015), and
sensitized malignant cells to chemotherapy (Lo et al., 2015).
CD47 antibodies induced a caspase-independent cell death
pathway in breast cancer (Manna and Frazier, 2004) and
leukemia cells (Mateo et al., 1999). CD47 antibody treatment
or CD47 knockdown suppressed stem cell character in
hepatocarcinoma, MDA-MB-231 breast carcinoma, and glioma
cells (Lee et al., 2014; Soto-Pantoja et al., 2015; Li et al., 2018; Tan
et al., 2019).

Cancer stem cells and their biomarkers are potent targets to
restrain chemoresistance, metastasis, and tumor relapse by
limiting capacity of self-renewal and differentiation of cancer
cells (Raghav and Mann, 2021). We found that treatment with the
CD47 antibody B6H12 altered gene expression in CD47-
expressing triple-negative MDA-MB-231 breast carcinoma
cells, resulting in suppression of breast cancer stem cell
(bCSC) characteristics (Kaur et al., 2016). B6H12 treatment
decreased expression of Klf4 (Kaur et al., 2016), one of several
stem cell transcription factors that are also regulated by TSP1/
CD47 signaling in nonmalignant cells (Kaur et al., 2013).
B6H12 inhibited asymmetric division of breast cancer stem

cells and induced several differentiation markers. Notably,
B6H12 treatment of bCSCs derived from MDA-MB-231 cells
increased their expression of miR-7 and decreased EGFR mRNA,
which is a target of miR-7. These studies suggest that therapeutic
CD47 antibodies and SIRPα decoys intended to block SIRPα
signaling in innate immune cells could also alter CD47 signaling
in cancer cells in a manner that provides therapeutic benefits. In
the present study, we tested direct effects on MDA-MB-231 cells
of divalent recombinant SIRPα-Fc (SIRPFc) and the humanized
CD47 antibody CC90002, which selectively inhibits the CD47-
SIRPα interaction (Pau Abrisqueta, 2019; Narla et al., 2022;
Zeidan et al., 2022).

2 Materials and methods

2.1 Cell culture

Triple negative MDA-MB-231 breast carcinoma cells were
purchased from ATCC and were routinely cultured in RPMI
1640 (Invitrogen, 11875-093) medium supplemented with 10%
FBS (Gemini Bio Products, GBP-100106), penicillin-streptomycin
(Gibco, catalog number #10378016/15070-063) and L-glutamine
(Catalog number # A2916801 complete growth medium (Thermo
Fisher Scientific, USA) at 37°C and 5% CO2 as reported previously
(Kaur et al., 2016).

2.2 SIRPα-Fc purification

HEK 293 cells were cultured using DMEM complete media
with 10% FBS, Penicillin-Streptomycin, and L-glutamine at 37°

with 5% CO2. SIRPα-Fc plasmid DNA ((Miller et al., 2019) was
transfected in to HEK293 cells using DMEM serum free media
with 0.01%BSA. After 2 days, the media were collected and
concentrated using Millipore Sigma Amicon Ultra-15
Centrifugal Filter Units (Fisher Scientific, USA) with a 10 kDa
cutoff. Concentrated condition media were purified via Protein A
IgG Purification Kit (Thermo Fisher Scientific, USA). Purity of
the SIRPα-Fc was confirmed using gel electrophoresis, and
concentration was determined using the BCA assay (Thermo
Fisher Scientific). For some experiments SIRPα-Fc was purchased
from R&D systems. Monovalent SIRPα-Avi-Biotin (SIRPmv) was
used as reported previously (Miller et al., 2019).

2.3 Flow cytometry analysis

MDA-MB-231 cells were pretreated with the Celgene
antibody for times indicated in the Figure Legends. MDA-MB-
231 Cells were then stained with PE anti-human CD47, APC/
Cy7 anti-human CD24, FITC anti-human CD44 along with
isotype control antibodies; FITC Mouse IgG1, PE Mouse IgG1,
APC/Cy7 IgG2a (Biolegend, USA). MDA-MB-231 cells were
washed three times and resuspended in Hanks’ balanced salt
solution at 1 × 106 cells in 500 μL. Samples then were acquired on
a LSRII (BD Biosciences). Flow cytometry data were analyzed
using FlowJo software (TreeStar).
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2.4 Cancer stem cell markers analysis

bCSC were generated using sorted CD44+/CD24-

(Supplementary Figure S1F) cells from the MD-MB-231 cell
line. The suspension cells were cultured using SmartDish™
with MammoCult™ Human Medium Kit from Stem Cell
Technologies. The suspension cells were treated with CC90002
(1 μg/mL) or SIRPα-Fc (1 μg/mL) for 72 h, and analyzed using
APC/Cy7 anti-human CD24, FITC anti-human CD44 along with
FITC Mouse IgG1, κ isotype Ctrl, κ Isotype Ctrl (FC), APC/
Cy7 IgG2a, κ isotype Control flow antibodies. For mRNA
expression, suspension cells were generated from MDA-MB-
231 by using AggreWell™400 with AggreWell™ EB Formation
Medium from Stem Cell Technologies and treated with CC90002
(1 μg/mL) and SIRPα-Fc (1 μg/mL) for 72 h as described above.

2.5 CD24High and CD24Low subset
enrichment

MDA-MB-231 cells were washed with PBS, dissociated with
Gentle cell dissociation Reagent (STEM Cell Technologies) and
centrifuged for 5 min at 1,200 rpm. The cells were re-suspended
into cell isolation buffer containing phosphate-buffered saline
(PBS), pH 7.2, 0.5% bovine serum albumin (BSA), and 2 mM

EDTA. MDA-MB-231 cells were incubated with biotin anti-
human CD24 (Biolegend) for 10 min on ice. Mojosort™
Streptavidin Nanobeads were added to the respective tubes
containing cells and incubated for another 10 min on ice.
Enriched CSCs cells were separated using MiniMac
Separation columns, type MS (Miltenyi Biotech Inc.)
according to the manufacturer’s instructions. The CD24high

(CD24+) cells became attached to beads, while the CD24Low

cells (CD24−) flowed through the columns and were collected
into new tubes as shown in Supplementary Figure S1G via flow
cytometry analysis. The sorted CD24+ and CD24− cells were
further treated with divalent or monovalent SIRPα-Fc for 24 h,
and total RNA was extracted for Real Time PCR analysis.

2.6 Real Real Time PCR

Total RNA was isolated using either TRIzol Reagent (Thermo
Fisher Scientific) or TriPure™ Isolation Reagent from Roche
(Millipore Sigma). cDNA was synthesized using the Maxima
First Strand cDNA Synthesis Kit for RT-qPCR, with dsDNase
(Thermo Fisher Scientific) Quantitative real-time PCR was
performed using KLF4, OCT4, SOX2 using 18S or B2M,
SNAIL, SLUG, ZEB1, ZO-1, ALDH1A1, CDH1, CTNNB1 and
CSNK1A1 primers using SYBR Green (Thermo Fisher Scientific)
on an MJ Research Opticon I instrument (Bio-Rad) as control as
described previously (kaur et al., 2019, scientific reports). EMT
and cancer stem cell primers (Table 1) were purchased from
Integrated DNA Technologies (IDT, USA). The results were
quantified as Ct values and expressed as fold gene expression
(the ratio of treated/control).

2.7 Aldefluor assay

MDA-MB-231 cells were cultured in AggreWell™ Embryoid
Body (EB) Formation Medium using SmartDish™ (STEMCELL
Technologies) and treated with CC90002 (1 μg/mL) and SIRPα-
Fc (1 μg/mL) alone for 72 h at 37°. The loosely aggregated spheroids
were suspended into single cells and subjected to BODIPY-
aminoacetaldehyde (BAAA) aldehyde dehydrogenase substrate
and/or DEAB as negative control staining using ALDEFLUOR™
kit from STEMCELL Technologies. The protocol and flowcytometry
analysis were followed according to manufacturer’s instructions. %
ALDHbr cells from three independent experiments were calculated
using background subtraction of negative control.

2.8 Cell proliferation assays

IncuCyte NucLight for cell nuclear labeling (ESS4717, Essen
BioScience) was used for living cells. MDA-MB-231 (~1,000 cells/
50 µL) were plated in a 96-well plate. CC90002 antibody (1 μg/mL)
and SIRPα-Fc (1 μg/mL) were added alone or in combination.
Diluted IncuCyte Nuclight Rapid live cell labeling reagent (50 µL)
added to each well according to manufactures instructions (Essen
BioScience, Santorious). The cells were analyzed every 4 h for 7 days
using Basic Analyzer analysis (IncuCyte system software).

TABLE 1 Primer sequences used for RT-qPCR analysis of mRNA expression
for the indicated genes.

Name Primer sequence

snail-F AGGCCAAGGATCTCCAGGCTCGA

snail-R CTTCCCGCAGGTTCCGCAGA

SLUG-F TGCACTGCGATGCCCAGTCT

SLUG-R AAAACGCCTTGCCGCAGATC

β_Catenin-F AAGTCTGGAGGCATTCCTGC

β_Catenin-R ACCAGCTAAACGCACTGCCA

ZEB1-F CGCTTCTCACACTCTGGGTC

ZEB1-R CATTCGAGAGGATTTCAGGCCCT

ZO-1-F CGTTAGTCACCCAGGGCACAGG

ZO-1-R GTATGTGGGCTGCTCGAGGT

B2M-F TCC TGA ATT GCT ATG TGT CTG GGT

B2M-R GAT AGA AAG ACC AGT CCT TGC T

18S-F AGG ACC GCG GTT CTA TTT TGT TGG

18S-R CCC CCG GCC GTC CCT CTT A

ALDH1A1-F CCA CTC ACT GAA TCA TGC CA

ALDH1A1-R GCA CGC CAG ACT TAC CTG TC

CK2-F AGC ATG CCA GGG GGC AGT AC

CK2-R CTG GTG AGC CTG CCA GAG GT

CDH1-F CCA GAA TCC CCA AGT GCC TGC

CDH1-R GAA TTG GGC AAA TGT GTT CAG C
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2.9 Spheroid/mammosphere assay

MDA-231 cells were grown in culture, (RPMI media w/1% Pen-
Strep, 1% L-glutamine, and 10% fetal bovine serum at 37° with 5%
CO2. Approximately 1000 MDA-MB-231 cells were transferred to a
small petri dish along with AggreWell™ Embryoid Body (EB)
Formation Medium or MammoCult™ Human Medium Kit and
treated with CC90002 (1 μg/mL) or SIRPα-Fc (1 μg/mL) alone for
10 days at 37°. The total number of mammospheres were counted
using a light microscope, and number of spheroids were plotted
using Prism software. For live cell mammospheres formation,
MDA-MB-231 triple-negative breast carcinoma cells were
labeled with PKH26 dye (Sigma) at day 0 according to the
manufacturer’s instructions. Approximately 1,000 cells were
transferred into each well of a 96-well plate using mamo cult
media. Images were captured every 4 h using Spheroid analysis
with the IncuCyte system software.

2.10 SIRPα-CD47 binding assay
markers analysis

MDA-MB-231 cells were trypsinzed, and expression of CD47 and
SIRPα were measured using flow cytometry (Supplementary Figure
S1A, B). To investigate effects of CC90002 Ab on SIRPα-
CD47 binding, cells were incubated with monovalent SIRP-α-
biotin (Miller et al., 2019) on ice for 30 min in the presence or
absence of CD47 antibodies. The expression of SIRPα was analyzed
using streptavidin AF-488 via flow cytometry analysis.

2.11 Bulk RNA sequencing analysis

MDA-MB-231 cells were treated CC90002 (1 μg/mL) and
SIRPα-Fc (1 μg/mL) alone for 72 h at 37 ° along with untreated
and human isotype control (Celgene) using AggreWell media (Stem
Cell Technologies) according to manufacturer’s instructions. Total
RNA was extracted using ISOLATE II RNA Mini Kit from
BIOLINE, and RNA integrity and quantification was measured
using RNA-Bioanalyzer.

All mRNA-seq samples were pooled and sequenced on NextSeq
using Illumina TruSeq Stranded mRNA Library Prep and paired-end
sequencing (GEO Accession Number: GSE247052). The samples had
20 to 33 million pass filter reads with a base call quality of above 83%
of bases with Q30 and above. Reads of the samples were trimmed for
adapters and low-quality bases using Trimmomatic software before
alignment with the reference genome (Human - hg38) and the
annotated transcripts using STAR. The average mapping rate of all
samples was 95%.Unique alignment is above 57%. There were 1.81%–
38.56% unmapped reads. Themapping statistics were calculated using
Picard software. The samples had 1.04% ribosomal bases. Percent
coding bases are between 44% and 60%. Percent UTR bases are 31%–
42%, andmRNAbases were between 79% and 92% for all the samples.
Library complexity was measured in terms of unique fragments in the
mapped reads using Picard’s Mark Duplicate utility. The samples had
59%–91% non-duplicate reads. In addition, the gene expression
quantification analysis was performed for all samples using STAR/
RSEM tools.

The RNA-Seek pipeline (https://github.com/CCBR/RNA-seek)
was used to process reads. Expected counts from RSEM for both
genes were imported into the NIH Integrated Data Analysis
Platform (Palantir Technologies) for downstream analysis as
described earlier (Nath et al., 2022). Briefly, low count genes
were filtered prior to CPM and quantile normalization using
Limma voom (Smyth, 2004; Law et al., 2014), followed by
differential expression of genes analysis. Pre ranked gene set
enrichment analysis (GSEA) using molecular signatures database
v6.2 (Subramanian et al., 2005; Liberzon et al., 2011). Batch
correction was performed using the ComBat function of the sva
(Johnson et al., 2007).

2.12 Statistics

All experiments were replicated at least three times on different
groups of cells. All data are expressed as mean ± SD. The differences
were considered significant at p values <0.05 as indicated in the
figure legends.

3 Results

3.1 Direct effects of SIRPα-Fc and
CC90002 on MDA-MB-231 cells

Based on our previous studies demonstrating effects of the
CD47 antibody B6H12 on stem cell markers in MDA-MB-
231 cells (Kaur et al., 2016), which have a high number of bCSC
as compared to MCF7 or T47D1 cell lines (Honeth et al., 2008), we
examined effects of SIRPα-Fc and the CC90002 antibody on the
expression of CD44 and CD24. Flow cytometry confirmed that
MDA-MB-231 cells highly express cell surface CD47, whereas only a
minor population express detectable SIRPα (Supplementary Figure
S1A, B). Binding of SIRPα-Fc to cell surface CD47 was inhibited in
the presence of CC90002 (Supplementary Figure S1C). However,
treatment of MDA-MB-231 cells with SIRPα-Fc (SIRPFc) or
CC90002 (CG) for 72 h did not significantly alter cell surface
expression of the stem cell markers CD44 or CD24 (Figures 1A,
B). Consistent with these results, treatment of MDA-MB-231 cells
with 1 μg/mL of SIRPα-Fc or the CC90002 antibody for 72 h did not
significantly change the mRNA expression of OCT4, SOX2, KLF4,
CD44, and CD24 genes. However, SIRPα-Fc treatment significantly
downregulated CD44 mRNA (Figures 1C–G). Therefore, the effects
of SIRPα-Fc and CC90002 antibody on mRNA expression of
pluripotent stem cell markers differ from those of B6H12.

Aldehyde dehydrogenase 1 (ALDHA1) is a CSC marker
expressed in basal breast cancers (Tan et al., 2013). Expression of
specific isoforms of (ALDHA1) and the corresponding enzymatic
activity are useful markers of CSC differentiation and can be
quantified by flow cytometry using Aldefuor (Moreb, 2008;
Marcato et al., 2011; Tomita et al., 2016). MDA-MB-231 cells
cultured on plastic in RPMI medium had undetectable
ALDHA1 mRNA (Supplementary Figure S1D). MDA-MB-
231 cells cultured in AggreWell medium exhibited expression of
ALDHA1, but treatment with CC90002 or SIRPα-Fc did not
significantly change expression of ALDHA1 mRNA
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FIGURE 1
SIRPα-Fc increased Aldefluor activity in MDA-MB-231 cells. (A, B) MDA-MB-231 cells were grown and treated with CC90002 (C–G), 1 μg/mL) and
SIRPα-Fc (1 μg/mL) for 72 h. The total cells were harvested, and flow analysis was performed using anti-CD24 and CD44 antibodies. (C–G) MDA-MB-
231 cells were grown in AggreWell embryoid formation media and treated with CC90002 (1 μg/mL), SIRPα-Fc (1 μg/mL) for 72 h. The total RNA was
extracted using miRNA easy kit, and OCT4, SOX2, KLF4, CD44 and CD24 mRNA expression were analyzed via qPCR (n = 3, 3 replicates for each
experiment). (H–J) FACS profiles of DEAB control and ALDH1 staining with flow cytometry (n = 3 independent experiments). (K) graph showing the
percentage of ALDH1+ cells following treatment using CC90002 (1 μg/mL) or SIRPα-Fc (1 μg/mL). Significant values (p < 0.05) were calculated using
a t-test.
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(Supplementary Figure S1E). However, assessment of
ALDH1 activity using the ALDEFLUOR Kit, indicated that,
SIRPα-Fc significantly increased the percentage of Aldefluor-
positive cells as compared to untreated (Figure 1H, J, K).
Treatment with CC90002 resulted in a smaller increase in
Aldefluor-positive cells that was not statistically significant
(Figure 1I, K). Therefore, SIRPα-Fc may be a selective CD47-
dependent inducer of stem cell character in these breast
carcinoma cells.

3.2 Effect of SIRPα-Fc on cell proliferation
and spheroid formation

Formation of mammospheres provides a quantitative
assessment of stem cell character and aggressiveness in breast
carcinoma cells (Shaw et al., 2012; Margaryan et al., 2019).
SIRPα-Fc treatment resulted in ~3-fold increase in the number of
mammospheres and their combined area (Figure 2A). The area of
mammospheres increased less in cultures treated with
CC90002 antibody and did not achieve significance. This data
indicates that SIRPα-Fc increases either the proliferation or self-

renewal capacity of breast cancer stem cells (Figure 2A). We also
assessed Mammosphere size using a spheroid dye dilution assay on
the IncuCyte instrument (Figure 2B) along with unlabeled control
treatments. Depletion of the PKH dye signal indicated increased cell
proliferation in spheroids. Decreased fluorescence in SIRPα-Fc-
treated cells indicated strong stimulation of cell proliferation,
whereas the CC90002 antibody had minimal activity (Figure 2B).
SIRPα-Fc (1 μg/mL) treatment increased mammosphere size over
5 days, whereas CC90002 antibody was less active as shown
in Figure 2A.

To assess effects of CD47 ligands more directly on MDA-MB-
231 bCSC proliferation, we used the IncuCyte Rapid Red Dye assay
(Figure 2C). SIRPα-Fc treatment of MDA-MB-231 cells resulted in
the most increase in cell growth. CC90002 modestly increased cell
proliferation of MDA-MB-231 cells.

3.3 SIRPα-Fc affects expression of
EMT markers

To examine effects of these CD47 ligands on the global
transcriptome, MDA-MB-231 cells were grown in AggreWell

FIGURE 2
(A) SIRPα-Fc increased spheroid formation in MDA-MB-231 cells. MDA-MB-231 cells (~1,000) were cultured using smart dish in 2 mL of AggreWell
medium. Cells were treated with CC90002 (1 μg/mL) and SIRPα-Fc (1 μg/mL). alone for 10 days. The total number of mammospheres were counted
using a light microscope. The results were then plotted using Prism. Significant values (p < 0.05) were calculated using F-Test Two-Sample for Variances.
(B) MDA-MB-231 cells were labeled with PKH26 dye (Sigma) on day 0 (n = 4). Approximately 1,000 cells/well were plated in 96-well plates (n =
4 replicates/treatments) and treated with CC90002 (1 μg/mL) or SIRPα-Fc (1 μg/mL). Images were captured every 4 h for 10 days using the system
software as indicated in graphs. Significant values (p < 0.05) were calculated using t-test for two samples assuming equal variance. (C)Cell proliferation of
MDA-MB-231 cells was determined after labelingwith Rapid Red dye using phase contrast imaging (D) in the presence of CC90002 (1 μg/mL) or SIRPα-Fc
(1 μg/mL) as described above. Significant values were determined using multiple t-tests.
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Embryoid Body (EB) Formation media for 72 h in the presence of
SIRPα-Fc (1 μg/mL), CC90002 (1 μg/mL), IgG isotype antibody
control, or untreated controls (n = 3). Bulk RNA sequencing
analysis was performed and analyzed using the NIDAP platform.
The QCwith Batch Correction, Differential Expression of Genes and
Visualization data indicated consistent high-quality results
(Supplementary Figure S2A-C). Differentially expressed genes
between SIRPα-Fc and CC90002 antibody treatments compared
with untreated or control IgG treatment were determined using a
threshold p-value of 0.05 (Supplementary Figure S2D). The
differentially expressed genes between SIRPα-Fc versus UT, and
SIRPα-Fc versus IgG or CC90002 versus UT and CC90002 versus
IgG comparisons are shown in Supplementary Data S1. Gene set
enrichment analysis (GSEA) for multiple pathways (Supplementary
Figure S2E) and list of significant GSEA datasets is summarized in
Supplementary Data S2.

GSEA revealed a negative enrichment between SIRPα-Fc versus
untreated, and SIRPα-Fc versus IgG treatments (Figures 3A, B,
ES = −0.39, p-value 0.00037 and ES = −0.44, pval 0.00032) for
genes that regulate epithelial mesenchymal transition (EMT),

whereas CC90002 treatment showed a positive enrichment of the
same gene set (ES = 0.34) (Figure 3C), which was significant
compared to untreated samples but not significant for Isotype
control antibody treated (Data S2).

The stem cell marker CD24 is associated with EMT and cell
proliferation (Nakamura et al., 2017) and has additive effects with
CD47 to regulate phagocytosis (Ozawa et al., 2021). Therefore, we
examined expression of genes in this pathway in CD24+ enriched and
CD24− MDA-MB-231 cells (Figures 4A–H). COL4A1 and
ITGA3 genes were selected from list of GSEA Figures 3A, B to
validate the RNA sequencing analysis based on their role in
proliferation, EMT and stemness of breast cancer cells (Halsted
et al., 2008; Jin et al., 2017; Wang et al., 2020b; Zhang et al., 2020).
SIRPα-Fc but not SIRPmv treatment significantly enhanced expression
of COL4A1 mRNA in CD24+ cells but not in CD24− cells, whereas
ITGA3 mRNA expression was significantly upregulated in CD24− cells
and decreased in CD24+ cells with SIRPmv treatment (Figures 4A, B).
Treatment using divalent SIRPα-Fc significantly increased casein kinase
2 (CK2/CSNK2A1) mRNA levels in CD24+ cells but only modestly in
CD24− cells. In contrast, treatment using monovalent SIRPmv

FIGURE 3
SIRPα-Fc negatively correlated with Epithelial Mesenchymal transition in MDA-MB-231 cells. MDA-MB-231 cells were grown in AggreWell media,
treated with CC90002 antibody (1 μg/mL) or SIRPα- Fc (1 μg/mL) along with control IgG or untreated (n = 3). After 72 h, total RNAs were extracted, and
mRNA sequencing analysis was performed using the NIDAP platform. GSEA plots showing differential expressed genes (A, B) SIRPFc Vs. UT and SIRPFc Vs.
IgG and, (C) CC90002 Vs. UT GSEA-plots using msigdb_v6_2_with_orthologs show enrichment Hallmark of Epithelial Mesenchymal transition.
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significantly downregulated casein kinase 2 mRNA in both CD24+ and
CD24− cells (Figure 4C). These divergent responses suggest that
dimerization of cell surface CD47 by SIRPα-Fc results in a different
signal than monovalent ligation of CD47 by SIRPmv. SIRPα-Fc but not
SIRPmv treatment downregulated E-cadherin (CDH1) mRNA
expression in CD24+ cells, but modestly increased expression in
CD24− cells (Figure 4D). Similarly, SNAIL mRNA was modestly
upregulated with SIRPα-Fc but not SIRPmv treatment only in
CD24+ cells (Figure 4E). The EMT markers ZEB1, SLUG and ZO-1
were not significantly changed with SIRPα-Fc or SIRPmv treatments in
both CD24− and CD24+ cells (Figures 4F–H).

In contrast to SIRPα-Fc. CC90002 antibody treatment had no
significant effect on CK2 and CDH1 mRNA expression in CD24+

and CD24− cells (Figures 5A, B). However, using unfractionated
MDA-MB-231 cells, CC90002 antibody treatment significantly
downregulated CK2 and ZEB1 mRNA expression (Figures 5C,
D), but no other EMT markers were significantly altered
(Supplementary Figure S3A-C). Loss of E-cadherin has been
associated with progression and survival in human breast cancer
(Lipponen et al., 1994; Singhai et al., 2011). This may indicate that
SIRPα-Fc treatment increases cancer cell survival, and CK2may be a
key player for EMT driven proliferation or spheroid formation
(Zhang et al., 2014). However, the effects of CC90002 diverged
from those of SIRPα-Fc, indicating that effects of therapeutic
CD47 binding molecules on breast cancer stem cells are
ligand-specific.

FIGURE 4
Differential effect of SIRPα-Fc or SIRPmv on expression of EMT markers using CD24− or CD24+ subsets derived from MDA-MB-231 cells (A–H)
Expression of EMTmarkers were analyzed using SIRPα-Fc divalent or monovalent SIRPmv via q-PCR analysis (n = 2 replicates per treatments). Significant
values (p > 0.05) were calculated with ΔCT using Anova: Single Factor by comparing SIRPFc divalent or monovalent SIRPmv treated with either Untreated
CD24− or CD24+ cells.
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4 Discussion

Comparing the present data with our previous study of the
effects of the CD47 antibody B6H12 on the same cells indicates that
different CD47 antibodies can have divergent effects on
CD47 signaling in triple-negative breast cancer cells. Although
both B6H12 and the humanized antibody CC90002 inhibit
CD47 binding to SIRPα, each has different effects on MDA-MB-
231 cells. A small fraction of MDA-MB-231 cells express SIRPα at a
level detectable by flow cytometry. Thus, some of activities of these
agents may involve blocking cis-interactions between CD47 and
SIRPα, but this cannot explain why the activities of monovalent and
divalent soluble SIRPα-Fc have divergent effects on gene expression.

Our data suggests that therapeutics based on SIRPα Ig domains
that bind to CD47 have the potential to enhance cancer stemness in
triple negative breast cancer cells as evidenced by increasing
spheroid formation, cell proliferation and ALDH1 expression,
which is a universal marker for stem and progenitor cells and
also associated with poor prognosis in triple negative breast
cancer (Panigoro et al., 2020). Thus, the benefit of these

therapeutics to increase phagocytic clearance may be offset by
increased resistance to cancer treatments by altering expression
of EMT markers (Luo and Yao, 2014; Pai et al., 2019).
Downregulation of CDH1 mRNA expression and increasing
SNAIL and CSNK2A1 mRNA expression suggest that SIRPα-Fc
treatment can increase the tumorigenic potential. Reduced
E-cadherin expression in invasive breast carcinomas was
correlated with triple negative receptor status (p = 0.0336), and
poor prognosis (p = 0.0466) (Burandt et al., 2021). Loss of
E-cadherin and upregulation of ALDH1 and EMT markers in
breast cancer stem cells may play a role in tumorigenesis or
metastatasis (Papadaki et al., 2014), which could have negative
impacts on overall and progression-free survival in clinical trials
using SIRPα-based therapeutics to treat triple negative breast cancer.

Further studies are needed to distinguish the potential agonist
activities of CC90002 binding to CD47 from its established activity as an
antagonist of SIRPα binding to CD47. Because spheroid formation
involves increased cell-cell contacts, CC90002, in part could decrease
spheroid formation by antagonizing intercellular CD47-dependent
SIRPα signaling or SIRPα-dependent CD47 signaling. The

FIGURE 5
Differential effect of CC90002 on expression of EMT markers using MDA-MB-231 cells. (A, B) Differential effect of CC90002 (1 μg/mL) on
expression of CK2 and CDH1 markers using CD24− or CD24+ subsets derived from MDA-MB-231 cells via q-PCR analysis (n = 3, 3replicates per
treatments). Significant values (p < 0.05) were calculated using default setting of CFX Mastro (BioRad)software by comparing CG treated with either
Untreated CD24− or reconfirmed using GraphPad Prism 10.02 two-tailed t-test. (C, D)MDA-MB-231 cells were grown in AggreWell media, treated
with CC90002 antibody (1 μg/mL) along with untreated (n = 3). After 7 2 h, total RNAs were extracted, and CK2 and ZEB1 mRNA expression were
analyzed. Significant values (p < 0.05) were calculated using two-tailed t-test by using default setting of GraphPad Prism 10.02.
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CD47 antibody B6H12 prevents binding of SIRPα and TSP1 to CD47,
and the latter interaction was shown to regulate stem cell differentiation
(Kaur et al., 2013; Kaur et al., 2016). Unlike B6H12, our current data
showed no inhibitory activity of CC90002 in expression of CD44,
CD24 and KLF4. Therefore, the observed activities of CC90002 are
unlikely to represent competitive inhibition of TSP1 signaling.
However, the possibility remains that CC90002 could be a
noncompetitive inhibitor or modulator of TSP1 signaling.

Because most MDA-MB-231 cells lack detectable levels of
SIRPα, antagonism of cis- or cell-cell SIRPα signaling through
CD47 should have limited relevance to proliferation and gene
expression changes that are independent of spheroid. Therefore,
the most likely mechanism involves a direct agonist activity of
CC90002. Two mechanisms could contribute to an agonist
activity of CC90002. First, published studies have implicated
dimerization or clustering of CD47 in its functions (Kikuchi
et al., 2005; Subramanian et al., 2006; Wang et al., 2020a), and
several of the known lateral association partners of CD47 are known
to initiate signals when dimerized (Wang et al., 2020c). Divalent
SIRPα-Fc could increase dimerization or clustering of CD47,
whereas SIRPmv could inhibit dimerization, which could account
for some of the divergent gene expression changes we observed.

GSEA pathway analysis identified additional CD47 signaling
pathways that are differentially regulated by CC90002 and SIRPα-Fc
in MDA-MB-231 cells. identification of targets that are differentially
regulated by SIRPα or TSP1 binding to CD47 will require further
studies. This could identify additional beneficial therapeutic effects
of CC90002 and SIRPα-Fc in malignant and nonmalignant cells as
well as potential side effects that may be independent of its expected
function as an antagonist of CD47-SIRPα signaling in phagocytes.
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