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The Period (PER) gene family is one of the core components of the circadian
clock, with substantial correlations between the PER genes and cancers identified
in extensive researches. Abnormal mutations in PER genes can influence cell
function,metabolic activity, immunity, and therapy responses, thereby promoting
the initiation and development of cancers. This ultimately results in unequal
cancers progression and prognosis in patients. This leads to variable cancer
progression and prognosis among patients. In-depth studies on the interactions
between the PER genes and cancers can reveal novel strategies for cancer
detection and treatment. In this review, we aim to provide a comprehensive
overview of the latest research on the role of the PER gene family in cancer.
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1 Introduction

With population aging, it is projected that by 2030, almost 20% of the world’s
population will be over 65, and by 2050, this figure is expected to reach 1.6 billion
(Feng et al., 2023a). Cancers, closely associated with aging, are characterized by aberrant
cellular proliferation and differentiation, continuing to pose a significant threat to global
health (Hanahan, 2022; Shen et al., 2022; Feng et al., 2023b; Wang et al., 2023). In 2020,
approximately 19 million new cancer cases and over 10 million cancer-related deaths were
recorded worldwide (Sung et al., 2021). Specifically, in China, there were 4.57 million new
cancer cases and 3.00 million cancer-specific deaths in the same year (He and Ke, 2023).
Traditional cancer treatments include radiation therapy, chemotherapy, and surgery (Jin
et al., 2022; Sirhan et al., 2022; Xing et al., 2022; Association, 2023), while molecularly
targeted therapies and immune checkpoint inhibitors have transformed oncology (Chen
et al., 2022; Chan et al., 2023; Yin et al., 2023; Yu et al., 2023). Despite advancements, the
adverse effects of treatments on patient survival and quality of life remain pressing
challenges in cancer therapy (Zhang and Zhang, 2020; Peng et al., 2022), complicating
patient management (Wang YH. et al., 2020; Mokhtari-Hessari and Montazeri, 2020).
High-throughput sequencing, a pioneering molecular biology technique, has fueled new
oncology research directions (Walter et al., 2022; Larson et al., 2023). Contrasting with the
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conventional American Joint Committee on Cancer staging, which
relies on tumor size, lymph node status, and metastasis, new
classifications based on tumor genetic expression patterns have
emerged, correlating more closely with clinical outcomes and
patient survival (Yin et al., 2020; Park et al., 2022; de Jong et al.,
2023). This shift signifies a move towards personalized precision
medicine in oncology, with the potential to uncover new therapeutic
targets and prognostic biomarkers through a deeper understanding
of molecular mechanisms in cancer (Hong et al., 2020; Bao
et al., 2023).

The Earth’s rotation generates environmental variables with a
24-h periodicity, including temperature and light fluctuations (Hou
et al., 2022; Laosuntisuk et al., 2023). Various life forms, including
animals, plants, bacteria, fungi, have developed intricate internal
timing mechanisms to synchronize their behavior and physiological
processes with these cyclic environmental changes (Patton and
Hastings, 2023). These mechanisms are known as “circadian
rhythms,” a term derived from the Latin “circa diem”, meaning
“about a day” (Allada and Bass, 2021). Thus, circadian rhythm
denotes an organism’s inherent rhythm-regulating system. In
humans and other mammals, this 24-h rhythm is orchestrated by
the circadian clock (Huang et al., 2023). The suprachiasmatic
nucleus (SCN) of the hypothalamus, acting as the central clock,
utilizes neuroendocrine pathways to coordinate peripheral clocks
throughout the body (Starnes and Jones, 2023; Zhang-Sun et al.,
2023). This network of clocks ensures the consistency of vital
functions and numerous physiological activities.

2 Molecular circadian clock and cancer
connection

From amolecular perspective, the circadian clock in mammals is
governed by a transcription-translation feedback loop (TTFL),
involving circadian genes and associated proteins (Patke et al.,
2020; Li et al., 2023). This process begins when Brain and
Muscle ARNT-Like Protein 1 (BMAL1) and Circadian
Locomotor Output Cycles Kaput (CLOCK) proteins form a
heterodimer that binds to the E-box in the promoter regions of
various genes (Cox and Takahashi, 2019). This includes clock-
controlled genes (CCGs) and inhibitory elements like Period
(PER) and Cryptochrome (CRY) proteins (Cao et al., 2021). As
PER and CRY proteins levels rise, they eventually inhibit CLOCK-
BMAL1 activity, thus regulating their own synthesis and setting the
stage for a new circadian cycle. Additionally, RORα and REV-ERBs
modulate BMAL1 expression through their interaction with REV-
ERB-ROR response elements, creating a secondary loop (Preitner
et al., 2002; Sato et al., 2004). D-box binding protein (DBP) and
E4 promoter-binding protein 4 (E4BP4/NFIL3) also modulate gene
expression and CCG activity via D-box promoters (Ripperger and
Schibler, 2006). Furthermore, post-translational modifications
(PTMs) by kinases/phosphatases and the ubiquitin-proteasome
system, including Casein kinase Ⅰ epsilon (CKⅠε), β-transducin
repeat-containing protein (β-TrCP), F-box and leucine-rich
repeat protein 3 (FBXL3), and Tumor necrosis factor receptor-
associated factor-2 (TRAF2) (Eide et al., 2005; Reischl et al., 2007;
Siepka et al., 2007; Chen et al., 2018), maintain the stability and
function of clock proteins. These mechanisms collectively create a

delayed negative feedback loop, producing the roughly 24-h
circadian rhythm. Our team has previously detailed this
molecular mechanism in extensive studies (Feng et al., 2022; Zhu
et al., 2023) (Figure 1).

Given the pivotal role of circadian rhythm in regulating diverse
biological functions, extensive research has shown that its disruption
is associated with a heightened risk of various diseases, including
cardiovascular disorders, neurological conditions, and cancers
(Crnko et al., 2019; Sancar and Van Gelder, 2021; Niu et al.,
2022). In 2007, the World Health Organization identified shift
work that disrupts circadian rhythms as a Group 2A carcinogen
(Straif et al., 2007). Epidemiological studies have indicated that long-
term night shift workers face increased risks of certain cancers, such
as breast, prostate, and lung cancer (Cordina-Duverger et al., 2022;
Berge et al., 2023; Schernhammer et al., 2023). Remarkably, about
43% of protein-coding genes in the mammalian genome are
regulated by circadian clock genes, which are integral to various
critical physiological and pathological processes (Zhang et al., 2014).
Alterations in circadian clock genes or their functions can lead to
disrupted cellular activities linked with cancer hallmarks, including
cell cycle disruption (Lévi et al., 2007; Qu et al., 2023), genomic
instability (Zhang et al., 2023), metabolic reprogramming (Chun
et al., 2022), and immune system dysregulation (Chen et al., 2020;
Zhang et al., 2024). As a result, the link between circadian clock
genes and cancer has become a focal point in oncological research.
In this review, we concentrate on the PER gene family, a central
component of the circadian clock, explore its connection to cancer
and summarize current research findings in the area.

3 Brief overview of the PER gene family

There are three homologous genes in mammals (PER1, PER2,
and PER3) that are integral to the PER gene family, a key component
of circadian clock genes (Deng and Yang, 2019). When Konopka
and Benzer induced mutations in Drosophila melanogaster using
ethyl methane sulfonate in 1971, they observed three distinct
rhythm patterns in the mutants’ eclosion and locomotor
activities. The per gene was subsequently located on the X
chromosome of D. melanogaster, with its variants (pero, pers, and
perl) associated with these rhythm changes (Konopka and Benzer,
1971). In 1984, the per gene was isolated and cloned by the teams of
Jeffrey C. Hall (Zehring et al., 1984), Michael Rosbash (Reddy et al.,
1984), and Michael Young (Bargiello and Young, 1984), who later
received the 2017 Nobel Prize in Physiology or Medicine for their
pioneering work on circadian rhythms. Further research by Hall and
Rosbash demonstrated that the Per protein was a nuclear protein
that oscillated between the cytoplasm and the nucleus, influencing
the expression of its mRNA, leading to the hypothesis that the per
gene acts as a transcription factor with feedback regulation (Zeng
et al., 1994; Yildirim et al., 2022). Additionally, Young and his team
found that the per gene’s oscillation was synchronized with another
clock gene, Timeless (tim), and that mutations in tim significantly
affected the Per protein’s synthesis, phosphorylation, and transport
(Sehgal et al., 1995; Ahmad et al., 2021). These findings elucidated
the interaction between Tim and Per proteins, supporting the TTFL
model. Subsequent discoveries showed that CLOCK and
BMAL1 proteins form a dimer that binds to the E-box to
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transcriptionally regulate the PER genes, confirming their role as
positive regulators in the circadian rhythm (Vitaterna et al., 1994).
The identification of other core clock genes, such as CLOCK (Allada
et al., 1998), CYC (Rutila et al., 1998), and CRY (Todo et al., 1996),
further elaborated the TTFLmodel, enhancing our understanding of
circadian gene transcription regulation. These advancements
propelled researches into circadian rhythms, underscoring the
significance of clock genes in human physiology and diseases
(Vitaterna et al., 2019) (Figure 2).

The PER gene family plays a pivotal role in maintaining
circadian rhythms. Studies have demonstrated that Per2
homozygous mutant mice exhibit significantly shorter circadian
rhythms than wild-type mice, which disappear in constant
darkness (Zheng et al., 1999). Likewise, mice with homozygous
Per1 mutations also display shorter rhythms, with Per2 influencing
clock gene expression rhythm through transcriptional regulation
(Zheng et al., 2001). Shiromani and colleagues found that Per1/
Per2 double mutant mice quickly experienced a decrease in core
body temperature rhythm and a reduced circadian period, while
Per3 mutants showed no notable rhythm alterations (Shiromani
et al., 2004). Nakamura et al. (Nakamura et al., 2023) observed that
the triple knockout of Per1/Per2/Per3 severely disrupted the estrous
cycle in C57BL/6J mice (melatonin deficient), potentially due to
compromised SCN amplitude stability. While the contribution of
PER3 to circadian rhythm maintenance is less pronounced than
PER1 and PER2, it has been linked to nocturnal preferences,

psychiatric disorders, sleep patterns, and cognitive functions
(Chen et al., 2023). The PER3 gene exhibits polymorphism in
humans, with a variable number of tandem repeats (VNTR)
consisting of a 54-base pair sequence in the 18th exon (Barragan
et al., 2022). Aytac et al. (Aytac et al., 2022) identified an association
between the VNTR variant at the rs57875989 locus of the PER3 gene
and bipolar affective disorder risk, combining clinical scale
assessments and blood analysis. The 4R/4R genotype appears to
be protective against bipolar disorder, whereas the 5R/5R genotype
is linked to a higher incidence of moderate manic symptoms in a
study of 121 patients and controls (Yegin et al., 2021). Additionally,
a significant correlation was found between the rs228697 SNP in
PER3 and increased vulnerability to sleep-wake disturbances in
Alzheimer’s patients (Lozano-Tovar et al., 2023). Azevedo et al.
(Azevedo et al., 2021) also noted a potential association between
severe obesity and the rs228729 locus of the PER3 gene.

4 The PER gene family aberration
and cancers

Emerging evidence suggests that alterations in clock genes,
including the PER gene family (PER1, PER2, and PER3), play a
significant role in cancer development and progression due to their
regulatory functions in biological cycles and physiological processes.
Researches have increasingly focused on comparing the PER genes

FIGURE 1
The involvement of the PER gene family in the molecular mechanism of Circadian Clock. The core circadian transcriptional machinery consists of
the positive transcription factors (CLOCK and BMAL1 proteins), and the repressors factors (PER and CRY proteins). Additionally, the nuclear receptors
RORα, and REV-ERB compose the secondary circadian pathway.
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expression levels in tumor and normal tissues to elucidate the
potential link between PER genes aberrations and cancers.
Downregulations of PER1, PER2, or PER3 have been observed in
various cancers, including oral squamous cell carcinoma (Gong
et al., 2021), head and neck squamous cell carcinoma (Li et al., 2019;
Rahman et al., 2019), colorectal cancer (Orhan et al., 2019; Sahar
et al., 2022), breast cancer (Liu et al., 2021; Liu et al., 2022a), ovarian
cancer (Angelousi et al., 2019; Chen et al., 2021), melanoma (Lesicka
et al., 2023), and hematological malignancies (Jiang et al., 2021).
Studies have also highlighted the association between VNTR or
SNPs polymorphism in the PER gene family and an increased risk of
certain cancers, such as breast cancer (Fores-Martos et al., 2021;
Song et al., 2023), colorectal cancer (Holipah and Kuroda, 2020),
and prostate cancer (Wendeu-Foyet et al., 2019; Hinoura et al.,
2021), through the analysis of tumor tissues or patient blood
samples. To enhance our understanding of the prognostic
significance of the PER gene family alterations in tumor
progression, a growing body of research is exploring the
relationship between these genetic changes and
clinicopathological features.

A meta-analysis involving 7,476 cancer patients revealed that
decreased PER1 gene expression was associated with poorer tumor
differentiation and greater invasion depth, whereas reduced PER2
expression was correlated with advanced pathological stages and

increased metastasis; furthermore, lower levels of both PER1 and
PER2 were linked to shorter overall survivals (Zhang et al., 2020).
Patients with advanced-stage head and neck squamous cell carcinoma
exhibited markedly lower levels of PER1, PER2, and PER3 proteins
compared to those with early-stage tumors, and higher levels of these
proteins were associated with longer overall and recurrence-free
survival. In oral squamous cell carcinoma, low PER2 expression
was connected to poor prognosis, tumor grade progression, and
lymph node metastasis (Xiong et al., 2018), whereas in lung cancer,
increased PER2 expression was associated with less malignant
differentiation and fewer lymph node metastases (Xiang et al.,
2018). Transcriptome analysis from the GEO database indicated
that PER3 gene expression could predict outcomes for ER+/HER2-
breast cancer patients throughmultifactor Cox analysis (Cadenas et al.,
2014). The link between VNTR or SNP variations in the PER gene
family and cancer risk has also attracted significant research interest
(Morales-Santana et al., 2019). Lesicka et al. (Lesicka et al., 2019)
identified that the dominant phenotype of PER1 rs2735611 and the
recessive phenotype of PER2 rs934945 were associated with increased
breast cancer risk. Additionally, the higher prevalence of the PER2
VNTR 4R/3R and 3R/3R genotypes in pancreatic cancer patients
compared to healthy controls suggested that a greater proportion of the
3R allele in the PER2VNTR may be a risk factor for pancreatic cancer
(Dagmura et al., 2021).

FIGURE 2
The period genes of Drosophila melanogaster and human. The discovery of the period gene can be traced back to 1971, when Konopka and Benzer
identified three genemutations (pero, pers, and perl) on the X chromosome ofDrosophila melanogaster; As for human, there are three homologous genes
(PER1, PER2, and PER3). The PER1 and PER2 genes are primarily responsible formaintaining circadian rhythms of basic biological activities. And PER3 gene
play an important role in mentality, sleep, and cognition.
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FIGURE 3
The relationships between alterations of the PER gene family and cancers. The aberrations, and VNTR or SNPs polymorphism of PER1, PER2, and
PER3 gene were correlated with the development of various types of cancers, including BRCA (breast cancer), COAD/READ (colorectal cancer), HNSCC
(head and neck squamous cell carcinoma), melanoma, NSCLC (non-small cell lung cancer), OSCC (oral squamous cell carcinoma), OV (ovarian cancer),
PAAD (pancreatic adenocarcinoma), and PRAD (prostate cancer).

FIGURE 4
The potential mechanisms of PER1, PER2, and PER3 proteins affecting the hall markers of cancers. The PER1, PER2, and PER3 proteins influence the
cell function, metabolism, TME, and therapy responses of cancers via a wide range of signal pathways and regulatory factors.
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TABLE 1 Main studies of associations between the PER gene family and cancers

Author Year Gene Cancer
type

Affect Method Function Mechanism

Han et al. (2016) 2016 PER1 CHOL Cell function Overexpression of PER1
in Mz-ChA-1 cells

Decreased cell proliferation,
lower G2/M arrest, and
enhanced cell apoptosis;
Inhibition of tumor growth
in vivo

miR-34a directly
targets PER1

Wang et al. (2020b) 2020 PER2 CML Cell function Overexpression of PER2
in KCL22 cells

Cell cycle arrest; inhibition
of cell proliferation in vivo
and in vitro

Not report

Guo et al. (2020) 2020 PER2 OSCC Cell function Overexpression of PER2
in OSCC cells

Reduced cell migration and
invasion; Suppresses tumor
metastasis

Activation of
downstream signals of
TP53 and EMT
regulatory genes

Gao et al. (2021) 2021 PER1 PER2 PER3 GBMLGG Cell function Downregulation of
PER1, 2, 3 after
IDH1 mutation in U87-
MG cells

Decreased S phase-
associated proteins;
Increased G1 phase-
associated proteins

Activation of Smad
pathway

Xiong et al. (2022) 2022 PER2 COADREAD Cell function Downregulation of
PER2 in RKO cells

Cell migration promotion Activation of the
Snail/Slug axis
through inhibiting
TP53

Papagiannakopoulos
et al. (2016)

2016 PER2 LUAD Metabolism Genetically engineered
mouse model of lung
adenocarcinoma with
PER2 knockout

Increased glycolysis and
utilization of glucose

Not report

Gong et al. (2021) 2021 PER1 OSCC Metabolism Overexpression of PER1
in SCC15 cells

Inhibited glycolysis and cell
proliferation

Inhibition of PI3K/
AKT pathway

Yang et al. (2019) 2019 PER1 LUAD, LUSC Tumor
immunity

Computational
estimation based on
TCGA data

Positive correlation with
CD4 T cells

Not report

Wang et al. (2020c) 2020 PER1 UCEC Tumor
immunity

Overexpressing PER1 in
EC ishikawa cells

Increased expression of
TNF-a, IL-6, and PD-1/PD-
L1; Promotion of apoptosis;
Inhibition of tumor
invasion

Inhibition of TNF-α/
TNFRSF6B pathway

Chen et al. (2021) 2021 PER1 OV Tumor
immunity

TIMER database and
CIBERSORT algorithm

Positive correlation with
neutrophils, regulatory
T cells, and
M2 macrophages

Not report

Cai et al. (2018) 2018 PER3 PRCA Chemotherapy Overexpression of PER3
in prostate cancer-
resistant cell lines

Reduced IC50 to paclitaxel;
Cell cycle arrest; ncreased
cell apoptosis

Inhibiting the Notch
pathway

Wang et al. (2020d) 2020 PER2 OV Chemotherapy Decrease in PER2
expression in SKOV3/
DDP cells via
methylation of CpG
promoters

Higher expression of
multidrug resistance-
related protein 1 (MRP1) in
SKOV3/DDP cells-derived
xenografts in mice

Inhibiting the PI3K/
Akt signaling pathway
and drug-resistance
factors

Redondo et al. (2021) 2021 PER2 ESCA Chemotherapy Downregulated of PER2
after dexamethasone
synchronization in
KYSE-410 cells

More cisplatin induced-
DNA damage; Higher cell
apoptosis

Not report

Wang et al. (2022) 2022 PER2 CESC Chemotherapy Overexpression of PER2
in Hela/DDP and SiHa/
DDP cells

Inhibition of tumor growth
and proliferation in mice
treated with cisplatin;
Increased cell apoptosis

suppressing PI3K/
AKT pathway

Zhu et al. (2019) 2019 PER1 GBMLGG Radiotherapy Downregulation of
PER1 in U343 cells

Reduced DNA damage after
X-ray irradiation; Lower
cell death rate

Inhibiting the CHK2-
TP53 signaling and
proapoptotic
processes
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Overall, the majority of previous cancer studies have
consistently demonstrated significant downregulation of the PER
gene family, often linked to reduced patient survival, poorer
prognosis, and clinicopathological factors such as low tumor
differentiation, advanced tumor stage, lymph node metastasis,
and more aggressive tumor characteristics. Furthermore,
researches into VNTR or SNPs polymorphisms of the PER gene
family have established a connection between their anomalies and
an increased risk of certain cancers (Figure 3).

5 The PER gene family and cell function

The cell cycle, which promotes cell division in a specific
sequence and phases, exhibits a biological rhythm akin to the
circadian clock. Cell cycle progression is governed by transient
interactions between cyclins and cyclin-dependent kinases
(CDKs), triggering phase transitions; While activities of the
cyclin-CDK complexes are strictly regulated by CDK inhibitors
like p16, p21, and WEE1, to halt the cell cycle under stress or
damage conditions (Suski et al., 2021; Matthews et al., 2022).
Consequently, there is growing interest in exploring the
molecular interplay between the cell cycle and circadian rhythms,
particularly regarding abnormal cell proliferation in cancers
(Farshadi et al., 2020; Yao et al., 2021). For example, the
PER1 protein has been shown to inhibit the cell cycle by
interacting with checkpoint proteins ATM and CHK2 in
colorectal cancer cells (Gery et al., 2006); similarly, NONO was
found to influence the p16-Ink4A site by binding to PER1/
PER2 proteins during the G1 phase, linking the cell cycle with
the circadian rhythm (Kowalska et al., 2013). Conversely, the TP53
gene can inhibit PER2 gene activation by interfering with BMAL1/
CLOCK-mediated E-box transcription, serving as a key cell cycle
regulator (Miki et al., 2013; Zou et al., 2020; Engeland, 2022). Gao
et al. (Gao et al., 2021) observed that IDH1 gene mutations in
gliomas significantly reduced PER genes expression (PER1, PER2,
and PER3) and altered the expression of cell cycle-related proteins
like Cyclin A, CDK2, and Cyclin D3, resulting in increase of
G1 phase cells and decrease of S phase cells. Overexpressing the
PER2 gene in the chronic myelogenous leukemia cell line KCL22 led
to G1 phase cell cycle arrest, while its downregulation expedited the
transition to the S phase (Wang et al., 2020b; Basti et al., 2022).
Recently, Han and colleagues integrated cell microarray analysis
with experimental validation, revealing that overexpressing the
PER1 gene affected the expression of cell cycle-related proteins
such as Wee1, CRE-BP1, CDK1, and GADD45A, thereby
inhibiting the cell cycle in cholangiocarcinoma cells (Han
et al., 2016).

The epithelial-mesenchymal transition (EMT), marked by
increased vimentin and decreased E-cadherin expression, is a
critical process where cells transition from epithelial to
mesenchymal traits (Bakir et al., 2020; Liu et al., 2022b; Huang
et al., 2022; Lee et al., 2022). EMT is essential for tumor initiation,
enhanced migration, metastasis, and treatment resistance
(Pastushenko and Blanpain, 2019). Studies have shown that EMT
in glioma C6 and breast cancer MCF-7 cells correlated with
enhanced circadian rhythms and increased PER2 gene expression
(De et al., 2020). Guo et al. (Guo et al., 2020) observed that elevated

PER2 gene protected oral cancer cells from EMT via upregulation of
TP53 protein. Conversely, PER2 knockdown in colorectal cancer
cells activated the Snail/Slug-related EMT pathway, promoting
proliferation and invasiveness of cancer cells (Xiong et al., 2022).
Additionally, Lin et al. (Lin et al., 2020) reported that the
mangiferin-induced EMT suppression in lung cancer cells was
associated with decreased E-cadherin and increased PER1 protein
expression. These findings suggest that the PER1 and PER2 genes
play a role in inhibiting EMT, potentially reducing migration and
invasion in cancer cells.

6 The PER gene family and metabolism

Metabolic reprogramming, a hallmark of cancer cells (Pavlova
et al., 2022), involves altering cellular metabolism to manage
different inputs and stressors (Wang et al., 2024). Cancer cells
adapt their metabolic pathways to oncogenic mutations and
external nutritional conditions, supporting their increased
biosynthetic and energy needs while mitigating oxidative stress
associated with survival and proliferation (Altea-Manzano et al.,
2020; McGuirk et al., 2020; Schiliro and Firestein, 2021). An example
is the Warburg effect, where cancer cells prefer glycolysis for energy
production under aerobic conditions, highlighting their metabolic
flexibility (Warburg et al., 1923; Warburg et al., 1924). Circadian
rhythms regulate key biological processes associated with material
and energy metabolism, including sleep-wake cycles (Daan et al.,
1984; Wendrich et al., 2023), thermogenesis (Hasan et al., 2021),
food intake (Teixeira et al., 2022), and glucose and lipid metabolism
(Kalsbeek et al., 2010; Frazier et al., 2023; Small et al., 2023). Previous
studies showed that mice lacking Bmal1 or Clock genes exhibit
significant defects in gluconeogenesis, lipid, and glucose metabolism
(Bolshette et al., 2023). In Drosophila, dietary restriction prolonged
lifespan via promoting fat metabolism, which linked to increased
oscillations and expressions of Per and Tim proteins (Katewa et al.,
2016). Research on transgenic mice with the hPER2 S662Gmutation
revealed that derived lung cancer cells increased glucose, glutamine,
and lactic acid consumption. Isotope tracing has also illustrated
enhanced glucose utilization in cancer cell glycolysis and the
tricarboxylic acid cycle (Papagiannakopoulos et al., 2016).
Furthermore, Gong et al. (Gong et al., 2021) found that PER1
gene knockdown raised levels of key glycolytic enzymes, boosting
glucose uptake and lactate production in oral squamous cell
carcinoma cells. These studies indicate that disrupting PER1 or
PER2 gene functions in cancer cells can lead to elevated metabolism
and energy production, supporting their rapid proliferation and
adaptability.

7 The PER gene family and tumor
immune microenvironment

The tumor microenvironment (TME) comprises various cellular
components (such as immune cells, fibroblasts, and endothelial
cells) and acellular elements (including cytokines, growth factors,
and the extracellular matrix) (Ribeiro Franco et al., 2020). Innate
and adaptive immune cells within the TME interact with cancer cells
directly or through chemokine and cytokine signaling (Liu et al.,
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2023a; Xiong et al., 2023; Zetrini et al., 2023). These interactions
significantly influence the biological behavior and therapeutic
responses of cancer cells, impacting patients’ clinical outcomes
and prognosis (Neophytou et al., 2021). For example, a
comprehensive pan-cancer analysis demonstrated a strong
association between the upregulation of immunosuppressive
molecules like PD-L1 and CTLA-4, and the downregulation of
PER1, PER2, and PER3 genes, underscoring the impact of
disrupted clock genes on T cell exhaustion and immune evasion
in the TME (Wu et al., 2019). In ovarian cancer, B lymphocyte,
macrophage, and neutrophil infiltration levels were inversely
correlated with PER1 gene expression (Chen et al., 2021).
Recently, a colon cancer research indicated that the epigenetic
regulator CBX4 was negatively associated with myeloid-derived
suppressor cells and cancer-associated fibroblasts, and showed
coordinated expression with PER1 and PER3 genes (Wei et al.,
2021). Yang et al. (Yang et al., 2019) found a specific circadian
rhythm in PD-L1 expression and a positive correlation between the
PER1 gene and CD4+ and CD8+ T cell infiltration on lung cancer.
Furthermore, in endometrial cancer, the PER1 gene is linked to
immunological factors like PD-1/PD-L1 and inflammatory markers
such as TNF-α and IL-6 (Wang et al., 2020c). Additionally, chronic
shift-lag-induced suppression of Per1 and Per2 genes impaired
natural killer (NK) cell-mediated immunosurveillance and
promoted tumorigenesis in mice, potentially due to decreased
expression of immune functional receptors like Ly49D, Ly49G2,
and Ly49H (Zeng et al., 2020). These studies robustly support the
PER gene family’s regulatory role in immune cell function and
tumor immune cell invasion.

8 The PER gene family and
cancer therapy

To enhance patient prognosis, chemotherapy employs cytotoxic
chemicals to eradicate cancer cells (van Stein et al., 2021). It may also
serve as an adjuvant therapy alongside radiotherapy or surgery (Liu
et al., 2022c). However, factors such as intratumor heterogeneity,
adaptive mutations, epigenetic alterations, and metabolic changes
enable some cancer cells to withstand clinical doses of medications,
thereby escalating the challenge of medication resistance in cancer
treatment (Vasan et al., 2019). Investigating the molecular
mechanisms of drug resistance is crucial for improving
therapeutic outcomes and introducing new treatment strategies
(Nussinov et al., 2021; Liu et al., 2023b). Previous research
revealed that oncogene-transformed mouse embryonic fibroblasts
developed increased resistance to chemotherapeutic agents like
methotrexate, gemcitabine, and etoposide, due to alterations of
Per2 gene. Wang et al. (Wang et al., 2020d) found a link between
the downregulation of PER2 gene expression in cisplatin-resistant
ovarian cancer cells and the PI3K/AKT signaling pathway, which led
to the activation of the multidrug resistance gene 1 (MDR1).
Conversely, upregulating the PER2 gene in cervical cancer cells
inhibited the PI3K/AKT pathway, diminishing multidrug resistance
protein production and enhancing cisplatin’s lethal effect on cancer
cells (Wang et al., 2022). Additionally, Cai et al. (Cai et al., 2018)
noted a downregulation of PER3 gene in prostate cancer patients
with paclitaxel-resistant, while the paclitaxel sensitivity of cancer

cells could be rescued by overexpressing the PER3 gene. Moreover,
Redondo and colleagues observed that lower PER2 gene expression
increased the susceptibility of esophageal cancer cells to cisplatin,
promoting higher rates of cell apoptosis (Redondo et al., 2021).

Radiation therapy is a prevalent cancer treatment modality.
Increasing research focuses on the link between circadian rhythm
and radiotherapy, given that specific circadian clock genes are vital
for DNA repair and apoptosis induced by ionizing radiation and
influence cell sensitivity to radiation at different cell cycle stages
(Amiama-Roig et al., 2022). In glioma research, Zhu et al. (Zhu
et al., 2019) observed that the downregulation of the PER1 gene in
U343 cells diminished X-ray-induced DNA damage and cell death
through the CHK2-TP53 pathway. A comprehensive cohort study of
1,690 breast cancer patients demonstrated a significant association
between the genotype variations of PER3 gene and radiotherapy
side-effects, suggesting the potential of the PER3 gene as a predictor
for radiotherapy response (Webb et al., 2022). Furthermore, studies
have explored the impact of radiation timing on long-term prognosis
and adverse patient outcomes, along with the predictive capacity of
clock gene profiles for radiotherapy efficacy (Jin et al., 2021; Sapienza
et al., 2021; Kong et al., 2022; Tang et al., 2023).

9 The PER gene family-related drugs

Several studies have focused on the PER gene family in cell and
animal models to augment cancer therapy. For instance, Yang et al.
(Yang and Stockwell, 2008) demonstrated that IC261, a CKⅠε inhibitor,
impedes fibrosarcoma cell proliferation by stabilizing PER2 protein.
Oshima et al. (Oshima et al., 2019) conducted a proteomic analysis and
identified that the CKⅡ inhibitor GO289 inhibited the PER2
phosphorylation sites, leading to extended circadian rhythms and
suppressed growth in kidney cancer and acute myeloid leukemia
cells. LY2857785, a CDK9 inhibitor, has been shown to decrease
core clock protein levels including BMAL1 and PER2, by
upregulating REV-ERBα expression (Ou et al., 2019). Additionally,
mutations of PER2 could shorten circadian rhythms inmice induced by
N-ethyl-N-nitrosourea (ENU) in the PAS domain, suggesting the PAS
domain as target within the PER gene family for future interventions
(Militi et al., 2016). These findings underscore the potential of targeting
the PER gene family in cancer therapy. However, more clinical
researches are necessary to elucidate their precise pharmacological
effects and minimize unintended adverse impacts on healthy tissues.

10 Perspective and conclusion

As a crucial component of clock genes, the PER gene family in
human (PER1, PER2, and PER3) plays a pivotal role in numerous
significant pathological processes, including cancer initiation and
development. These genes, by modulating downstream gene
expression, are instrumental in regulating cell cycle and invasion
processes, altering tumor cell metabolism, impacting the tumor
immune environment, and influencing treatment responses
(Figure 4; Table 1). This modulation leads to varied clinical and
pathological features and prognostic outcomes in cancer patients.
The dysregulated proliferative phenotype is a universally recognized
hallmark of cancer. Consequently, research on the TP53 gene in
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cancer maintains a prominent and steadfast position, given its direct
association with the cell cycle and proliferative phenotype, which
may be intricately linked to circadian rhythms and the biological
clock. Yet, the extent of the PER gene family’s influence on cancer
cell cycles remains incompletely elucidated. In our review, we
thoroughly reviewed the discovery history, fundamental biological
functions, and the interplay between the PER gene family and
various tumor characteristics. We also anticipate further studies
on the relationship between the PER gene family and TP53 to
elucidate their connections. Our review advocates for in-depth
investigations into the PER gene family’s role in specific cancer
types or stages, and their molecular mechanisms, to identify
potential biomarkers for cancer risk and prognosis.

In future studies, our focus on the PER gene family will
encompass several key areas (Feng et al., 2023a): Developing
personalized treatment strategies: By harnessing a thorough
comprehension of the PER genes’ expression and functional
disparities across different cancer types, we aim to craft more
targeted treatment methodologies to improve patient responses
and survival rates (Hanahan, 2022); Integrating immunotherapy:
This involves exploring how immunotherapy can enhance the
immune system’s ability to detect and eliminate tumors,
potentially including the creation of immunotherapeutic
approaches directly linked to PER genes regulation (Shen et al.,
2022); Deciphering treatment resistance mechanisms: Conducting
detailed analyses of the resistance mechanisms associated with the
PER genes to ascertain why some patients resist certain treatments,
thereby providing insights for novel therapeutic development
(Wang et al., 2023); Discovering early diagnostic and predictive
biomarkers: Leveraging insights into the regulatory roles of PER
genes in various biological processes to identify novel early
diagnostic or predictive biomarkers, aiming to improve patient
outcomes (Feng et al., 2023b); Fostering multidisciplinary
collaboration and technological innovation: By enhancing
collaboration across disciplines and integrating cutting-edge
technologies from bioinformatics, molecular biology, and
immunology, we plan to conduct an in-depth and comprehensive
exploration of the mechanisms of action of PER genes in cancer.
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