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Recent advancements in omics and single-cell analysis highlight the necessity of
numerical methods for managing the complexity of biological data. This paper
introduces a simulation program for biochemical reaction systems based on the
natural number simulation (NNS) method. This novel approach ensures the
equitable treatment of all molecular entities, such as DNA, proteins, H2O, and
hydrogen ions (H+), in biological systems. Central to NNS is its use of
stoichiometric formulas, simplifying the modeling process and facilitating
efficient and accurate simulations of diverse biochemical reactions. The
advantage of this method is its ability to manage all molecules uniformly,
ensuring a balanced representation in simulations. Detailed in Python, NNS is
adept at simulating various reactions, ranging from water ionization to
Michaelis–Menten kinetics and complex gene-based systems, making it an
effective tool for scientific and engineering research.
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1 Introduction

In recent years, single-cell and multi-omics data analysis has attracted attention in the
field of molecular cell biology (Lim et al., 2023; Massimino et al., 2023; Baysoy et al., 2024).
In particular, analysis using machine learning models, such as deep learning, has been active
(Lin et al., 2022; Gunawan, et al., 2023; Wagle et al., 2024). However, understanding
stoichiometric reactions is still considered essential to understand gene expression and
protein enzyme functions in detail. This paper proposes a simulation program for
biochemical reaction systems based on the natural number simulation (NNS) method.
NNS offers a simplified approach for modeling biochemical reactions stoichiometrically
and performing computations of the time course of the reactions. This method excels in its
straightforward formulation process and is particularly suitable for complex biological
systems (Blinov et al., 2004; Browning et al., 2022; Huizing et al., 2022) because of the
absence of complicated reaction formulas using mathematical equations.

Various models have been considered to represent complex biological systems,
including ordinary differential equations and Gillespie’s algorithm (Gillespie, 1977;
Ullah and Wolkenhauer, 2011; Alon, 2019). For example, metabolic reaction systems
continue to be vigorously analyzed in detail using differential equations (Khodayari and
Maranas, 2016; Himeoka andMitarai, 2022). Petri nets substantially contribute to analyzing
biochemical reaction networks by integrating stochastic algorithms and/or non-parametric
strategies. This progression has resulted in the emergence of specialized forms such as
signaling Petri nets, large-scale metabolic models, and multilevel biological models using
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colored Petri nets, indicating their increasing utility in the analysis of
complex systems (Ruths et al., 2008; Rohr, 2018; Brinkrolf et al.,
2021; Shaikh et al., 2022; Liu et al., 2023).

However, ordinary differential equations require complex
formulations of reaction rate equations. Stochastic simulations
require detailed formulations of chemical reaction networks,
which may limit their usefulness, particularly for large-scale
simulations. Petri net-based simulations offer a comprehensive
framework for formulating chemical reaction networks involving
specific elements such as places, transitions, arcs, and markings.
However, modeling actual biochemical reaction systems requires
consideration of the definition of the number of tokens and their
correspondence to the number of molecules. In addition, when
introducing stochastic models, it is necessary to explicitly define the
timing of firing.

The NNS method implemented in Python is very easy to model
because the procedure for determining detailed time evolution is
included in the computational algorithm. Requiring only the
stoichiometric equation, its rate constants, and the initial number
of molecules, the new algorithm, based on a probabilistic binomial
distribution, immediately calculates the number of molecules after
one calculation step for the elements in the model system. It is
crucial to emphasize the necessity of precise rate constant
determination to depict the system accurately. Nevertheless, the
simplicity of the formulation has the advantage of allowing the
optimization process to be easily performed.

Recent advancements in non-parametric analytical techniques
also present an intriguing possibility for NNS (Ruths et al., 2008;
Rohr, 2018). By meticulously setting the initial molecular counts,
rate constants, and stoichiometric equations, an analysis comparable
to those seen in studies of complex signaling networks may be
achieved. This approach could potentially enhance the applicability
and accuracy of NNS for modeling intricate biochemical systems.

Contrary to traditional methods, such as ordinary differential
equations and Gillespie’s algorithm, which might not optimally
represent complex biological systems (Gillespie, 1977; Alon,
2019), NNS provides a more precise simulation even for a small
number of molecules in DNA-related reactions. It uses
stoichiometric equations with rate constants for specific and
selective processes such as transcription and translation (Watson
et al., 2014). Moreover, the binomial distribution in NNS facilitates
calculating informational and entropic metrics, including Shannon’s
entropy (Shannon, 1948; Adriaans and van Benthem, 2008).
Examples of these calculations are discussed later in the paper.

2 Methods

Our method calculates time-developing stoichiometric reactions
using a binomial algorithm. Consider the general reaction as
Equation 1:

q1X1 + q2X2 +/ + qsXs→
k
kr1Y1 + r2Y2 +/ + rtYt (1)

X1, X2, /, Xs denote molecular elements before the reaction
while Y1, Y2, /, Yt represent those after the reaction. The
coefficients qi and ri are reaction orders. The subscripts “s” and
“t” are natural numbers, with no limitation on their sizes. The rate

constant k implies the probability of forming Y1, Y2, /, Yt. In the
NNS approach, reaction orders are consistently natural numbers
because they necessitate dealing with element counts as natural
numbers at all times. Our methodology accommodates
stoichiometric reactions without limiting specific chemical
formulas, thereby ensuring the conservation of the atom number.

Initial element counts are necessary for computing the time
evolution. Xi_n and Yi_n are defined as the elemental number of Xi

and Yi; then, the following calculation in Equations 2, 3 with
Equations 4, 5 provide the decrement and increment quantities
of the elements.

ΔXi n � −qi × Rbinomial n, p( ) (2)
ΔYi n � ri × Rbinomial n, p( ) (3)

n � int
Xi n

qi
( )

min

(4)

p � ∏
i≠min

k• Xi n
qi•N( )

1 + k• Xi n
qi•N

( ) (5)

Rbinomial(n, p) generates random numbers following the
binomial distribution, returning natural numbers (Rohr, 2018).
In this function, n denotes a trial number, each of which can be
either a success or a failure (binary outcomes). The parameter p
specifies the probability of success in each trial. The function
provides the total number of successes in n trials. NumPy’s
random binomial (n, p) achieves this. The function returns one
successful natural number under n, including zero. Stochastic
simulation often uses these discrete numbers (Székely and
Burrage, 2014; Gholami and Ilie, 2021). The trial number n is
represented with the minimum integer value among X1_n/q1, X2_
n/q2, X3_n/q3, so on. The probability p is derived based on the rate
constant k, the reaction order qi, a normalization parameter N, and
Xi_n, except for

k•(Xi n
qi•N

)
1+k•(Xi n

qi•N
) with

Xi n
qi

selected in Equation 4. In a
calculation step, Xi_n becomes Xi_n + ΔXi_n and Yi_n becomes Yi_n
+ ΔYi_n. The rate constant k in NNS is semantically the same as the
rate constant that appears in the stoichiometric equation defined by
concentration. However, k in this study is defined as a constant that
affects the stochastic results defined in Equation 5. The rate constant
k, the number of elements, and the normalization constant N
determine the probability p, as indicated by Equation 5. The k
value influences the probability variation between 0 and 1 and the
reaction rate, but it is not the same as the conventional rate constant.

Equations 4, 5 have some minor formulas. One is in the case of a
one-element reaction as Equation 6:

aX → r1Y1 + r2Y2 +/ + rtYt with a rate constant k (6)
X is a molecular element, and a is an order. The decrement ΔX_n

and increment ΔYi_n are derived from the following formulas as
Equations 7, 8 with Equations 9, 10:

ΔX n � −a × Rbinomial n, p( ) (7)
ΔYi n � ri × Rbinomial n, p( ) (8)

n � int
X n
a

( ) (9)

p � k
1 + k

(10)
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where X_n is the number of the element X.
Another exceptional reaction type is as Equation 11:

aX → 0 zero( ),with a rate constant k (11)

This expression indicates that element X is decomposed and
disappears, so Equation 3 does not work. Thus, only X decreases
with Equation 7 with Equation 9, 10.

Another type of reaction is defined as a linear decreasing and
increasing reaction for one element. One needs these reactions for
the mathematical formulation of linear changes via molecular
addition and subtraction. The linear decreasing case is defined
similarly to Equation 11 as Equation 12:

aX → 0 zero( ) by linear,with a rate constant k (12)

Moreover, the increment of X is determined by the following
Equation 13:

ΔX n � −a × Rbinomial 1, p( ) (13)
where p is the same as in Equation 10.

Subsequently, the linear increasing case is defined by the
following reaction as Equation 14:

0 zero( ) → bY by linear,with a rate constant k (14)

The following Equation 15 also determines the increment of Y:

ΔY n � b × Rbinomial 1, p( ) (15)
where p is the same as in Equation 10.

A biological system has numerous incredible reactions (Nelson
and Cox, 2021). One can easily define each reaction if one knows the
elements before and after the reaction, their orders, and
rate constants.

Executing an input file in Spyder, an Integrated Development
Environment requires setting “fName = “inp_file.txt”” in the main
program (i.e., binomial_v016.py) and then utilizing the “Run”
command. For command line execution, the command “$
python binomial_v016.py inp_file.txt” yields similar outcomes to
Spyder’s run. Therefore, it is essential to position the input file in the
program’s directory or one level above it.

This file needs to define calculation time, elements, reactions,
and plots (Table 1). Currently, model systems are defined in text
files. Currently, a Python program is available on GitHub that
converts xml files that conform to Systems Biology Markup

Language into text files for NNS. Users can perform calculations
via NNS by setting the appropriate initial number of elements and
rate constants.

The *Reaction statement has numerous definitions
(Supplementary Tables S1, S2), including the above formulas
used to calculate reaction increments.

The *ElementInOut statement implemented definition
statements to express the inflow and outflow of molecules in and
out of the system (Supplementary Table S3). The author developed
the Python program used for this algorithm, and it is available under
the MIT license on GitHub at https://github.com/taka-b/binomial/
tree/binomial_v016_01 (Sato, 2023). This algorithm is publicly
accessible and can be used by anyone without any charge.
Figure 1A shows the calculation for schematic flow, while
Figure 1B depicts the detailed calculation algorithm. The
simplicity of the proposed procedure is demonstrated through six
examples using their corresponding input files.

3 Results

Some example calculations are shown below. Note that the user
only needs to prepare a text file for the calculations to obtain the
results. The important point is to carefully formulate the
stoichiometric equation and give appropriate rate constants.

The following results are obtained for calculations based on
the text file shown in each figure. The start and end times are
defined by *Time; for example, zero, 10,000, displays the results
of calculations for every step from zero to 10,000. If you want to
compare these results with actual experimental results, you will
need units and rate constants that correspond to the
experimental results. Here, however, the units of calculation
are denoted in Steps, and figures show changes in the number
of elements.

3.1 Simple reaction model

Consider a simple reaction with rate constant kon as Equation 16:

A + B → C,with rate constant kon (16)
where A and B represent protein molecules that irreversibly bind
to form C.

TABLE 1 Standard input file style. The *Time, *Element, *Reaction, and *Plot are commands for calculation in an input file.

*Time

Start time End time Console output interval time Plot output interval time CSV-file output interval time Time unit

*Element

Element name Initial number Color for *Plot (optional) Marker type (optional)

*Reaction Normalization parameter

Type Name Identification name Before elements
Order, element name

Rate constant (k) After elements
Order, element name

*Plot Plot type

Element names
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Figure 2A is an input file (details in Table 1) defining one reaction
r2_1_100 (details in Supplementary Table S1), where the calculation
spans time zero to 10,000 in dimensionless units. In the actual
calculation, each increase or decrease in the number of elements is
calculated according to the above algorithm for each increase or
decrease. The user must assign the appropriate time unit for a
particular system. Here, for the sake of schematic calculation, the
unit of time is used as the calculation unit Steps. NNS uses natural
numbers, and as shown in Figure 2B, the y-axis represents the number
of elements, guaranteeing an accurate number of elements.

In contrast, Supplementary Figure S1 introduces the inverse
reaction r1_2_200 as Equation 17.

C → A + B,with rate constant koff (17)

The rate constant koff differs from kon in Equation 16 due to the
thermodynamic principle in the system (Craig et al., 2021).
Supplementary Figure S1 shows the equilibrium numbers of A,
B, and C.

3.2 Water ionization

NNS can perform water ionization. Water, H2O, usually dissociates
slightly into proton ions (H+) and hydroxyl ions (OH−), representing a

FIGURE 1
Calculation flow and algorithm of NNS. (A)Workflow executed by Python programs. The upper left shows an input file (Supplementary Figure S2A for
an example), and the lower left depicts the resulting graph (Figure 5 for an example). (B) Detailed NNS calculation algorithm of the calculation in the
Calculation steps of NNS: (A).

FIGURE 2
(A) Input text and (B) calculation result of (A).
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FIGURE 3
Ionization of water. H2Omeanswater, H2O; H+ hydrogen ionH+; andOH–hydroxide ion, OH−. (A) Input text with N= 2e19 and (B)withN= 2e24. (C)
The calculation result of (A,D) that of (B).

FIGURE 4
Michaelis–Menten kinetics. (A) Input text. (B) Results of E (enzyme) and ES enzyme-substrate complex). (C) Results of S (substrate) and P (product).
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dynamical equilibrium between dissociation and reassociation. Figures
3A, B are input files in this scenario. Suitable rate constants show this
equilibrium in Figures 3C, D. Notably, NNS accounts for system size
through normalization parameters. Although the input files present
different initial water molecule counts, their rate constants remain
consistent. These normalization parameters adjust the system size by
changing the success probability, p, in Equation 5. If a pseudo pH is
defined as Equation 18:

pseudo pH � − log10
number of H+
number of H2O

( ) (18)

The results from Equation 18 using Figures 3B, D simulating
data have almost the same values, 6.999993 and 6.9999996,
respectively. The exact rate constants for the dissociation of
water and recombination of proton ions (H+) and hydroxyl ions
(OH−) remain unknown. Therefore, the horizontal axis in Figures
3C, D is labeled in Steps, the unit of calculation. If the exact values of

these rate constants are known, the appropriate unit of time should
be determined accordingly.

3.3 Michaelis–Menten model

Michaelis–Menten kinetics (Gilbert et al., 2006) is applied using
NNS. In Figure 4A, E is an enzyme, S is the substrate, ES is the
enzyme-substrate complex, and P is the product (Craig et al., 2021).
The corresponding scheme is as Equation 19:

S + E%ES → E + P (19)

NNS defined three reactions in the input file. The total E number
(E_n + ES_n) is constant, though E and ES fluctuate in time series
(Figure 4B). Furthermore, S decreases with increasing P (Figure 4C).

3.4 Monod–Wyman–Changeux
allosteric model

NNS can manage allosteric models (Goodey and Benkovic, 2008;
Machado et al., 2015; Wodak et al., 2019). The allosteric transition of
hemoglobin is one of the most interesting behaviors because of
molecular adaptation in vertebrates (Eaton, 2022). Supplementary
Figure S2A features an input file for the binding of oxygen to
hemoglobin at different rate constants, 0.1, 0.5, 10, and 50. However,
Supplementary Figure S2B uses a constant rate of 0.1. Figure 5A
illustrates the allosteric effect; its increasing rate of oxyhemoglobin
(Hb(O2)4) binding was higher than that observed in the no allosteric
effect model of Figure 5B initially (Supplementary Figure S3A). The
ratios of Hb(O2)4 to other complexes are also consistently higher than
those observed in the non-allosteric model (Supplementary Figure S3B).

3.5 Feedback loop model

NNS supports the models of feedback loops in biological
systems, which are common regulatory mechanisms (Ferrazzi

FIGURE 5
Results of the Monod–Wyman–Changeux allosteric model. (A) Result of Supplementary Figure S2A with rate constants: 0.1, 0.5, 10, and 50. (B)
Result of Supplementary Figure S2B, with rate constants: 0.1, 0.1, 0.1, and 0.1.

FIGURE 6
Feedback system model for one-gene DNA (Alon, 2019).
Stimulus: protein molecules bind DNA; DNA: one gene;
Ribonucleotide: some ribonucleotides; mRNA: messenger-RNA;
Amino: some amino acids; Ribosome: ribosome for translation;
and Protein: a proteinmade by the ribosome. DNA is transcribed into
mRNA, which is then translated into Protein. The protein binds to
DNA to deactivate and is modified into DNA_d (deactivate).
(Reproduced from Alon, 2019, with permission from Chapman and
Hall/CRC).
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et al., 2011; Alon, 2019). Figure 6 depicts a feedback loop where
a stimulus activates DNA, but the resultant protein then
deactivates DNA into DNA_d (deactivated DNA).
Supplementary Figure S4’s input file models
ribonucleotide (Ribonucleotide) and amino acid (Amino) as
singular types. The advantage of NNS is its ability to
represent individual DNA molecules and deliver their

specific properties. In Figure 7 the DNA is inactivated by the
protein, mRNA production is stopped, and protein production
is suppressed.

Figure 7 and Supplementary Figure S5 exhibit contrasting
results with and without feedback, respectively, highlighting
the protein’s role in limiting DNA activation in
feedback systems.

3.6 Feed-forward loop in a biological system

The feed-forward loop is a prevalent biological system
(Kremling et al., 2008; Macía et al., 2009; Le and Kwon,
2011). Figure 8 depicts a schematic reaction process (Alon,
2019). Stimuli Sx and Sy ultimately promote protein pZ
production. The system encompasses 10 elements, two input
elements and six reactions, whose detailed functions are shown
in the input file of Supplementary Figure S6. Using
*elementInOut (Supplementary Table S3) and shifting the
inflow timing of Sx and Sy as shown in Supplementary Figure
S6 affects the behavior of the protein, as shown in Figure 9: Sy is
inputted later than Sx, the production of Pz is delayed. On the
other hand, in Supplementary Figures S7, S8, Sx and Sy are
inputted simultaneously, there is no significant delay in Pz.

FIGURE 7
Results of the feedback system of the input file are in Supplementary Figure S4. (A) RNA and Amino. (B) DNA and DNA_d. (C) mRNA and Protein.
(D) Stimulus.

FIGURE 8
Feed-forward system (Alon, 2019). Sx and Sy: Stimuli; pX, pY, and
pZ: proteins; pX* and pY*: activated proteins of pX and pY; DNA-Y and
DNA-Z: DNA for each protein pY and pZ. (Reproduced from Alon,
2019, with permission from Chapman and Hall/CRC).
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The flexibility of NNS proves to be a valuable tool for modeling
such a system.

4 Discussion

Entropy and information are concepts related to
information theory (Baez and Pollard, 2016), and stochastic
processes with probability parameters can enrich our
understanding of reaction systems. In our approach,
parameters n and p are determined via reaction conditions
and are described in the Methods section. The information
on reaction is defined as Equation 20:

I reaction t,Xt ; nt , pt( ) � − log2 binomial Xt ; nt , pt( )( ) (20)
where binomial (X; n, p) represents a binomial distribution function
with a stochastic variable X (Successes) determined using n and p for
each reaction step t (Chanda et al., 2020), as illustrated in
Supplementary Figure S9.

The I_reaction provides insight into the reaction dynamics, and
its value increases as reactions proceed.

Drawing from the Shannon entropy (Ben-Naim, 2012), the
reaction entropy (RE) can be defined as Equation 21:

RE t; nt , pt( ) � −∑nt
Xt�0

binomial Xt ; nt , pt( )log2 binomial Xt ; nt , pt( )( )
(21)

The RE is illustrated in Supplementary Figure S10 as a function of n
and p, and it captures the inherent randomness in reaction and activity
of reactions (Baez and Pollard, 2016; Roach, 2020; Uda, 2020).

Using a DNA-type reaction example from Figure 7 and
Supplementary Figure S4, the accumulated information on the
reaction is calculated using Equation 22.

IRaccumulate t,Xt ; nt , pt( ) � −∑t
tk�0

log2 binomial Xtk; ntk , ptk( )( ) (22)

Figure 10 shows the results of Equation 22, and Figure 11
presents the RE values. Here, the RE values represent the results

FIGURE 9
Results of the feed-forward system in Supplementary Figure S6 until time = 50,000 steps. Sx and Sy are added at 10,000 and 20,000 steps,
respectively. (A) Sx and Sy. (B) DNA-Y_X* and DNA-Z_X*_Y*. (C) pX*, pY*, and pZ.

FIGURE 10
Accumulated information on the reaction was obtained using
Equation 22 in the case of a feedback loop shown in Figure 7 and
Supplementary Figure S3.

FIGURE 11
Reaction entropies of Equation 21 at any time in the case of a
feedback loop of Figure 7 and Supplementary Figure S3.
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obtained from Equation 21 using Figure 7 and Supplementary
Figure S4. Information on reaction and RE offers fundamental
tools for dissecting reaction properties and understanding the
complexity of biochemical systems.
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Nomenclature

Xi_n Elemental number of Xi

Yi_n Elemental number of Yi

ΔXi_n Increment of elemental number of Xi

ΔYi_n Increment of elemental number of Yi

Hb(O2)x Hemoglobin Bound by x Number of Oxygen Molecules

DNA_d Deactivated DNA

Amino Amino Acid Molecules
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