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Mammalian preimplantation embryos often contend with aneuploidy that arose
either by the inheritance of meiotic errors from the gametes, or frommitotic mis-
segregation events that occurred following fertilization. Regardless of the origin,
mis-segregated chromosomes become encapsulated in micronuclei (MN) that
are spatially isolated from the main nucleus. Much of our knowledge of MN
formation comes from dividing somatic cells during tumorigenesis, but the error-
prone cleavage-stage of early embryogenesis is fundamentally different. One
unique aspect is that cellular fragmentation (CF), whereby small subcellular
bodies pinch off embryonic blastomeres, is frequently observed. CF has been
detected in both in vitro and in vivo-derived embryos and likely represents a
response to chromosome mis-segregation since it only appears after MN
formation. There are multiple fates for MN, including sequestration into CFs,
but the molecular mechanism(s) by which this occurs remains unclear. Due to
nuclear envelope rupture, the chromosomal material contained within MN and
CFs becomes susceptible to double stranded-DNA breaks. Despite this damage,
embryos may still progress to the blastocyst stage and exclude chromosome-
containing CFs, as well as non-dividing aneuploid blastomeres, from participating
in further development. Whether these are attempts to rectify MN formation or
eliminate embryos with poor implantation potential is unknown and this review
will discuss the potential implications of DNA removal by CF/blastomere
exclusion. We will also extrapolate what is known about the intracellular
pathways mediating MN formation and rupture in somatic cells to
preimplantation embryogenesis and how nuclear budding and DNA release
into the cytoplasm may impact overall development.
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Introduction

Chromosomal instability (CIN) is a common form of genomic
variability that causes changes in chromosome number and/or
structure (Bielski and Taylor, 2021). It is characterized by either
whole or segmental duplications/deletions of individual
chromosomes or produces complex abnormalities that impact
multiple chromosomes simultaneously. Losses and/or gains of
entire chromosomes is termed aneuploidy and results in copy
number variation (CNV) between cells. Besides containing a
different number of chromosomes than their chromosomally
normal (euploid) counterparts, aneuploid cells will also likely
experience gene dosage differences that manifests as genetic
variation (Kojima and Cimini, 2019; Stamoulis et al., 2019).
While thought to be hallmarks of tumor transformation and
cancer, CIN and aneuploidy are also frequently observed in
mammalian preimplantation embryos (Vanneste et al., 2009).
Aneuploidy can arise in the gametes during meiosis or after
fertilization from the mitotic divisions of early embryogenesis.
Unlike mitotic divisions in somatic cells, however, cleavage-stage
embryos increase in cell number without a change in overall size.
This largely occurs in the absence of new transcription until the
major wave of embryonic genome activation (EGA) around the
~4–8 cell stage in several mammals (Braude et al., 1988; Dobson
et al., 2004; Vassena et al., 2011; Asami et al., 2022). Thus, the first
three mitotic divisions are the most susceptible to chromosome mis-
segregation events. Depending on the stage at which it arises, a

mitotic error can be just as detrimental as a meiotic error and induce
embryo arrest or be surmounted in subsequent development. Even if
an aneuploid embryo reaches the blastocyst stage, however, it can
still fail to implant or result in spontaneous miscarriage following
implantation (Hassold et al., 1980; Schaeffer et al., 2004).

Our knowledge of mitotic chromosome mis-segregation largely
derives from somatic cells and includes relaxed cell cycle
checkpoints, premature loss or prolonged chromosome cohesion,
defective spindle attachments, and abnormal centrosome number
(Ganem et al., 2009; Soto et al., 2019) (Figure 1A). However, only the
mitotic checkpoint complex (MCC) has been investigated in greater
detail within the context of embryogenesis (Wei et al., 2011; Bolton
et al., 2016; Vazquez-Diez et al., 2019a; Brooks et al., 2022). At the
zygote stage, replication stress due to incomplete DNA replication
and early entry into mitosis also contributes to chromosome mis-
segregation (Palmerola et al., 2022). Following a mis-segregation
event, the chromosome(s) will become encapsulated in nuclear
envelope (NE) and form abnormal intracellular structures known
as micronuclei (MN) that are spatially distinct from the main
nucleus (Chavez et al., 2012; Daughtry et al., 2019) . In response
to micronucleation, a dynamic process called cellular fragmentation
(CF), whereby small extracellular units pinch off from blastomeres,
has been shown to occur and is unique to preimplantation
development (Antczak and Van Blerkom, 1999). We have also
demonstrated that whole chromosomes or chromosomal
segments may be sequestered into CFs (Chavez et al., 2012;
Daughtry et al., 2019), but whether this originated from MN or

FIGURE 1
Summary of meiotic and mitotic chromosome mis-segregation mechanisms and embryonic aneuploidy outcomes. (A) Known mechanisms of
mitoticmis-segregation from dividing somatic cells that have also been detected to some extent in cleavage-stage embryos from humans (Coonen et al.,
2004), NHPs (Daughtry et al., 2019), and livestock (Yao et al., 2018; Brooks et al., 2019; Brooks et al., 2022). This includes relaxed cell cycle checkpoints
that permit aberrations such as anaphase lagging of chromosomes, non-disjunction events due to premature loss or prolonged chromosome
cohesion, defective spindle attachments of chromosomes to microtubules, and abnormal centrosome number leading to multipolar divisions. (B) The
inheritance of a meiotic segregation error (a monosomy in this case) from the oocyte results in a 2-cell embryo with uniform aneuploidy, whereby each
daughter blastomere has the same karyotype (2N−1). (C)Mitotic chromosomemis-segregation in a zygote during the first cleavage division can be just as
detrimental as the inheritance of a meiotic error, producing a 2-cell embryo with blastomeres exhibiting different chromosomal losses (2N−1;
monosomy) or gains (2N + 1; trisomy) known as aneuploid mosaicism. (D)Mitotic errors occurring later in development beyond the 2-cell stage produce
embryos with euploid-aneuploid mosaicism, or those containing a mixture of both euploid and aneuploid blastomeres.
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was produced from a different process remains unknown. Because
they lack or have defective NE, the chromosomal material contained
within MN and CFs becomes highly susceptible to DNA breakage.
Despite this damage, embryos may continue to divide and exclude
any CFs, as well as non-dividing blastomeres, from participating in
blastocyst development (Daughtry et al., 2019). Upon blastocyst
expansion, the placental-derived trophectoderm (TE) layer becomes
mechanically constrained, causing the release of DNA into the
cytoplasm (Domingo-Muelas et al., 2023). In this review, we will
discuss how DNA elimination via CF and blastomere exclusion
could impact the overall chromosome composition of embryos and
what is known about MN rupture and DNA loss in somatic cells and
early embryogenesis.

Meiotic versus mitotic origin(s) of
aneuploidy in mammalian
preimplantation embryos

Using whole-genome approaches, it was shown that 50%–80%
of even high-quality cleavage-stage human embryos are aneuploid to
some extent (Vanneste et al., 2009; Johnson et al., 2010b; Chavez
et al., 2012; Chow et al., 2014; McCoy et al., 2015), which is major
contributor to in vitro fertilization (IVF) failure. Estimates of
aneuploidy in human blastocysts based on TE biopsy are less
than the cleavage-stage, but still quite high at 20%–40% (Johnson
et al., 2010b; Fiorentino et al., 2014; Popovic et al., 2018). By
inferring chromosome dosage from single-cell RNA-seq data, an
analysis of the morula-to-blastocyst transition suggested that the
aneuploidy frequency at this stage of development is probably closer
to 80% (Starostik et al., 2020). Indeed, a recent study used single-cell
DNA-seq (scDNA-seq) of human blastocysts to demonstrate
numerical and structural chromosome abnormalities in 82% of
the embryos (Chavli et al., 2024). A similarly high percentage of
aneuploidy is thought to occur in cleavage-stage embryos from
rhesus monkeys (Daughtry et al., 2019), but to a lesser extent in
bovine (Destouni et al., 2016; Hornak et al., 2016; Tsuiko et al., 2017)
and porcine embryos (Hornak et al., 2015), and 1%–4% of murine
embryos (Macaulay et al., 2015; Treff et al., 2016). To date, only
DNA-Fluorescence In Situ Hybridization of a subset of
chromosomes has been used to assess the frequency of
aneuploidy in cleavage-stage equine embryos (Rambags et al.,
2005). However, like bovine oocytes, equine oocytes are typically
matured in vitro, which is known to increase aneuploidy by itself
(Treff et al., 2016). Chromosomal mis-segregation in oocytes that
arises during meiosis is one of the primary sources of aneuploidy
and estimated to be around ~20% in young women, but this
percentage increases with maternal age (Hou et al., 2013; Gruhn
et al., 2019; Charalambous et al., 2022) (Figure 1B). However, there
is evidence that these meiotic errors can be corrected during oocyte
maturation by the extrusion of reciprocal aneuploid polar bodies
(PBs) (Hassold and Chiu, 1985; Forman et al., 2013; Treff et al.,
2016). In contrast, sperm typically exhibit an aneuploidy frequency
of ~1–2% that is not influenced by paternal age (Lu et al., 2012; Bell
et al., 2020). Although specific factors to meiotic mis-segregation
have been identified, much of our knowledge of mitotic mis-
segregation comes from somatic cells during tumorigenesis and
cancer progression. This is in spite of findings that mitotic errors in

cleavage-stage embryos are just as, or more, frequent as meiotic
errors and appear independent of both maternal age or fertility
status (Vanneste et al., 2009; Chavez et al., 2012; McCoy et al., 2015)
(Figures 1C, D).

Mechanisms of chromosome mis-
segregation during gametogenesis and
embryogenesis

Non-disjunction, or the failure of homologous chromosomes
(meiosis I) or sister chromatids (meiosis II) to properly separate, is
the most common cause of chromosome mis-segregation in oocytes
(Wartosch et al., 2021) (Figure 1B). While non-disjunction can
occur during both meiotic stages, non-disjunction events leading to
major aneuploidy issues such as uniform monosomy or trisomy
originate primarily frommeiosis I (Ghosh et al., 2009; Herbert et al.,
2015). Mitotic non-disjunction is also observed in embryos
following fertilization, but the failure of parental chromosomes to
properly migrate to the spindle poles during anaphase is thought to
be the most frequent mechanism for aneuploidy to arise during
cleavage divisions (Coonen et al., 2004; Daughtry et al., 2019; Brooks
et al., 2022) (Figure 1A). However, anaphase lagging of
chromosomes in somatic cells is often indicative of defects in
kinetochore-microtubule attachments and therefore, these are not
necessarily mutually exclusive events (Thompson and Compton,
2011). There is also evidence that incomplete DNA replication
during the S phase of the cell cycle and premature entry into
mitosis results in subsequent whole and segmental chromosome
errors at the zygote stage (Palmerola et al., 2022).

By monitoring the bipolar attachment of spindle microtubules
to kinetochores, the MCC prevents activation of the anaphase
promoting complex/cyclosome and delays mitotic progression
until stable attachments are established. The main components of
theMCC are evolutionarily conserved and include CDC20, as well as
the serine/threonine kinases, BUB1B/BUBR1, BUB3, and MAD2.
Unlike somatic cells, which require all three kinases to prevent
aneuploidy, gametes and embryos primarily rely on BUBR1/BUB1B
to ensure chromosome fidelity (Jeganathan and van Deursen, 2006;
Touati et al., 2015; Vazquez-Diez et al., 2019b; Brooks et al., 2022).
Moreover, because Bub1B/BubR1 has been shown to be maternally
inherited in Drosophila (Perez-Mongiovi et al., 2005) and early
cleavage divisions are largely under the control of maternal protein
and RNA until EGA (Braude et al., 1988; Dobson et al., 2004;
Vassena et al., 2011; Asami et al., 2022), BUBR1/BUB1B and other
cell cycle associated factors derived from the oocyte likely contribute
to maternal age related fertility decline (Qiu et al., 2018). Sperm also
provide a small number of transcripts at fertilization, but whether
these RNAs participate in EGA or other processes during the oocyte-
to-embryo transition is still under investigation (Sendler et al., 2013;
Corral-Vazquez et al., 2021). However, it has been shown that
certain sperm borne microRNAs regulate early mitotic timing in
human embryos and are required for the first cleavage division at
least in mice (Liu et al., 2012; Shi et al., 2020). The centrosome for the
first mitotic division(s) is also paternally inherited from the sperm in
most mammalian species except rodents and can still cause
aneuploidy via abnormal divisions (Sathananthan et al., 1991;
Schatten et al., 1991) (Figure 1A).
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CF is likely a response to chromosome mis-
segregation and micronuclei formation

Even though bipolar divisions are more likely to produce euploid
embryos that reach the blastocyst stage (Figure 2A), a segregation
error from anaphase lagging or another mechanism during mitosis
can still result in the formation of MN (Figure 2B). MN are frequently
detected in early cleavage-stage embryos from humans (Chavez et al.,
2012), nonhuman primates (NHPs) (Daughtry et al., 2019), horses
(Brooks et al., 2019), and cattle (Yao et al., 2018; Brooks et al., 2022;
Yao et al., 2022), but not in murine embryos at comparable levels until
the morula stage (Vazquez-Diez et al., 2016; Vazquez-Diez et al.,
2019b). Once formed, MN can sustain one of multiple fates, including
persistence in subsequent divisions, fusion with the primary nucleus
from which it arose, or relocation to an adjacent cell via a chromatin
bridge during anaphase (Vazquez-Diez et al., 2016; Brooks et al.,

2022). The appearance of MN in embryos is likely a precursor to CF
since MN may be detected in the absence of CF, but not vice versa
(Daughtry et al., 2019). Analogous to aneuploidy, the incidence of CF
varies across mammalian species, with ~50% of human, NHP, equine,
and porcine embryos exhibiting CF (Alikani et al., 1999; Antczak and
Van Blerkom, 1999; Tremoleda et al., 2003; Mateusen et al., 2005;
Daughtry et al., 2019), ~15% of bovine embryos undergoing CF
(Somfai et al., 2010; Sugimura et al., 2010), and murine embryos
rarely displaying CF unless experimentally induced (Dozortsev et al.,
1998; Chavez et al., 2014). CF has been shown to occur in vivo in
several mammals, including humans (Pereda and Croxatto, 1978;
Buster et al., 1985; Gjorret et al., 2003; Mateusen et al., 2005),
indicating it is not an artifact of in vitro culture, and is distinct
from the cell death-induced DNA fragmentation that can arise late in
preimplantation development (Hardy et al., 2001; Xu et al., 2001).
Despite indications that CF is evolutionary shared among some

FIGURE 2
Normal versus abnormal mitotic chromosome segregation and different mechanisms of DNA loss from embryos. A simplified model of normal
mitotic chromosome segregation in mammalian cleavage-stage embryos and mis-segregation induced DNA elimination up to the blastocyst stage in
humans (Chavez et al., 2012; Domingo-Muelas et al., 2023), NHPs (Daughtry et al., 2019), horses (Brooks et al., 2019), and cattle (Yao et al., 2018; Brooks
et al., 2022; Yao et al., 2022). (A)Normal mitotic chromosome segregation events from bipolar cleavage divisions are more likely to produce euploid
embryos that reach the blastocyst stage. (B) A segregation error from anaphase lagging or another mechanism during mitosis can still result in the
formation of MN. The appearance of MN in embryos is likely a precursor to CF since MNmay be detected in the absence of CF, but not vice versa. MN are
fragile and their nuclear envelope often ruptures, leading to the release of DNA into the cytoplasm. In other biological contexts, cytosolic DNA activates
the cGAS-STING DNA-sensing pathway, which in turn, induces an immune response through transcription of Type I Interferons (IFNs) and other
cytokines. (C) Multipolar divisions at the cleavage-stage often result in blastomere asymmetry, chaotic aneuploidy, and/or one or more cells lacking a
nucleus (empty blastomere). Although there are likely othermechanisms, CF during or following the abnormal divisionmay capture whole chromosomes
or chromosomal segments lost from blastomeres. The chromosome(s) contained within CFs lack a nuclear envelope and undergo DNA damage,
resulting in eventual DNA loss. In contrast to whole chromosomal mis-segregation, segmental errors most often emerge from improperly repaired
double-stranded DNA breaks. (D) Despite the presence of MN, CF, and/or non-dividing aneuploid blastomeres, certain cleavage-stage embryos will still
successfully reach the blastocyst stage. However, these entities are often subjected to extensive DNA damage. Upon blastocyst formation, chromosome-
containing CFs may be expelled to the perivitelline space, while the arrested blastomeres are excluded into the blastocoel cavity. Blastocyst expansion
mechanically constrains the TE layer, causing nuclear budding and the shedding of DNA into the cytoplasm, which is exacerbated by TE biopsy. Single-
cell analyses of disassembled blastocysts and co-isolation of DNA and RNA from the same individual cell will assist in determining the impact of
chromosome loss on the embryo and the extent of chromosomalmosaicism between the TE and ICMwhen cell identity is confirmed by gene expression.
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mammals, comparative studies focused on the mechanistic details of
CF and its relationship to aneuploidy are still lacking.

Whole chromosomes and/or segmental
DNA may be contained within CFs

While CF was first described in the 1980s as a morphological
indicator of an embryo with low implantation potential (Trounson
and Sathananthan, 1984; Alikani et al., 1999), the significance of CF
and how it impacted embryogenesis was only recently determined.
In 1999, the timing and pattern of CF in human embryos was
examined and the authors concluded that the earlier in
preimplantation development CF occurred, the worse the
outcome (Antczak and Van Blerkom, 1999). Four basic patterns
of CF were also proposed: (1) a single monolayer of small CFs on the
surface of one blastomere with no apparent reduction in cell size, (2)
the presence of multiple layers of CFs accompanied by a significant
reduction in blastomere size, (3) complete disintegration of one or
more blastomeres into CFs, and (4) a limited number of small CFs
scattered over several blastomeres with no indication of which cell(s)
they came from. The findings also suggested that the release of large
fragments at the early cleavage-stage may deprive blastomeres of
vital proteins and organelles, hindering further development. Initial
attempts to selectively remove CFs by microsurgery suggested that
this procedure improved blastocyst formation and IVF outcomes
(Eftekhari-Yazdi et al., 2006; Keltz et al., 2006), but other studies
reported no benefit from fragment removal (Halvaei et al., 2016).
Ultrastructure analyses of both in vitro and in vivo derived embryos
revealed that mitochondria were the most abundant organelle in CFs
(Pereda and Croxatto, 1978; Halvaei et al., 2016), and
immunostaining suggested that there was DNA in some
fragments (Chavez et al., 2012). It was not until the contents of
CFs were examined by next-generation sequencing and the entire
embryo reconstructed at a single-cell level, however, that this was
confirmed. Using rhesus macaque embryos as a model for human
preimplantation development, our group demonstrated that
fragments may encapsulate whole chromosomes or chromosomal
segments lost from blastomeres (Daughtry et al., 2019) (Figure 2C).
There was no preferential sequestering of certain chromosomes as
both small and large chromosomes were affected, and high
variability in the size of DNA segments, with a slightly greater
propensity for maternal chromosomes to be encapsulated. However,
while ~18% of the embryos had chromosome-containing fragments,
only ~6% of all CFs contained DNA detectable by sequencing. Given
that most embryos with CF exhibited non-reciprocal chromosome
losses not found in other cells or fragments (Daughtry et al., 2019),
this suggested that CF is not efficient at removing mis-segregated
chromosomes or there is an alternative fate for MN.

Time-lapse imaging uncovers the
mechanism(s) of chromosome
encapsulation by CFs

Although many aneuploid embryos will arrest at the cleavage-
stage, some will still form blastocysts and may even appear
morphologically indistinguishable from euploid embryos,

especially when assessed at static time points (Magli et al., 2000;
Dupont et al., 2010). Thus, the use of time-lapse imaging to monitor
preimplantation embryogenesis in real-time has enabled the
tracking of morphological events indicative of developmental
potential such as the timing, polarity, and symmetry of mitotic
divisions, as well as the fate of CFs (Daughtry and Chavez, 2018).
Time-lapse imaging has also shown that a fragment can be
reabsorbed by the original blastomere from which it arose,
providing an opportunity to restore euploidy (Chavez et al.,
2012). If a chromosome-containing fragment fuses with a
neighboring blastomere that is euploid, however, this could have
detrimental effects on the embryo (Hardarson et al., 2002).When we
evaluated whether there were imaging parameters indicative of
chromosome sequestration by CFs in our study, there was a clear
correlation between this event and multipolar divisions at the zygote
or 2-cell stage (Daughtry et al., 2019). Consequently, the multipolar
division often resulted in blastomere asymmetry, chaotic
aneuploidy, and/or one or more cells lacking a nucleus
(Figure 2C). In extreme cases of chaotic aneuploidy, the
multipolar division produced embryos where every cell had
multiple chromosomes affected in what appeared to be a random
pattern. Not all embryos with chromosome-containing CFs
exhibited multipolar divisions, however, suggesting that there are
other mechanisms leading to chromosome encapsulation and
potential loss.

Mitotic mis-segregation events often
lead to chromosomal mosaicism

Unlike mitotic errors at the zygote stage (Figure 1C), a mitotic
mis-segregation event that arises in 2-cell embryos or later in
development can produce cells with diverse karyotypes known as
chromosomal mosaicism (Figure 1D). Euploid-aneuploid mosaic
embryos containing a mixture of both chromosomally normal and
abnormal cells are the most common (Chuang et al., 2020), but there
are also reports of embryos with mixoploidy, whereby cells differ
according to whether they are haploid, diploid, or polyploid
(Destouni et al., 2016; Carson et al., 2018; Daughtry et al., 2019;
De Coster et al., 2022). However, these types of errors typically go
undetected and/or are classified as euploid unless parental DNA is
inputted to assign chromosomes as either maternal or paternal.
While it has been known for quite some time that the smaller
chromosomes are more susceptible tomis-segregation events (Smith
et al., 1998), recent studies suggest that mosaicism
disproportionately impacts large chromosomes (Chuang et al.,
2020). Chromosomal rearrangements also often emerge that were
produced from improper repair of double-stranded DNA breaks
(Burssed et al., 2022) (Figure 2C). This mis-repair leads to DNA
damage and segmental errors that may still impact implantation
potential, resulting in a higher likelihood of miscarriage and reduced
live birth rate if transferred (Zore et al., 2019). Several studies have
now shown that segmental aneuploidy is more often mitotic in
origin, mostly paternally-derived, and tends to occur within distinct
chromosomal regions (Chavez et al., 2012; Babariya et al., 2017;
McCarty et al., 2022; Palmerola et al., 2022). Regardless of whether
whole and/or partial chromosomes are affected, the DNA will
become subjected to further damage due to the fragility of the
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NE that encapsulates the mis-segregated material, which can have
significant consequences for embryo development.

MN rupture and the release of cytosolic DNA
is irreversible and potentially catastrophic

Studies in cancer cells have shown that theNE ofMN is quite fragile
for a variety of reasons, including premature chromatin condensation in
MN, asynchrony in the timing and rate of DNA replication between
MN and the primary nucleus, and the failure of MN to import key
proteins such as nuclear pore complexes necessary to maintain NE
integrity (Xu et al., 2011; Crasta et al., 2012; Liu et al., 2018). This
eventually results in MN rupture (Figure 2B), leading to the irreversible
loss of nuclear-cytoplasmic compartmentalization and a greater
propensity for chromothripsis to occur (Hatch et al., 2013).
Chromothripsis is a catastrophic mutagenesis process, whereby
chromosomes are shattered and randomly reassembled, promoting
somatic cell tumorigenesis and cancer genome evolution (Cortes-
Ciriano et al., 2020; Shoshani et al., 2021). Similar events are also
known to arise in the germline of patients with certain congenital
disorders and there are strong indications of a paternal bias in its origin
(Kloosterman and Cuppen, 2013).While hallmarks of this process have
been observed during early embryogenesis (Pellestor, 2014; Pellestor
et al., 2014), whether preimplantation embryos are equally afflicted by
chromothripsis is difficult to determine given the depth of genome
coverage and large amplicon size needed to accurately call such small
structural variants.

Upon nuclear rupture in other biological contexts, the genetic
material contained within MN is released into the cytoplasm,
resulting in the activation of the cyclic GMP-AMP (cGAS)-cyclic
GMP-AMP receptor stimulator of interferon genes (STING) DNA-
sensing pathway. Although cGAS typically resides in the cytoplasm,
it can also be observed in the nucleus and plasma membrane
(Barnett et al., 2019; Volkman et al., 2019), suggesting that its
subcellular location may confer specificity. STING is normally
present in the endoplasmic reticulum, but transferred to the
Golgi after activation, where it activates the TANK-binding
kinase 1 (TBK1) (Mukai et al., 2016; Ogawa et al., 2018). In turn,
TBK1 phosphorylates interferon regulatory factor 3 and nuclear
factor kappa-light-chain-enhancer of activated B cells (NFκB) (Yum
et al., 2021), which translocate from the cytoplasm to the nucleus
and induce transcription of type I Interferons and other cytokines
(Sun et al., 2013; Wu et al., 2013). As part of the innate immune
response, cGAS-STING typically provide protection from the
invasion of pathogenic DNA during viral or microbial infections
(Mackenzie et al., 2017; Yu and Liu, 2021). However, the cGAS-
STING pathway can also be activated by the presence of endogenous
DNA produced from chromosomal instability in tumorigenesis and
cancer progression (Bakhoum and Cantley, 2018; Bakhoum et al.,
2018). Given the high incidence of MN observed in cleavage-stage
embryos from most mammals, it seems likely that cGAS-STING
would serve as a surveillance mechanism for DNA release in this
context as well, but this is still speculative (Figure 2B). Additional
research suggested that the cGAS-STING pathway may also play a
role in autophagy, senescence, and apoptosis (Yang et al., 2017; Yang
et al., 2019; Zierhut et al., 2019), processes that also frequently occur
during preimplantation development.

DNA is eliminated from the embryo by
multiple mechanisms at the blastocyst stage

Despite the presence of MN, CF, and/or aneuploidy, cleavage-
stage embryos may continue to divide and still successfully reach
the blastocyst stage. This suggests that embryonic chromosomal
instability can be overcome, but the frequency and underlying
mechanism(s) of such events are unknown. Our group
demonstrated that chromosome-containing CFs which persisted
throughout preimplantation embryogenesis are often expelled to
the perivitelline space prior to blastocyst formation (Daughtry
et al., 2019) (Figure 2D). In addition, we also observed that non-
dividing blastomeres from the early cleavage-stage may be
excluded to the blastocoel cavity during the morula-to-
blastocyst transition. Following CNV analysis, we determined
that these excluded blastomeres were highly chaotic, with
multiple chromosome losses and gains, and immunostaining
revealed abnormal nuclear morphology with extensive DNA
damage (Daughtry et al., 2019). A previous report showed that
E-cadherin expression is absent or altered in the excluded
blastomeres of human embryos with no or abnormal
compaction, suggesting a disruption in cell-cell adhesion
(Alikani, 2005). Another study with reconstituted mouse
embryos containing a mixture of control and hyperploid
blastomeres demonstrated that the latter exhibited slower cell
cycle progression and frequent DNA fragmentation beginning
at the 16-cell stage (Pauerova et al., 2020). However, we
observed selection against blastomeres as early as the 2- to 8-
cell stage when embryos are most susceptible to chromosome mis-
segregation events, which indicates that these previously observed
changes were the consequence rather than the cause of aneuploidy.
Nevertheless, the extruded fragments and blastomeres would
presumably be left behind upon embryo hatching from the zona
pellucida and prevented from participating in further
development.

A recent study also showed that blastocyst expansion
mechanically constrains the TE layer, causing nuclear budding
and the shedding of DNA into the cytoplasm, and that this was
exacerbated by biopsying 5–10 TE cells for preimplantation genetic
testing of aneuploidy (Domingo-Muelas et al., 2023) (Figure 2D).
Thus, similar to fragment removal (Halvaei et al., 2016), TE biopsy
may provide no benefit especially if the biopsied cells are not
representative of the embryo overall (Gleicher et al., 2017; Wu
et al., 2021; Ren et al., 2022), or actually harmful for development by
causing further DNA loss. Whether preferential allocation of
aneuploid cells to the TE layer makes these cells more susceptible
to DNA elimination even in the absence of TE biopsy remains to be
determined, but preliminary evidence in human blastocysts suggests
that there is no difference in the frequency of aneuploidy in relation
to cell lineage by scDNA-seq (Chavli et al., 2024). However, the
study did observe that complex chromosomal abnormalities are
more commonly observed in TE cells than the inner cell mass
(ICM). For this work, the TE and ICM were separated by biopsy
prior to disaggregation into single cells, which can result in cross
contamination between cell types due to cytoplasmic strings that
connect the ICM to TE cells (Ebner et al., 2020; Joo et al., 2023).
Thus, additional studies are needed to confirm each lineage by
isolating both DNA and RNA from the same individual cell for
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scDNA-seq and gene expression (Macaulay et al., 2015; Macaulay
et al., 2016), respectively.

Conclusion and future directions

CIN and aneuploidy are remarkably common in preimplantation
embryos, but difficult to accurately detect due to differences in the
mechanism(s) of meiotic versus mitotic errors, extent of chromosomal
mosaicism, and the response to chromosome mis-segregation through
MN formation and the elimination of DNA by one of the above-
described processes. Further work is needed to connect the intracellular
dynamics of chromosome loss with measurable morphological events
such as mitotic timing, MN formation, CF incidence, and blastomere
asymmetry to noninvasively assess embryo potential. Ultimately, the
goal will be to identify possible therapeutic targets to prevent or alleviate
aneuploidy altogether, which may be difficult to accomplish if CIN is
inherent to natural conception and aneuploidy occurs at a similar
frequency in vitro and in vivo.
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