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Humans and wildlife, including domesticated animals, are exposed to a myriad of
environmental contaminants that are derived from various human activities,
including agricultural, household, cosmetic, pharmaceutical, and industrial
products. Excessive exposure to pesticides, heavy metals, and phthalates
consequently causes the overproduction of reactive oxygen species. The
equilibrium between reactive oxygen species and the antioxidant system is
preserved to maintain cellular redox homeostasis. Mitochondria play a key
role in cellular function and cell survival. Mitochondria are vulnerable to
damage that can be provoked by environmental exposures. Once the
mitochondrial metabolism is damaged, it interferes with energy metabolism
and eventually causes the overproduction of free radicals. Furthermore, it also
perceives inflammation signals to generate an inflammatory response, which is
involved in pathophysiological mechanisms. A depleted antioxidant system
provokes oxidative stress that triggers inflammation and regulates epigenetic
function and apoptotic events. Apart from that, these chemicals influence
steroidogenesis, deteriorate sperm quality, and damage male reproductive
organs. It is strongly believed that redox signaling molecules are the key
regulators that mediate reproductive toxicity. This review article aims to
spotlight the redox toxicology of environmental chemicals on male
reproduction function and its fertility prognosis. Furthermore, we shed light
on the influence of redox signaling and metabolism in modulating the
response of environmental toxins to reproductive function. Additionally, we
emphasize the supporting evidence from diverse cellular and animal studies.
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Introduction

Environmental chemicals, such as pesticides, are widely used in
agriculture and public health protection programs (Hoffman et al.,
2000). Over 11,000 pesticides are commercially marketed in
European countries (Jeong et al., 2012; Darko et al., 2017) for
different purposes. The worldwide usage of pesticides is mainly
applied to maximize yield, although they also contaminate food,
water, and the environment (El-Nahhal, 2004). Many pesticides
have been reported to have detrimental effects on human health and
cause environmental problems (Organization, 1990; Alewu and
Nosiri, 2011). However, some of them are banned by regulating
authorities (Alewu and Nosiri, 2011). The interaction of pesticides
with humans and animals occurs via different routes, such as skin
contact, ingestion, and inhalation. Some precautionary measures
must be considered, such as the pesticide group, length and exposure
route, and individual status. After ingestion, the pesticide can be
metabolized, eliminated, and finally stored in body fat
(Organization, 1990; Alewu and Nosiri, 2011). The negative
impact of pesticides has been reported on health, causing
reproductive, hormonal, and other problems (Sanborn et al.,
2007; Mnif et al., 2011), while the residues of pesticides have
been documented in various food items and animal feeds
(Chourasiya et al., 2015). It is worth noting that various practices
cannot remove pesticide residues (Reiler et al., 2015), and in many
cases, the concentration does not exceed the safe limits (Nougadère
et al., 2012; Reiler et al., 2015). However, a safe limit may also pose a
threat to health due to the composition of more than one chemical
substance with synergistic effects (Organization, 1990; Lu et al.,
2015). Evidence of pesticide residues has also been documented in
human breast milk, possibly due to prenatal exposure (Damgaard
et al., 2006; Lu et al., 2015).

Evidence has shown that numerous pesticides and their
metabolites can be considered entities that can disrupt endocrine
functions (Zhang et al., 2016). Such interactions can influence
normal physiology and negatively impact developmental,
reproductive, endocrine, and other systems (Sathyanarayana
et al., 2012; Büyükgebiz, 2015). Moreover, chlorinated
compounds are known as endocrine-activating pesticides, for
instance, hexachlorobenzene (HCB), hexachlorocyclohexane
(HCH), dichlorodiphenyltrichloroethane (DDT), and its
metabolite, dichlorodiphenyldichloroethylene (DDE). Current
epidemiological and other aspects have documented higher
evidence of male reproductive issues associated with cancer in
the testicles, lower sperm production, and other malformations in
the genitourinary system (Mendiola et al., 2014). The latter
anomalies disrupt the endocrine system due to the use of
pesticides in agriculture and, in turn, cause cryptorchidism
(Weidner et al., 1998; Fernandez et al., 2007), hypospadias
(Kristensen et al., 1997; Kraft et al., 2010), and micropenis
(Gaspari et al., 2011; Gaspari et al., 2012). Collectively, these
aberrations make organisms susceptible to testicular dysgenesis
syndrome (Skakkebaek et al., 2001).

Phthalates are chemicals widely used as plasticizers in consumer
products. Their enormous usage has drawn attention to their health
hazard effects. The literature has demonstrated that phthalate
exposure causes various disorders that significantly affect
reproductive function (Benjamin et al., 2017). A serious health

concern is that reproductive problems are increasing worldwide,
such as cancers due to hormones. Back in 2015, approximately 12%
of couples had infertility issues globally, which resulted in reduced
fecundity (Kumar and Singh, 2015). During the last five decades, the
sperm concentration has been reduced to 32.5%. The main cause of
reproductive problems may be due to phthalates (Sengupta et al.,
2018). There is a dire need to focus on fertility-related problems by
better understanding of the phthalate mechanism and finding
possible mitigation approaches.

Environmental toxicants augment cellular and molecular
mechanisms that may vary with age, chronicity, and dose of
exposure. Mitochondria are the central part responsible for
regulating several functions of metabolic and cellular signaling,
which coordinate to maintain cell survival and homeostasis.
Disruption in the biological system due to environmental
toxicants influences these events and eventually causes adverse
effects (Duarte-Hospital et al., 2022). The impact of
environmental toxicants on male reproduction is illustrated
in Table 1.

Keeping in view the aforementioned information, it is pivotal to
review environmental toxicant-regulated reproductive toxicology.
Emphasis is also placed on the mechanistic approaches to how redox
sensors are involved in reproductive toxicity and their evidence in
different animal models. While information about reproductive
toxicants remains limited, there is a need to consolidate state-of-
the-art knowledge to enhance our understanding and develop
targeted therapeutic approaches in the near future.

Disruption in the redox status

Reactive oxygen species (ROS) are the byproducts of cellular
metabolism, produced from a variety of sources. The oxygen
molecules are effectively used in mitochondria. Oxygen leakage is
responsible for the production of superoxide anion radicals, which
can react with other radicals to produce nitric oxide from reactive
nitrogen species (RNS). RNS are nitrogen-comprising compounds
such as peroxynitrite anion, nitroxyl ion, and nitric oxide.
Irrespective of their physiological role, excessive formation of
RNS causes nitrosative stress, which can have adverse effects on
the male reproductive system (Sikka, 2001; Lee and Cheng, 2004;
Pacher et al., 2007). Superoxide anion and hydrogen peroxide can
form hydroxyl radicals. Similarly, the superoxide anion combines
with nitric oxide (NO) to form peroxynitrite (Aon et al., 2012).
Superoxide and byproducts of lipid peroxidation are radicals that are
strong stimulators of mitochondrial uncoupling proteins,
autophagic engulfment, and signaling molecules that have
important functions in differentiation, adhesion, migration, and
cell survival. The superoxide level was reported to be higher in
mitochondria than in the cytoplasm (Cadenas and Davies, 2000).
The superoxide anion is short-lived and membrane-impermeable,
bearing a strong capacity to damage lipids, proteins, and
mitochondrial DNA. However, superoxide breaks down into
hydrogen peroxide either spontaneously or with the superoxide
dismutase (SOD) enzyme. Hydrogen peroxide activates the redox-
sensitive pathways in enormous cellular functions (Skakkebaek et al.,
2001; Benjamin et al., 2017). Mitochondria encompass potent
enzymatic and non-enzymatic antioxidant defenses. Glutathione
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is a strong intracellular thiol used in scavenging ROS, xenobiotics,
and mitochondrial GSH, which constitutes 10%–15% of total
cellular GSH (Lash, 2006). Once GSH is oxidized, it forms
oxidized glutathione (GSSG), which can be reduced by
glutathione reductase to maintain cellular redox status. The SOD
enzyme dismutase superoxide into hydrogen peroxides and then
converted into molecular oxygen and water through the catalase
enzyme or glutathione peroxidase-1, seleno-enzyme. These enzymes
convert hydrogen peroxide into water via the oxidation of GSH to
GSSG (Cole-Ezea et al., 2012).

Environmental toxicants and sperm quality

ROS are the byproducts of oxygen metabolism that are crucial
for cellular homeostasis (Sies and Jones, 2020). Previous research has
shown that environmental toxins cause oxidative stress via the
overproduction of ROS. ROS plays a key role in the defense
mechanism against a pathological milieu, but overwhelming
production can have deleterious effects on tissues (Puppel et al.,
2015). The function of ROS in male infertility is observed due to
defective sperm production, whereas a greater amount of ROS
damages the sperm plasma membrane and eventually causes
sperm dysfunction (Kefer et al., 2009). The semen is well-
equipped with enzymatic and non-enzymatic antioxidants, which
coordinately work to ensure maximum protection from ROS effects.
The main sources of ROS in the semen are mitochondria, immature
sperm cells, leukocytes, and bacterial byproducts such as cytokines
and bacterial and viral infections. It has been noted that ROS plays
an essential role in sperm capacitation, acrosome reaction,
mitochondrial stability, and sperm motility. Spermatozoa consist
of poly-unsaturated fatty acids, which give them delicate
appearances and make them extremely vulnerable to oxidative
attack. Once the ROS damage to the sperm plasma membrane
occurs, it is oxidized by lipid peroxidation; however, the cytoplasm
contains low levels of enzymes that are unable to neutralize high
levels of ROS (Walczak-Jedrzejowska et al., 2013). Sperm lipid
peroxidation results in the loss of membrane integrity and
enhances permeability, inactivation of cellular enzymes, DNA
damage, and cellular apoptosis. As a consequence, it reduces
sperm count, activity, and motility and causes abnormal

morphology (Fraczek and Kurpisz, 2005). The effect of
environmental toxicants on male reproduction is shown in Figure 1.

Male infertility can be assessed through the sperm quality index.
Toxin exposure reduces sperm quality and enhances cryptorchidism
in infants. In dogs, long-term reduced sperm quality was noticed due
to the high risk of cryptorchidism. Lea et al. (2016) has reported the
evidence of di (2-ethylhexyl), phthalate (DEHP) and organochloride
in dog testes and in commercial feed. Polychlorinated biphenyl 153
(PCB153) and DEHP at various levels in humans and dogs resulted
in DNA damage and reduced sperm motility (Sumner et al., 2019).
Epidemiological evidence for PCB, triclosan, and bisphenol A (BPA)
has reported adverse effects on seminal plasma, resulting in poor
semen quality (Albert et al., 2018; Mantzouki et al., 2019). Wang
et al. (2019) documented enhanced urinary phthalates that are
linked to humans with low sperm quality due to a variation in
metabolic seminal plasma.

Exposure of rodent spermatozoa to BPA resulted in reduced
sperm quality parameters (Rahman et al., 2015). A higher level of
tyrosine phosphorylation in sperm regulates protein-dependent
kinase (PKA), which facilitates the acrosome reaction. Exposure
to BPA alters fertility-related proteins that trigger immature
acrosome reactions, leading to a decline in fertility and embryo
survival (Rahman et al., 2015). In addition, BPA exposure resulted in
undesirable effects on sperm features due to oxidative stress and
DNA damage (Ikhlas and Ahmad, 2020). Other studies have
reported that human spermatozoa, when exposed to dibutyl
phthalate (DBP) and monobutyl phthalate (MBP), suppressed
sperm tyrosine phosphorylation that takes part in sperm
activeness (Xie et al., 2019). Exposure to DBP in treating
inflammatory bowel disease (IBD) resulted in different mRNA
expressions in sperm with oxidant production and DNA damage
(Estill et al., 2019). Another compound, chlorothalonil, causes
reduced boar sperm motility and enhanced apoptosis (Zhang
et al., 2019a).

Alteration in steroidogenesis by
environmental chemicals

Previous literature has revealed that a variety of environmental
toxicants alter reproduction via modifications in the hormonal

TABLE 1 Effect of environmental toxicants on male reproduction.

Toxicant Toxic effect Animal model Reference

2,2-Bis(4-chlorophenyl)-1,1-
dichloroethylene (DDE)

Impairment of mitochondrial function in the testis Rat (in vivo) Mota et al. (2011)

Bisphenol A (BPA) Deformation of seminiferous tubules, apoptosis in testes, and decreased
spermatozoa in offspring

In vivo experiments in
mice

Wei et al. (2019)

Diethylhexyl phthalate (DEHP) Reduced quality parameters Dog (in vivo) Lea et al. (2016)

Polychlorinated biphenyl 153 (PCB 153) Influenced sperm quality index Dog (in vivo) Lea et al. (2016)

1,2-Dibromo-3-chloropropane (DBCP) ROS inducer, reduced germ cell viability, and eventually, sperm
production

Human (in vitro) Easley IV et al.
(2015)

2-Bromopropane (2-BP) Overwhelmed ROS, apoptosis of germ cells, and minimized sperm
viability

Human (in vitro) Easley IV et al.
(2015)

Phthalate mixtures Prenatal exposure altered the testicular steroidogenic gene Mice (in vivo) Barakat et al. (2019)
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system (McLachlan, 2016; Louis et al., 2018). In particular, toxicants
influence estrogenic and anti-androgenic activities and eventually
impair reproduction. It suggests that the physiology of hormones is
influenced by environmental toxicants (Adoamnei et al., 2018;
Rehman et al., 2018). For example, the anti-androgenic or anti-
estrogenic properties of BPA influence hormonal balance and
reduce semen production in humans with increased urinary BPA
levels (Lassen et al., 2014). Disruption in the hormonal system due to
toxicants is responsible for declining protein and steroid hormone
levels in humans (Adamkovicova et al., 2014; Ren et al., 2020).

Environmental toxicants possess the ability to manipulate LH
receptors (LHRs) and subsequently influence testicular
steroidogenesis (Wang et al., 2017). For example, PFOS and
PFOA bind with LH receptors and suppress testosterone
synthesis (Foresta et al., 2018). Exposure to different
environmental chemicals reduces LHRs, affects downstream
signaling, and suppresses steroidogenesis enzymes (Pogrmic-
Majkic et al., 2016; Wang et al., 2017). Reduced expression of
StAR and suppression of the P450 SCC (mitochondrial
cholesterol side-chain cleavage) enzyme is an efficient mechanism
involved in the anti-steroidogenesis effect of environmental
toxicants (Hong et al., 2016; Paul et al., 2017). Environmental
toxicants directly suppress a variety of steroidogenesis enzymes
but indirectly suppress them via oxidants (Saradha et al., 2008;

Sheweita et al., 2016). Previous studies elaborate that oxidative stress
is an indirect factor that negatively regulates male fertility due to
environmental toxicants (Darbandi et al., 2018). An elevated
concentration of ROS suppresses hormonal enzymes and triggers
testicular apoptosis, affecting steroidogenesis and spermatogenesis
(Quan et al., 2017; Shi et al., 2018). The molecular mechanism of
toxins that influenced male reproduction is shown in Figure 2.

Leydig cells contribute to testosterone synthesis via
communication with LH (Odermatt et al., 2016). Testosterone is
the dominant male hormone accountable for sexual vigor and other
secondary sexual characteristics. Disruption in Leydig cell viability
affects testicular steroidogenesis and may result in disturbances in
the endocrine functions of spermatogenesis and, thus, impair
fertility. Mouse Leydig cells exposed to Aroclor 1242 resulted in
decreased viability of Leydig cells and influenced testosterone
synthesis by suppressing HSD and 17β-HSD enzymes (Aydin
and Erkan, 2017). Organochlorines are known to modify the
testicular StAR protein androgen-binding protein and stimulate
3β-HSD and 17β-HSD with increased H2O2 in adult male rats
(Saradha et al., 2008). It has been shown that these substances
suppress steroidogenesis, which affects Sertoli cell function and
produces oxidant products (Saradha et al., 2008). Long-term
exposure to arsenite causes immune-stimulant responses in the
testis, which influences steroidogenic metabolism (de Araújo

FIGURE 1
Effect of environmental toxicants on male fertility.
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Ramos et al., 2017). The chemical structures of the environmental
toxicants are displayed in Figure 3.

Environmental chemicals and male
reproductive organs

The environmental toxicants affect various reproductive organs,
but the testis is considered the most vulnerable target.
Spermatogenesis and steroidogenesis are hampered by the
increased expression of estrogen receptors in the testis, which
may affect the testis’ ability to withstand environmental toxins
(Krzastek et al., 2020). Fenvalerate disrupts the spermatogenic
cycle in rats close to puberty through germ cell apoptosis (Zhang
et al., 2018). Reduced germ cell viability has been confirmed by
in vitro exposure to DBCP and 2‒BP in human spermatogenic
models through oxidant products and apoptosis (Easley IV et al.,
2015). Perfluorinated compounds (PFCs) were examined in a study
by [68], and a connection between blood and semen damage was
found. Research has demonstrated alterations in sperm indices in
conjunction with further sperm damage in PFC-positive individuals.
It has, therefore, been discovered that PFC can have detrimental
effects on DNA and disrupt meiotic segregation by influencing
spermatogenesis (Governini et al., 2015).

The Sertoli cells are localized in the testes, nurturing germ cells
across the sperm cycle. A particular ratio of Sertoli and germ cells is
required for spermatogenic sustainability and metabolism (Rebourcet
et al., 2017). Exposure to cypermethrin resulted in an alteration in the
epithelial size and dedifferentiation of testis Sertoli cells and, thus,
negatively impacted Sertoli cell functions in mice (Rodríguez et al.,
2017). In addition, pollutants impact the molecular communication
between germ cells and Sertoli cells (Gao et al., 2015). The degradation of
Sertoli–germ cells in rats subjected to endosulfan and organochlorine led
to oxidative stress and deteriorated gamete quality (Rastogi et al., 2014).
Earlier studies revealed that DDE reduces testicular mitochondrial
bioenergetic indices and their role in male fertility (Rastogi et al., 2014).

Rats exposed to BTB and cultivated Sertoli cells have been shown to
be affected by exposure to Aroclor 1254 (a commercial PCB
combination), which influences junctional proteins via the MAPK
pathway. Using in vitro and in vivo models of PFOS on BTB,
increased BTB permeability, ATF2 phosphorylation, and matrix
metalloproteinase 9 expression were observed upon PFOS induction,
together with decreased levels of occludin and connexin 43. These
findings show that p38/ATF2/MMP9 works against PFOS-mediated
BTB disruption (Qiu et al., 2016). Human Sertoli cells treated with BPA
and cadmium chloride (CdCl2) were observed in influencing Sertoli cell
adhesive function through changes in the F-actin network (Xiao et al.,
2014). Another study on Sertoli cells in humans exposed to MBP

FIGURE 2
Mechanism of action of environmental toxicants on male fertility.
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showed decreased expression of the androgen receptor (AR), occludin,
ZO-1, and β-catenin (de Freitas et al., 2016). Thus, it shows that MBP
alters BTB activity via the AR-dependent pathway (de Freitas et al.,
2016). The results unveiled that junctional proteins are more vulnerable
to the harmful effects of various environmental toxins. Dankers et al.
(2013) demonstrated that BPA, TBBPA, DEHP, MEHP, PFOA, and
PFOS influence ATP-associated transporters in BTB, indicating
reduced levels of testosterone in mouse Leydig cells. The
environmental toxicant-induced apoptotic mechanism potentiated by
oxidative stress is shown in Table 2.

Mitochondria and environmental toxicants

The mitochondria are an essential cellular component involved
in energy metabolism, regulating signaling pathways, the generation
of metabolites, calcium storage, steroid synthesis, and apoptosis

(Coffman et al., 2009; Marchi et al., 2018). Therefore, they are an
essential entity for cell survival and homeostasis.

The respiratory chains in mitochondria are composed of five
transmembrane enzyme complexes; they work together with
electron transfer carriers, ubiquinone, and cytochrome c to
generate ATP during oxidative phosphorylation (Brand and
Nicholls, 2011). In this process, electrons leak from complexes I,
II, and III and react with oxygen to generate superoxide. The
superoxide radical is converted into hydrogen peroxide through
the superoxide dismutase enzyme. Hydrogen peroxide and
superoxide radicals are known as mitochondrial ROS (Dunn
et al., 2015; Zia et al., 2022).

These complexes can easily be targeted by environmental
toxicants that alter their expression levels and activities (Brand
and Nicholls, 2011). During oxidative phosphorylation, the
complexes help maintain the electrochemical gradient through a
sequence of redox reactions. The electrochemical gradient forms the

FIGURE 3
Chemical structure of different environmental toxicants. Abbreviations and categories Pesticides: dichlorodiphenyltrichloroethane (PFOA); 2-
bromopropane (2-BP); perfluorochemical (PFC); hexachlorobenzene (HCB); dichlorodiphenyldichloroethylene (DDE); 1,2-dibromo-3-chloropropane
(DBCP); perfluorochemicals (PFC); 2,2’,4,4’,5,5’-hexachlorobiphenyl (PCB 153); and dichlorodiphenyltrichloroethane (DDT) and its metabolite,
dichlorodiphenyldichloroethylene (DDE). Phthalates or plasticizers: di(2-ethylhexyl) phthalate (DEHP); dibutyl phthalate (DBP); monobutyl phthalate
(MBP); mono(2-ethylhexyl) phthalate (MEHP); monobutyl phthalate (MBP); and bisphenol A (BPA). Heavy metals: cadmium chloride (CdCl2). Mycotoxins:
zearalenone (ZEA).
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mitochondrial membrane potential, which is compulsory for energy
production. An interruption in these complexes perturbs electron
transfer carriers or proteins and causes damage to membranes and
external chemicals that can alter the membrane potential, which
eventually influences ATP and provokes cell death (Sakamuru et al.,
2016; Zorova et al., 2018).

Alteration in oxidative phosphorylation in mitochondrial defects,
often known as downstream effects, was measured as a biomarker.
The mitochondrial oxidation and generation of 8-OHdG are the key
free radical inducers of DNA lesions (Ziech et al., 2010). Elevated
levels of 8-OHdG are an indicator of DNA damage and are referred to
as markers of mitochondrial dysfunction (Valavanidis et al., 2009).

Accelerated ROS production can threaten mitochondrial
biomolecules, trigger mitochondrial DNA (mtDNA) mutations,
change membrane permeability and structure, and alter calcium
ion homeostasis (Gao et al., 2003; Blajszczak and Bonini, 2017).
Once the mtDNA is influenced, it possesses less repair capacity than
the nucleus (Phillips et al., 2014). When the persistent mtDNA
damage is significant, it may have a downstream detrimental effect
on the mitochondria.

The calcium concentration plays an essential role in regulating
membrane potential, ROS homeostasis, and oxidative
phosphorylation in mitochondria (Giorgi et al., 2018). As a
consequence, disruption in the transfer of mitochondrial calcium
changes ATP levels and downregulates mitochondrial metabolism,
whereas increased levels of mitochondrial calcium indicate
impairment of the electrochemical gradient (Xu et al., 2016;
Giorgi et al., 2018). Oxidative stress is associated with toxicant-
mediated calcium levels; a breakdown in the membrane potential
leads to cell death (Xu et al., 2016). In vitro studies of calcium levels
are used to estimate mitochondrial dysfunction, but it is not clear

whether the mitochondrial damage occurs due to the toxicants
(Brand and Nicholls, 2011).

Redox dysregulation and teratogenesis

Various environmental and therapeutic chemicals are included
in developmental toxicants. They vary in their structure, function,
and usage and have diverse modes of action. Fascinatingly, most of
these and other chemicals can serve as oxidants, producing either
directly or indirectly ROS and other reactive compounds
(Hansen, 2006).

However, the consequences of oxidative insults triggered by
these entities have not been profoundly reported in developmental
models. This concept of oxidative stress impairs redox pathways and
other targets of oxidation. In developmental toxicology, the majority
of the literature has documented harmful consequences and
toxicities that come from the overproduction of oxidants or
depletion of the antioxidant system due to oxidative stress.
Mounting evidence from seminal studies has demonstrated that
ROS is involved in developmental toxicant production such as
phenytoin, hydroxyurea, and ethanol (Liu and Wells, 1995;
Miller-Pinsler et al., 2015). The application of 8-OHdG
comprises the impact on DNA repair mechanisms (Shapiro et al.,
2016), cell cycle regulation (Petrova et al., 2018), and suppressor
tumor gene function (p53), causing impairment of a developmental
program (El Husseini et al., 2016). Mounting evidence has shown
that birth defects are caused by oxidative stress during
developmental program. This type of oxidative damage is mainly
toxico–pathological, but redox homeostasis also plays an essential
role in normal physiology (Pizzino et al., 2017).

TABLE 2 Oxidative stress-involved mechanism of apoptosis induced by environmental toxins.

Toxin Cell line/tissue Genes and proteins Possible mechanisms
involved

Reference

Bisphenol A Germ cells/Leydig cells ↑Fas, ↑FasL, and ↑caspase-3 The Fas signal pathway induces
Leydig cells and germ cell apoptosis

Li et al. (2009a),
Takahashi and Oishi
(2003)

Di(2-ethylhexyl)
phthalate

Germ cells ↑Cyt c and ↑MEHP DEHP metabolism disrupts OS in
mitochondria

Kasahara et al. (2002)

Mono(2-
ethylhexyl)
phthalate

Germ cells ↑NF-kB and ↑sTNFα Promotes Fas signals and upregulates
Sertoli cell FasL expression

Yao et al. (2009)

Cadmium Primary pig Sertoli
cells

↓ Cell proliferation, ↑ DNA damage, and ↑ apoptosis MAPK-activated p38 Wong and Cheng (2011)

Cadmium Rat testis ↑ Association between FAK, occludin, and ZO-1 MAPK p38 and JNK Wong and Cheng (2011)

Cadmium Rat Sertoli
cell–gonocyte
coculture

↑ Apoptosis and ↑ detachment of gonocytes from Sertoli
cells

JNK and p38 Wong and Cheng (2011)

Bisphenol A Rat testis and primary
rat Sertoli cells

↓ Occludin and N-cadherin on the Sertoli cell surface, ↓
TJ, AJ, and gap junction protein levels, and delay in gap
junction communication

ERK Wong and Cheng (2011)

Bisphenol A Rat testis ↑ Raf1 and phosphotyrosine proteins and ↑ in
spermatogonia and Leydig cell number

ERK Wong and Cheng (2011)

Bisphenol A Rat Leydig cells (R2C
cells)

↑ aromatase, cyclooxygenase-2, prostaglandin E2, ↓
testosterone, and activation of protein kinase A and B

ERK, JNK, and p38 Wong and Cheng (2011)
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Earlier, thalidomide was used for the treatment of serious
diseases, and it could be used until safe therapeutic options were
available (Kim and Scialli, 2011). However, its teratogenic effect has
not been proven in rodents but only in rabbits. To find out the
variance in species vulnerability, comparative studies of mouse and
rabbit embryos exposed to thalidomide showed that rabbits had high
oxidative stress markers (Parman et al., 1999). Treatment-exposed
free radical traps and decreased deformities of the limb buds
demonstrated that oxidative stress resulting from thalidomide is a
primary mechanism of teratogenesis. Other evidence found that
thalidomide-induced oxidative stress and its anti-angiogenic activity
may cause teratogenicity (4, 5). Thalidomide is a sedative and has a
teratogenic effect. It was identified that cereblon (CRBN), as a
thalidomide-binding protein, is the primary cause of
teratogenicity. The teratogenic effect starts when it binds to
CRBN and suppresses related ubiquitin ligase activity (Ito
et al., 2010).

Several environmental pollutants, comprising polycyclic
aromatic hydrocarbons and pesticides, have been documented as
metabolic disrupting chemicals (Ferm, 1977) and may result in
mitochondrial dysfunction. Available evidence has shown an
alteration in MRC-exposed toxins. A number of herbicides,
fungicides, insecticides, and acaricides alter the function of
MRC, leading to the formation of ROS and reduced ATP
levels (Fischer and Bavister, 1993). For instance, pyrethroids
reduce ΔΨm and diminish the expression of cytochrome c,
hence decreasing the function of cytochrome c oxidase in rat
brains (Fisher and Burggren, 2007). These can trigger the reduced
complex-I activity of MRC linked with nigral dopaminergic
neurodegeneration and microglial activation, as observed in
Parkinson’s disease (Folmes and Terzic, 2015). Moreover,
evidence of environmental toxins, mitochondrial function, and
male reproduction needs further elucidation in different
animal models.

Environmental toxicants and redox
signaling pathways

Fas/FasL signaling pathway
Fas/FasL is a signaling molecule, pivotal for the regulation of

apoptosis. It is expressed in peripheral T and B lymphocytes, NK
cells, mononuclear cells, fibroblasts, endothelial cells, epithelial cells,
etc. However, the expression of FasL is restricted to activated T cells,
NK cells, and testicular Sertoli cells (Chai et al., 2008). FasL is
considered a marker of functional Sertoli cells (Suda et al., 1993; Ma
et al., 2016), but other authors believed that FasL expression was
limited to sperm cells (D’Alessio et al., 2001; Riccioli et al., 2003).
Moreover, the Fas/FasL pathway is triggered by glucocorticoids in
Leydig cell apoptosis (Gao et al., 2003). It is believed that
environmental toxicants induce testicular pathology through the
activation of Fas/FasL pathway. Moreover, such signals are engaged
to influence the sensitivity of germ cells, steroidogenic function, and
cytokine metabolism regulated by Sertoli cells, and provoke the
stimulation of the nuclear factor of activated T cells (NFAT) in
Leydig cell apoptosis.

The apoptotic process is maintained by an optimal ratio of germ
cells to Sertoli cells; thereby, fruitful spermatogenesis and fertility

processes occur. At the adult stage, apoptosis is characterized in
spermatocytes, depending on the balance between Bcl xL and Ba
(Rodriguez et al., 1997). Testicular apoptosis is regulated via closely
linked pathways in Sertoli cells, germ cells, Leydig cells, and
numerous other signals. Such a phenomenon erases selective
germ cells, which are damaged through different physiological
and environmental triggers. In addition, apoptosis excludes
senescent moribund spermatozoa through a phagocytic process
(Aitken and Baker, 2013). Unfortunately, environmental toxicants
with a specifically low level of heavy metal exposure exert negative
effects on male reproductive function (Wirth and Mijal, 2010).
Recent findings have revealed that an imbalance between cell
survival and apoptosis due to disease or environmental factors
adversely influences spermatogenesis, resulting in oligospermia,
azoospermia, and hematospermia (Almeida et al., 2013). In
addition, enhanced expression of Fas/FasL triggers apoptosis of
germ cells in seminiferous tubule stages VII–VIII and IX–XII,
when testes are exposed to environmental toxins (Zhao et al., 2011).

Microcystin activates the Fas/FasL signaling molecule via
suppressing protein phosphatases 1 and 2A (PP1/PP2A),
disturbing cell phosphorylation, and diminishing the
cytoskeleton. This results in the stimulation and differential
expression of transcription factors and proteins that contribute to
cell differentiation, proliferation, and tumorigenesis, leading to
abnormal cell proliferation, apoptosis, and necrosis (Chen et al.,
2016). The vulnerability of germ cells is associated with the Fas/FasL
signaling pathway, which can control germ cell apoptosis. Exposure
to environmental toxins during embryonic development increases
the adult stage anomalies in spermatogenesis, with minimal
exposure to toxins during adulthood leading to increased death
of germ cells through the activation of Fas/FasL signals (Traore et al.,
2016). Toxic elements (MEHP and BLCO) activate matrix
metalloproteinase-2 (MMP-2) by downregulating Sertoli cell
tissue inhibitors of metalloproteinases-2 (TIMP-2), thereby
degrading tumor necrosis factor-alpha (TNF-α) (Yao et al., 2009;
Ebokaiwe et al., 2015). TNF-α communicates with the Sertoli cell to
trigger the NF-kB response (Yao et al., 2007), thereby stimulating the
expression of FasL and commencing germ cell apoptosis. Thus, at
some level, the vulnerability of germ cells can be controlled via
Sertoli cells (Yao et al., 2009).

NF-κB signaling pathways
NF-κB is a transcription factor that has been associated with

apoptosis. It is normally localized in the cytoplasm (inactive form)
and is surrounded by IκB proteins. Stressors stimulate NF-κB via the
degradation of IκB proteins, allowing its translocation into the
nucleus (Wang and Gao, 2006). NF-κB can have pro-apoptotic
and anti-apoptotic activities in similar cell types; thus, its function is
determined by the environment. NF-κB upregulates several genes,
comprising Fas and death receptors 4, 5, and 6. Molina et al. (2005)
documented that rats exposed to lindane caused NF-κB stimulation
within 24 h in testicular germ cells, while maximum activity of Fas
expression was not observed until 72 h post-exposure. Such activity
reveals that Fas expression is enhanced due to NF-κB upregulation,
suggesting a pro-apoptotic function of NF-κB. Previous findings
have revealed that NF-κB may act as a suppressing agent in
glucocorticoid-mediated apoptosis. In a study of rat Leydig cells,
where NF-κB suppressed CORT-triggered apoptosis, NF-κB
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overexpressed cells were less prone to CORT-induced apoptosis;
cells treated with PDTC (NF-κB inhibitor) exerted an increased level
of CORT-induced apoptosis (Wang and Gao, 2006). Hence, NF-kB
serves as an anti-apoptotic agent in receptor-triggered apoptosis.
The exposure to MEHP induced a testicular NF-κB response,
indicating the NF-κB significance in germ cell apoptosis.
Exposure to MEHP induced various localization patterns in the
rat testis. However, increased stimulation of spermatocytes was
noticeable due to germ cells, which are at the meiotic stage and
most vulnerable to MEHP damage (Rasoulpour and
Boekelheide, 2005).

Mitogen-activated protein kinases (MAPKs) are monitoring
proteins that act as signaling molecules triggered by external
stimuli. Extracellular signal-regulated kinases (ERKs) are
signaling molecules that take part in the functioning of
spermatogenesis and Sertoli cells (Li et al., 2009c). The
activation of ERK1/2 suppresses the function of Sertoli cells and
enhances testicular apoptosis (Takahashi and Oishi, 2003; Fiorini
et al., 2004). Protein kinase B (AKT) mediates oxidative stress via
the regulation of cell growth, cell survival, cell proliferation, and
inflammation, including immune reactions. MAPK and AKT are
both directly involved in the phosphorylation of NF-ĸB and
translocation into DNA, thereby causing the translation of
relevant genes (Dalsenter et al., 1997). Spermatogenesis and
Sertoli cell function are governed by NF-ĸB. Its stimulation
resulted in spermatogenic defects both in humans and mice
(Kuiper et al., 1998; Saradha et al., 2008). Exposure to arsenic
causes the activation of ERK/AKT/NF-ĸB signals in different cells
(Gaido et al., 1999; Anway et al., 2005). Exposure to sodium
arsenite (1, 5, or 25 mg/L for 6 months) promotes the
expression of ERK1/2, IKKγ, PI3K, AKT, and NF-ĸB, along
with enhanced phosphorylation of ERK/AKT levels in the testes
of rats. Thus, it leads to reproductive toxicity via the stimulation of
ERK/AKT/NF-kB signaling (Peter, 2000).

MAPK signaling pathway
MAPK is a signaling pathway activated in response to different

environmental toxicants. Three types ofMAPKs, namely, ERK, JNK,
and p38 are stimulated in the testis following exposure to
environmental toxicants. MAPKs are known to contribute to
various male reproductive functions such as cell cycle
progression, steroidogenesis, sperm hyperactivation, and
acrosome reaction (Li et al., 2009b; Almog and Naor, 2010).
Therefore, environmental toxicants influence MAPK functions
and cause pathological effects in males. They enhance DNA
damage and apoptosis and distort cellular junctions and
steroidogenesis (Kim et al., 2010; Zhang et al., 2010). The
MAPKs are stimulated when environmental toxicants induce
oxidative stress in cells and tissues. Suppressing oxidative stress
via N-acetyl cysteine, a free radical scavenger, reverts cadmium-
induced MAPK stimulation (Xu et al., 2003; Chen et al., 2008). This
process is partially mediated by the suppression of Ser/Thr protein
phosphatases 2A (PP2A) and 5 (PP5) through oxidative stress,
which leads to enhanced phosphorylation of MAPK (Chen et al.,
2008). Unfortunately, cadmium triggers the expression of MAPK
phosphatase-1 (MKP-1) (Kim et al., 2008), the main suppressor of
MAPK activation. It indicates the beneficial effects of MKP-1 via the
suppression of protein phosphatases PP2A and PP5, leading to an

increase in MAPK signaling, followed by exposure to environmental
toxicants. Moreover, the stimulation of ERK can result in the
phosphorylation of c-Src, FAK, and paxillin in the oxidative
scenario, suggesting that MAPKs may be one of the upstream
targets to stimulate non-receptor tyrosine kinases (Alderliesten
et al., 2007).

PI3K/c-Src signaling pathway
Exposure to diverse environmental toxicants has been

documented to induce testicular oxidative stress (Dhanabalan
and Mathur, 2009; Liu et al., 2009). The development of OS
enhances epithelial and endothelial permeability by impairing
tight junctions and adherent junctions of cells (Sandoval and
Witt, 2008; Lucas et al., 2009). Previous studies have documented
that PI3K plays an essential role in regulating junction interruptions
triggered by oxidative stress. Once it is challenged via oxidative
stress, a regulatory subunit of PI3K p85 binds from the cytosol to the
cell-to-cell interface (Qin and Chock, 2003; Sheth et al., 2003).
Activation of PI3K subsequently stimulates a non-receptor tyrosine
kinase, c-Src (Basuroy et al., 2010). In the testis, c-Src is mainly
localized and specific at the blood–testis barrier and endoplasmic
specialization (ES) (Box 1), related to connexin 43/plakofilin-2 and
β1-integrin/lamininα3β3γ3 protein complexes specific to their cell
junctions (Yan and Cheng, 2006; Lee et al., 2009a). Stimulation of
the PI3K/c-Src signaling pathway due to oxidative stress from
environmental toxicants may impair testicular function due to
toxicants. Early research has shown that c-Src kinase activity in
the testis indicates the harmful effects of 2,3,7, and 8-
tetracholordibenzo-p-dioxin (El-Sabeawy et al., 1998). Moreover,
increased levels of c-Src have also been reported in the testis,
through cadmium exposure in rodents, showing that c-Src is
stimulated against numerous environmental toxicants (Wong
et al., 2004; Siu et al., 2009).

In epithelial cells, FAK is a substrate of c-Src, and FAK-Src is
responsible for the regulation of various physiological and
pathological cellular responses (Brunton and Frame, 2008; Bolós
et al., 2010). FAK is a downstream regulator of the PI3K/c-Src
pathway in oxidative stress-augmented junction interference (Sen
et al., 2007; Basuroy et al., 2010). It is known that membrane
translocation and stimulation of PI3K and c-Src through
oxidative stress initiate FAK phosphorylation. Such a process
enhances the tyrosine phosphorylation of junction proteins via
FAK to change the adhesive function of protein complexes.
Intriguingly, factors such as cell type, source of ROS, and
duration of exposure can phosphorylate the FAK pathway
(Weinberg et al., 2001; Alderliesten et al., 2007). At the
beginning of oxidative stress, FAK is stimulated via c-Src to
induce undesirable phosphorylation of junction proteins at the
cell-to-cell interface. This causes the rearrangement of proteins in
the cytosol and results in the distraction of TJ and AJ (Rao et al.,
2002). Moreover, cell adhesion is further compromised by
detachment of integral membrane proteins from their respective
cytoplasmic adaptors (Rao et al., 2002; Sheth et al., 2003).
Disassociation of the focal adhesion contract (Molina et al., 2005)
and production of active aldehydes occurs during oxidative stress
(Usatyuk et al., 2006), and thereafter, unstimulation of FAK occurs
via dephosphorylation (Alderliesten et al., 2007). Such evidence
indicates that FAK is a crucial regulator of TJ and AJ interruption
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during oxidative stress. Hence, the critical phosphorylation of FAK
may exert a novel therapeutic target to guard the testis against
oxidative damage.

Nrf2 signaling pathway
Nrf2 is a pivotal transcription factor that resides in living cells

to protect against oxidative stress (Rubio et al., 2010).
Nrf2 stimulation has been observed after exposure to
sulforaphane (SFN), heavy metals (Shaw et al., 2019),
pesticides (Li et al., 2011), and polycyclic aromatic
hydrocarbons (Nguyen et al., 2010). Under physiological
conditions, Nrf2 is localized in the cytoplasm via the Kelch-
like ECH-associated protein 1 (Keap1). When Nrf2 is exposed to
activators, it is isolated from Keap1, causing Nrf2 translocation
from the cytoplasm to the nucleus and, ultimately, the
antioxidant response element (ARE). Moreover, AREs are also
responsible for phase II detoxification enzymes. Hence,
stimulation of Nrf2/Keap1/ARE amplifies the expression of
antioxidants and detoxifying enzymes such as SOD, catalase
(CAT), GSH, NAD(P)H-quinone oxidoreductase 1 (NQO1),
and heme oxygenase-1 (HO-1) (Chen and Chien, 2014).

Exposure to DEHP-triggered oxidative stress resulted in the
upregulation of Nrf2 signaling (Amara et al., 2020). Zhang et al.
(2019a) reported that DBP increased mitochondrial damage and
germ cell death via the Nrf2-dependent pathway. Inhibition of
the Nrf2/ARE pathway promoted DBP-triggered mitochondrial
toxicity (Zhang et al., 2019b). They observed protein kinase
endoplasmic reticulum kinase (PERK) through the
manipulation of the Nrf2/ARE pathway. PERK causes
phosphorylation of Nrf2 and, consequently, detachment of
Nrf2/Keap1 to release genes. Suppressing PERK via its specific
inhibitor causes inhibition of Nrf2, which increases DBP-
prompted apoptosis and mitochondrial damage. Amara et al.

(2019) demonstrated that DEHP caused cytotoxic effects in
embryonic kidney cells (HEK-293) via inhibition of the Nrf-2/
HO-1 pathway (Amara et al., 2019). Zhao et al. (2020) elaborated
that DEHP exposure promoted Nrf2 activity via the generation of
ROS in mouse testis, which aligns with the results of Tang et al.
(2018). These authors showed that the activation of
Nrf2 promotes Notch signal inhibition in the testis. Once
Nrf2 was increased, Notch1 and hairy and enhancer of split 1
(Hes1) were decreased, causing interference in spermatogenesis
and suppressing testosterone levels. Abd El-Fattah et al. (2016)
documented that mRNA of Nrf2 and HO-1 was enhanced in
DEHP compared to the control group in the rat testis (Abd El-
Fattah et al., 2016). Suppressing Nrf2 signals was induced,
followed by exposure to phthalates, which led to toxic damage
in diverse cells and tissues comprising the Sertoli cells (Zhang
et al., 2017). The activation of Nrf2 signals by DBP and DEHP in
the reproductive system was not enough to decrease oxidative
stress (Shen et al., 2015). Zhao et al. (2019) demonstrated that
lycopene attenuated DEHP-induced Leydig cell damage, which
may promote antioxidant capacity via regulation of the
Nrf2 signaling pathway. Jiang et al. (2017) reported that SFN
exerts a protective effect via the stimulation of Nrf2, along with
its target genes, against DBP-induced sperm parameters and
testicular cell apoptosis. SFN causes upregulation of Nrf2 and,
thus, decreased DBP-augmented intracellular oxidative toxicity.
According to Yang et al. (2018), SFN reversed cadmium-induced
Sertoli cell toxicity in mice via stimulation of the Nrf2/ARE
pathway, and, thus, oxidative damage and apoptosis were
attenuated. In other studies, consumption of a plant-derived
lutein compound mitigated arsenic-induced reproductive
toxicity in a mouse model via upregulation of the
Nrf2 pathway and, thus, prevented reproductive injury (Li
et al., 2016).

TABLE 3 Markers of male reproductive toxicity.

Marker Expression Reference

8-Hydroxy-2’-deoxyguanosine −8-OHdG DNA damage due to DNA oxidation Al-Hilli et al. (2018), Ommati and Heidari
(2021)

Creatine Excess creatine level in urine, indicating testicular damage Zhang et al. (2014)

SP22 (sperm surface protein) Relevance of toxins causes reduction in SP22 quality El-Garawani et al. (2021)

Vitellogenins Increased vitellogenin level shows toxic effects on male
reproduction

Ge et al. (2016), Amthauer et al. (2021), Zhang
et al. (2022)

Gene expression profiling (GEP) Key marker of earlier risk of toxicity induction Kier et al. (2004), Ommati and Heidari (2021)

D-aminolevulinic acid dehydratase (d-ALAD) Biosynthetic enzyme and preliminary marker of lead poisoning
that converts to porphobilinogen

Telišman et al. (2007)

Erythrocyte protoporphyrin (EP) Exposure to heavy metals associated with age, alcohol, and
smoking and lead serum biomarker

Telišman et al. (2007)

miR-27a Inhibition of cysteine-rich secretory protein 2 (CRISP2) causes
reproductive infertility

Zhou et al. (2017)

miR-34c-5p, miR-122, miR-146b 5p, miR-513a-5p, miR-
374b, miR-509–5p, and miR181a

Reduced levels linked with azoospermia and asthenozoospermia
and disruption of sperm regulation

Wang et al. (2011), Kong et al. (2012),
Anyanwu and Orisakwe (2020)

piR-31704 and piR-39888 Key genotoxic factors and implied as an indicator of low sperm
count

Cui et al. (2018), Anyanwu and Orisakwe
(2020)
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Epigenetic effects and
environmental toxicants

According to earlier studies, epigenetic alteration may be a major
factor in controlling how adversely environmental contaminants affect
male fertility (Donkin and Barrès, 2018). The mechanism of epigenetics
comprises methylation of DNA, alteration in histone proteins, and
expression of miRNA genes (Dada et al., 2012;Muratori andDeGeyter,
2019). In mice, exposure to zearalenone (ZEA) has been shown to
disrupt the process ofmeiosis and signals that regulate spermatogenesis,
resulting in lower semen features (Gao et al., 2015). In addition, mice
exposed to ZEA had lower levels of methylation markers in DNA, like
5 mC and 5hmC, and higher levels of methylation in histone marker
H3K27, as well as lower levels of testicular ER expression. Such evidence
has documented the important connections between estrogen signaling
and genetic and epigenetic pathways that regulate the negative effects of
ZEA on spermatogenesis (Gao et al., 2015;Men et al., 2019). In F2mice,
exposure to nonylphenol triggered pathophysiological defects in the
testis and epididymis that were known to be regulated by epigenetic
programming upon exposure to nonylphenol (Kim et al., 2019). The
biomarkers of male reproduction in response to toxicants are given
in Table 3.

Animals exposed to environmental toxicants can pass epigenetic
changes through generations (Rothstein et al., 2017). DBP exposure
during embryonic development disrupts testicular activity in F1 and
F3 generations by altering Sertoli cells and the spermatogenic
process. Global DNA hypomethylation in the offspring was
altered by DBP exposure (Yuan et al., 2017). Similarly, a short
pregnancy exposure to atrazine triggered diverse DNA methylation
in F1–F3 generation spermatozoa (McBirney et al., 2017). A large
number of studies have reported that transgenerational inheritance
of epigenetic modifications takes place once the embryo is exposed
to environmental contaminants like chlordecone, DDT, vinclozolin,
and DEHP, resulting in a negative impact on testes and semen index
in F1–F3 offspring (Maamar et al., 2019; Skinner et al., 2019).

Conclusion

Environmental chemicals such as pesticides, insecticides, heavy
metals, and phthalates are toxic chemicals used worldwide for
agricultural and other purposes. However, high levels of these
toxins from human activities cause adverse effects on male
fertility. The synthetic origin of phthalates is widely used in the
plastic industry. They have a similar structure to steroid hormones.
Available evidence shows that phthalates and other environmental
toxicants interact with normal spermatogenesis and lead to
testicular atrophy, oxidative stress, and DNA damage. It also
interferes with steroidogenic pathways, resulting in decreased
testosterone levels and Insl-3 production via fetal Leydig cells
that induce cryptorchidism. It is well known that all these
chemicals disturb mitochondrial metabolism, where CYP
enzymes are involved. All these environmental chemicals
influence male reproduction by disrupting the HPG system, the
testes, the spermatogenic process, epididymal maturation, the

antioxidant–antioxidant balance, and epigenetic regulation. In
response to that, a reduction in the sperm quality index has been
reported to cause male infertility. Considering previous studies, it is
known that mitochondria and redox signaling such as Fas/FasL, NF-
κB, MAPK, PI3K/c-Src, and Nrf2 are the main regulators of male
reproductive toxicity, which is evident due to environmental
toxicants and poses a serious threat to male reproduction. All of
this suggests that oxidative stress is not the primary cause of toxicity;
it is produced as a consequence of toxicity. Additional investigation
is needed to determine whether the combined effects of pesticides at
low doses, whether through environmental exposure or dietary
intake during male developmental stages, may play a role in a
cascade of cellular, molecular, and hormonal processes, leading to
adverse effects on the male reproductive system.
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