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Background: Polyamine modification patterns in lung adenocarcinoma (LUAD)
and their impact on prognosis, immune infiltration, and anti-tumor efficacy have
not been systematically explored.

Methods: Patients from The Cancer Genome Atlas (TCGA) were classified into
subtypes according to polyaminemetabolism-related genes using the consensus
clustering method, and the survival outcomes and immune profile were
compared. Meanwhile, the geneCluster was constructed according to the
differentially expressed genes (DEGs) of the subtypes. Subsequently, the
polyamine metabolism-related score (PMRS) system was established using the
least absolute shrinkage and selection operator (LASSO) multivariate regression
analysis in the TCGA training cohort (n = 245), which can be applied to
characterize the prognosis. To verify the predictive performance of the PMRS,
the internal cohort (n= 245) and the external cohort (n= 244) were recruited. The
relationship between the PMRS and immune infiltration and antitumor responses
was investigated.

Results: Two distinct patterns (C1 and C2) were identified, in which the
C1 subtype presented an adverse prognosis, high CD8+ T cell infiltration,
tumor mutational burden (TMB), immune checkpoint, and low tumor immune
dysfunction and exclusion (TIDE). Furthermore, two geneClusters were
established, and similar findings were observed. The PMRS, including three
genes (SMS, SMOX, and PSMC6), was then constructed to characterize the
polyamine metabolic patterns, and the patients were divided into high- and
low-PMRS groups. As confirmed by the validation cohort, the high-PMRS group
possessed a poor prognosis. Moreover, external samples and
immunohistochemistry confirmed that the three genes were highly expressed
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in tumor samples. Finally, immunotherapy and chemotherapy may be beneficial to
the high-PMRS group based on the immunotherapy cohorts and low half-maximal
inhibitory concentration (IC50) values.

Conclusion:We identified distinct polyaminemodification patterns and established
a PMRS to provide new insights into the mechanism of polyamine action and
improve the current anti-tumor strategy of LUAD.
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Introduction

According to the 2022 cancer statistics, lung cancer is a common
cause of cancer-related deaths worldwide, with the second-highest
cancer incidence rate (Siegel et al., 2022). Among the numerous
clinical subtypes of pulmonary cancer, lung adenocarcinoma
(LUAD) attracts significant attention in the medical community
owing to its high aggressiveness and lethality (Inamura, 2018).
Although current treatment methods for LUAD, including
chemotherapy, have shown excellent anti-cancer potential, a
small percentage of patients still experience adverse reactions and
present a poor survival prognosis. Therefore, an effective biomarker
is urgently needed to assess the survival prognosis of patients and to
realize personalized treatment schedules.

Natural polyamines, small polycationic molecules containing
putrescine, spermidine, and spermine, are essential nutrients for
eukaryotic cell growth (Bae et al., 2018) and contribute significantly
to DNA replication, cell proliferation, and apoptosis (Kalac, 2014).
In addition, the emergence and progression of tumors are closely
correlated with disturbances in polyamine homeostasis (Casero
et al., 2018). In this context, the modulation of polyamine
synthase activity and polyamine transmembrane transport
systems holds promise for targeted cancer therapy. For instance,
the upregulation of ornithine decarboxylase (ODC), a critical rate-
limiting enzyme in the polyamine synthesis pathway regulated by
c-MYC transcription (Pegg, 2006), is an essential mechanism
promoting colorectal cancer (CRC) development. Based on this,
the combined blocking of ODC and eukaryotic translation initiation
factor 5A (eIF5A) can effectively inhibit c-MYC and produce a
synergistic anti-tumor effect in CRC (Coni et al., 2023). Similarly,
5′-methylthioadenosine phosphorylase (MTAP) plays a critical
metastasis inhibitory role in breast cancer by inhibiting ODC
activity (Zhang et al., 2022). As the second rate-limiting enzyme
for polyamine synthesis, the S-adenosylmethionine decarboxylase
proenzyme (AMD1) is mainly involved in the synthetic processes of
spermidine and spermine. As reported, the activation of mTORC1,
which is correlated with tumor proliferation, can induce an increase
in the expression of AMD1 in prostate cancer cells (Zabala-Letona
et al., 2017). Another study showed that AMD1 is critical for driving
cancer stemness in myeloid leukemia and promoting the
progression of chronic myeloid leukemia (Sari et al., 2021).
Serving as an important rate-limiting enzyme in the process of
polyamine catabolism, spermidine–spermine N1-acetyltransferase
(SSAT) is important in the regulation of the cell cycle and DNA
repair, whose mutation is followed by tumor migration and
progression (Thakur et al., 2019). Notably, the activation of
SSAT is controlled by p53, which can induce the ferroptotic

response in lung cancer cells (Ou et al., 2016). However, the
action mechanism of the polyamine metabolism patterns in lung
cancer remains unclear and requires comprehensive analysis.

Currently, the correlation between tumor immunity and tumor
metabolism is being studied extensively, suggesting that polyamine
metabolism has shown great value in modulating the anti-tumor
immunotherapy response, thus making it a potential target for
immunotherapy. In general, malignant tumors have elevated
levels of polyamines to assist the growth of cells with an
immunosuppressive phenotype (Geiger et al., 2016; Gautam
et al., 2023). In glioblastoma, immunosuppressive tumor-
associated myeloid cells have higher polyamine levels than
cytotoxic CD8+ T cells (Miska et al., 2021). Furthermore, ODC
can inhibit the M1macrophage responses associated with colitis and
associated carcinogenesis (Singh et al., 2018). Thus, targeting
polyamines may represent a novel strategy to remodel the tumor
immune microenvironment (TME) to enhance anti-tumor
responses, supporting ongoing research on polyamine inhibitors
with potential TME-regulatory properties (Holbert et al., 2022). In
particular, the overall impact of polyamine metabolism on the
immunotherapeutic response to LUAD has not been adequately
explored to date.

In summary, a comprehensive investigation of polyamine
metabolism patterns and characteristics of polyamine-mediated
TME cell infiltration is promising to efficiently assess the patient
prognosis and benefit the search for new therapeutic targets. In this
study, we divided 490 LUAD patients into two subtypes based on
genes related to polyamine metabolism. Then, we found that
survival outcomes and the immune profile were notably different
in the two subtypes. To this end, we constructed a polyamine
metabolism-related score (PMRS) system for the characterization
of polyamine metabolism patterns, which could be a significant
addition to the assessment of the clinical prognosis of LUAD
patients and their sensitivity to immunotherapy and chemotherapy.

Materials and methods

Data collection

The transcriptome data, clinical and somatic mutation
information about 490 LUAD patients, were gained from The
Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov/). External verification cohorts (GSE13213 and
GSE50081), including 244 samples with LUAD, were derived
from the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). The copy number variation (CNV)
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data of LUAD patients was obtained from the UCSC Xena database
(https://xenabrowser.net/datapages/). The gene set, REACTOME_
METABOLISM_OF_ POLYAMINES, was attained from the
MSigDB (http://www.gsea-msigdb.org/gsea/index.jsp), and then
59 polyamine metabolism-related genes were included for further
analysis (Supplementary Table S1).

Landscape of genetic variation and
consensus clustering analysis

The polyamine metabolism-related gene expression was drawn
from TCGA. Then, the Cox analysis was utilized to filter the prognosis-
related genes. Meanwhile, multiple approaches were used to
characterize the genetic diversity of prognosis-related genes. First,
the mutation rate for each gene was calculated using the “maftools”
package, and the “RCircos” package was utilized to display the CNV.
Additionally, the correlation analysis was performed to elaborate on the
interrelationship among prognostic genes. Finally, we exploited the
differential expressions of prognostic genes by using the Wilcoxon test.

Subsequently, consensus clustering (Wilkerson and Hayes, 2010)
(parameters: reps = 50, pItem = 0.8, pFeature = 1, clusterAlg = “pam,”
and distance = “canberra”) was used to establish the molecular subtype.
The “survival” package was used to investigate the prognosis between
different groups. Moreover, the differential expressions of prognostic
genes among different subtypes and their correlation with clinical
characteristics were displayed by the “heatmap” package. We used
the single-sample gene set enrichment analysis (ssGSEA) method to
investigate 16 kinds of immune cells (Rooney et al., 2015). Furthermore,
to assess the association between various subtypes and the effectiveness
of immunotherapy, we compared some widely reported therapeutic
predictors for the response to the immune checkpoint blockade (ICB),
which include the expression of immune checkpoint, tumor mutational
burden (TMB), and tumor immune dysfunction and exclusion (TIDE)
scores among different subtypes. The TMB score was derived from
somatic mutation data, and the TIDE score was obtained from the
TIDE website (http://tide.dfci.harvard.edu/).

Construction and analysis of
geneCluster groups

The differentially expressed genes (DEGs) between different
subtypes were discerned using the “limma” package. |logFC| > 1 and
adjusted p-value <0.01 were considered statistically significant. Then, the
Cox regression was exploited to filter out DEGs correlated with
prognosis. The patients were categorized into different geneCluster
groups on the basis of survival-related genes by applying the
consensus clustering method. Using the same method mentioned
earlier, we compared the immune landscape and immunotherapy
response prediction between different geneCluster groups.

Establishment and verification of the
PMRS system

First, we applied the “caret” package to divide the TCGA LUAD
cohort into a training cohort and a test cohort at a ratio of 1:1.

Afterward, we used the least absolute shrinkage and selection
operator (LASSO) to further compress the correlation coefficient
to identify subsequent genes according to the polyamine
metabolism-related prognostic genes in the training cohort. We
used 1,000-fold alteration and cross-validation to ensure the stability
of the screening results. Furthermore, the genes were sequentially
subjected to multivariate Cox analysis. Finally, the PMRS also called
the risk score, was constructed using a previously reported formula:
PMRS = Σ(corresponding coefficient × gene expression). The
patients were separated into two groups according to the median
PMRS. Then, the prognosis of each patient group was evaluated
using the “survival” package, while the accuracy of the PMRS in
predicting 1-, 3-, and 5-year survival rates was assessed using the
“timeROC” package. In addition, the PMRS prognostic significance
was validated using both the internal cohort, including the TCGA
test and all cohorts, and the external cohort, including the
GSE13213 and GSE50081 cohorts, according to the same method
used in the TCGA training cohort.

Subsequently, the GSE46539 cohort, containing 92 lung
adenocarcinoma samples and 92 matched normal lung tissue
samples, was used to validate the gene expression profile of the
PMRS. The “pROC” package was used to estimate the efficacy of
each gene to differentiate the tumor. Moreover, the individuals
were categorized into two cohorts according to the median gene
expression levels. Then, an overall survival analysis was conducted
to examine the prognosis using the GEPIA dataset (http://gepia.
cancer-pku.cn/). The immunohistochemical results of each gene
from the HPA database are applied to verify the gene expression
difference between the LUAD tissues and normal tissues (https://
www.proteinatlas.org/). The antibody information of each gene
applied for immunohistochemical analysis is available in
Supplementary Table S2. The immunohistochemical protocol
was performed as previously reported in the literature (Uhlen
et al., 2015).

Comprehensive analysis of the PMRS

We used a series of methods to evaluate the clinical
significance of the PMRS. The correlation between PMRS and
clinical features, including age, gender, pathological M,
pathological N, pathological T, and pathological stage, was
investigated using the Wilcoxon test. Meanwhile, the
prognosis between different PMRS groups in clinical
subgroups was evaluated with a survival analysis. Then, we
investigated the correlation among the PMRS signature,
cluster subgroup, and geneCluster group. The “survcomp”
package was used to calculate the concordance index
(C-index) of each signature to compare the predictive
performance.

Subsequently, we used the gene set variation analysis (GSVA)
package to explore the functional pathways enriched in various
PMRS groups by using “h.all.v7.5.1.symbols.gmt.” The independent
prognostic value of the PMRS was ascertained using the univariate
and multivariate Cox analyses. To demonstrate the odds of survival,
the PMRS, and other clinical factors were applied to construct the
nomogram. Then, the area under the curve (AUC) and Cox analysis
were utilized to assess the clinical application value.
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Immune infiltration characterization,
immunotherapy response, and
chemotherapeutic drug efficacy evaluation

The ssGSEAmethod was used to investigate 16 kinds of immune
cell infiltrations and to evaluate the activation of 13 immune-related
functional pathways between the two PMRS groups (Ye et al., 2021).
Additionally, microenvironment cell population data were also used
to observe the correlation between the PMRS and eight kinds of
immune cells and two kinds of stroma cells using the “MCPcounter”
package (Becht et al., 2016). Furthermore, a series of algorithms,
including quanTIseq, CIBERSORT, and xCELL, were used to
explore the relationship between the PMRS and CD8+ T cell
infiltration.

Then, we also explored the common biomarkers of
immunotherapy responsiveness among the various PMRS groups.
First, the immune checkpoint expression levels, including PDCD1
(programmed cell death protein 1[PD-1]) and CD274 (programmed
cell death ligand 1[PD-L1]), were compared between the different
groups. Second, the “maftools” package was exploited to
characterize the mutation of the top 20 genes between different
PMRS groups. Moreover, we also compared the distribution of the
TMB and TIDE scores between different groups. Furthermore, in
order to verify the good performance of the PMRS in predicting the
immunotherapy response, the three immunotherapy cohorts,
namely, melanoma treated with an anti-PD-1 antibody
(GSE78220), non-small-cell lung cancer (NSCLC) treated with an
anti-PD-1 antibody (GSE126044), and anti-PD-1/PD-L1 antibody
(GSE135222), were applied to evaluate the proportion of treatment
respondents in different PMRS groups. Ultimately, the
“pRRophetic” package (Geeleher et al., 2014) was used to assess
the PMRS in predicting diverse group treatment responses to
common chemotherapy drugs. The half-maximal inhibitory
concentration (IC50) data for chemotherapy drugs were obtained
from the Cancer Genome Project (CGP) database (https://www.
sanger.ac.uk/group/cancer-genome-project/).

Statistical analysis

Data analysis was performed using R software in the study. The
statistical significance of measurement data conforming to the
normal distribution was defined with the t-test, while the non-
normal distribution data were analyzed by the Wilcoxon rank test.
The “survival” package was utilized to carry out all survival analyses
by the Kaplan–Meier procedure. The relationship between
molecular subtype, geneCluster groups, and clinical features was
assessed by chi-squared test. The cutoff for statistical significance
was set as p < 0.05.

Results

Genetic variation depiction of polyamine
metabolism-related genes in LUAD

The 23 prognosis-related genes for further analysis were
obtained from polyamine metabolism-related genes by using

Cox regression analysis (Figure 1A). In total,10 polyamine
metabolism-related genes presented gene mutations, mainly
missense mutations (Figure 1B). The CNV amplification and
deletion frequencies are shown in Figure 1C. The position of
CNV on the chromosome is shown in Figure 1D. The result of
the correlation analysis showed that prognosis-related genes had
complicated interactions (Figure 1E). The upregulation of
polyamine metabolism-related genes was displayed in tumor
samples (Figure 1F). All the above-mentioned results
manifested that genetic variation in polyamine metabolism-
related genes played a vital role in the tumorigenesis and
progression of LUAD.

Distinct molecular subtype establishment
and comprehensive analysis

According to the prognosis-related genes, the consensus
clustering separated LUAD patients into two different subtypes:
cluster 1 (C1) and cluster 2 (C2) (Figures 2A–C). The principal
component analysis (PCA) presented consensus clustering that
separated patients into two subtypes (Figure 2D). The
C1 subtype had 201 LUAD patients, and the C2 subtype had
289 patients. The results of the survival analysis disclosed that
patients in the C2 group had better survival prognoses than
those in the C1 group (Figure 2E). The clinical correlation
analysis showed that the ratio of advanced stage (stages III + IV)
and lymph node metastasis (pathological N2 + N3) was positive for
the C1 subtype (Figure 2F). The heatmap indicated that genes
related to polyamine metabolism were more active in the
C1 subtype than in the C2 subtype, except for AZIN2 and PAOX
(Figure 2F). Immune cell infiltration scoring showed that B cells,
DCs, iDCs, mast cells, neutrophils, and T helper cells were more
active in the C2 subtype, while the C1 subtype exhibited higher
activity in CD8+ T cells, NK cells, Th1 cells, and Th2 cells
(Figure 2G). On this basis, we could speculate that the two
molecular subtypes may have markedly different immune cell
infiltrations. Subsequently, we investigated the
immunotherapeutic response markers in two subtypes. The
expression levels of two checkpoints recommended in the
guidelines, CD274 and PDCD1, were upregulated in the
C1 subtype (Figures 2H, I). Additionally, compared to the
C2 subtype, patients in the C1 subtype had higher TMB and
TIDE scores (Figures 2J, K). Moreover, compared to the
C2 subtype, we found that the proportion of patients with high-
TMB and low-TIDE scores was higher in the C1 subtype after the
patients were further divided into low- and high-score groups
according to the median score (Supplementary Figures S1A, B).

GeneCluster construction and
overall analysis

A total of 2,576 DEGs were identified between the two
subtypes, i.e., 1,816 upregulated genes and 760 downregulated
genes (Supplementary Table S3). Then, a univariate Cox
regression analysis was used to identify 297 prognosis-related
genes (Supplementary Table S4). Two geneCluster groups were
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constructed according to prognosis-related genes (Figure 3A).
Based on the survival analysis, the geneCluster A group
exhibited a poorer survival outcome than the geneCluster B
group (Figure 3B). Patients in the geneCluster A group were
characterized as advanced stage (stages III + IV), lymph node
metastasis (pathological N2 + N3), and the C1 molecular
subtype (Figure 3C). Furthermore, compared to the
geneCluster B group, the genes associated with prognosis
showed higher activation in the geneCluster A group
(Figure 3C). All of the above-mentioned results suggested
that the geneCluster A group was correlated with the
C1 subtype. Then, we also investigated the trait of immune
cell infiltration and immunotherapeutic response markers. The
CD8+ T cells, NK cells, Th1 cells, and Th2 cells were activated in
the geneCluster A group, while B cells, DCs, iDCs, macrophages,
mast cells, neutrophils, pDCs, T helper cells, and TIL were
activated in the geneCluster B group (Figure 3D).
Upregulation of checkpoints and higher TMB and TIDE
scores were observed in the geneCluster A group (Figures
3E–H). The geneCluster A group presented a greater
proportion of a high TMB score (24% vs. 7%) and a low
TIDE score (69% vs. 34%) (Supplementary Figures S2A, B).
In summary, individuals belonging to the geneCluster A group
might exhibit favorable reactions to immunotherapy.

Polyamine metabolism-related score
system development and validation

The entire TCGA cohort was randomly divided into the training
cohort (n = 245) and the test cohort (n = 245). The polyamine
metabolism-related score system was constructed according to the
training cohort. Based on the previous regression analysis, 23 genes
were selected for the follow-up study. Subsequently, LASSO
regression was applied to eliminate collinearity (Tibshirani,
1996). Seven polyamine metabolism-related genes were selected
after 1,000-time cross-validation (Figures 4A, B, Supplementary
Table S5). Finally, three genes were chosen to establish the
polyamine metabolism-related score after the multivariate
regression analysis (Figure 4C). The polyamine metabolism-
related score, also called the PMRS model, was calculated
according to the following equation: 0.4229 * PSMC6 (mRNA
expression level) + 0.4262 * SMOX (mRNA expression level) +
0.3632 * SMS (mRNA expression level). The corresponding
coefficient was generated by multivariate regression analysis
(Supplementary Table S6). Based on the median PMRS, the
TCGA training cohort could be categorized into high- and low-
PMRS groups (Supplementary Figures S3A–C). The heatmap
indicated that the high-PMRS group exhibited greater activity of
the three prognostic genes related to polyamine metabolism than the

FIGURE 1
Landscape of genetic variation. (A) Prognosis-related genes using Cox regression analysis. (B) A mutation map of polyamine metabolism-related
genes. (C) Copy number variation (CNV) of polyamine metabolism-related genes. (D) Position of the CNV on chromosomes. (E) Interplay and prognostic
significance of polyamine metabolism-related genes. (F) Difference in the gene expression level between normal and tumor groups. *p < 0.05 and
***p < 0.001.

Frontiers in Cell and Developmental Biology frontiersin.org05

Li et al. 10.3389/fcell.2024.1331759

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1331759


low-PMRS group (Figure 4D). A total of 122 patients were included
in the high-PMRS group, and the low-PMRS group consisted of
123 patients. In addition, the patients in the high-PMRS group had
poorer survival prognoses than those in the low-PMRS group
(Figure 4E). The AUC of 1-, 3-, and 5-year survival rates was
0.65, 0.63, and 0.70, respectively (Figure 4F), which indicated
that the polyamine metabolism-related score had a good
performance in predicting the prognosis of LUAD patients.

Moreover, the TCGA internal cohort and external cohort were
applied to confirm the predictive efficiency of the PMRS. The
same method was used to divide the LUAD patients into the
high- and low-PMRS groups. The patients could be clearly
divided into two distinct groups in three cohorts using the same
formula (Supplementary Figures S4A–C, D–F, G–I). The heatmap
also showed that the three prognostic polyaminemetabolism-related
genes were activated in the high-PMRS group (Figures 5A, D, G).

FIGURE 2
Construction, clinical features, immune profile, and immunotherapy response investigation of the subtype. (A–C) Optimal value of consensus
clustering. (D) Principal component analysis (PCA). (E) Difference in the survival outcomes between the cluster 1 (C1) and cluster 2 (C2) subtypes.
(F)Heatmap of genes and clinicopathological characteristics between the two subtypes. (G)Correlation analysis between the two subtypes and immune
cell infiltration. (H, I) Distribution of CD274 and PDCD1 in the two subtypes. (J) Distribution of the tumor mutation burden (TMB). (K) Distribution of
tumor immune dysfunction and exclusion (TIDE). *p < 0.05; **p < 0.01; and ***p < 0.001.
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Compared to the high-PMRS group, the survival analysis manifested
that the patients presented more favorable prognoses in the low-
PMRS group (Figures 5B, E, H). The AUC of 1-, 3-, and 5-year
survival rates was 0.69, 0.65, and 0.67 in the entire TCGA cohort,
0.70, 0.68, and 0.65 in the TCGA test cohort, and 0.68, 0.60, and
0.60 in the external GEO cohort, respectively (Figures 5C, F, I). All
the above results demonstrated that the polyamine metabolism-
related score had good effectiveness in predicting LUAD
patient prognosis.

Comprehensive analysis of the polyamine
metabolism-related score system

We comprehensively explored the three genes in the model.
First, in the GSE46539 lung adenocarcinoma cohort, the expression
level of PSMC6, SMOX, and SMS was higher in the tumor samples
than in the normal samples (Supplementary Figure S5), which was

consistent with the previous result in TCGA lung cancer samples.
Then, the diagnostic ROC curve was applied to evaluate the
efficiency of correctly distinguishing between patients and non-
patients. The AUC of PSMC6, SMOX, and SMS were 0.866, 0.844,
and 0.856, respectively (Figures 6A–C), indicating that the three
genes might have good performance in distinguishing between lung
cancer patients and non-patients. The patients with high expression
of PSMC6, SMOX, and SMS had adverse prognoses based on the
data obtained from the GEPIA dataset (Figures 6D–F). The result
was consistent with that of the patients in the high-PMRS group,
who had more activated polyamine metabolism-related genes but a
worse survival prognosis. The immunohistochemical analysis results
show that the protein level of PSMC6, SMOX, and SMS was higher
in the LUAD sample than in normal tissues according to the HPA
database (Figures 6G–L).

Subsequently, we examined the association between the PMRS
and clinical features. The PMRS was high in patients with lymph
node metastasis (pathological N2 + N3) and advanced stage (stages

FIGURE 3
Identification, clinical characteristics, immune profile, and immunotherapy response analysis of the geneCluster. (A) Optimal value of consensus
clustering. (B) Variation in survival outcomes between geneCluster A and geneCluster B. (C) Heatmap of genes and clinicopathological characteristics
between the two clusters. (D) Correlation analysis between the two subtypes and immune cell infiltration. (E, F) Distribution of PDCD1 and CD274.
(G) Distribution of the TMB. (H) Distribution of TIDE. *p < 0.05; **p < 0.01; and ***p < 0.001.

Frontiers in Cell and Developmental Biology frontiersin.org07

Li et al. 10.3389/fcell.2024.1331759

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1331759


III + IV) (Supplementary Figure S6). The patients were categorized
into high- and low-PMRS groups with the same method in different
clinical subgroups. The individuals belonging to the high-PMRS
group were observed to have a poorer prognosis in most clinical
subgroups except for the tumor metastatic group (M1) (Figures
7A–L). The Sankey figure presented a close correlation between the
C1 subtype, geneCluster A, and high PMRS (Figure 7M). All patients
in these groups had a high death rate, which was identical to
previous findings. The higher distribution of the C1 subtype and
geneCluster A was found in the high-PMRS group (Figures 7N, O).
By reviewing the previous study, the signature constructed by Wang
et al. (2023) was compared with the PMRS. We found that the AUC
at 1-, 3-, and 5-year survival rates (0.68, 0.68, and 0.66, respectively)
and C-index (0.664 vs. 0.642) were similar to the PMRS
(Supplementary Figures S7A, B), suggesting that the two score
systems had similar efficiencies in estimating the prognosis of
LUAD patients.

Furthermore, functional enrichment analysis revealed that
activated pathways were mainly cancer-related in the high-PMRS
group, such as E2F_targets, G2M_checkpoint, MYC_targets_V1,
MYC_targets_V2, EPITHELIAL_MESENCHYMAL_TRANSITION,
MITOTIC spindle, and PI3K_AKT_MTOR_signaling (Figure 8A).

Finally, the clinical predictive value of the score was evaluated.
Both the univariate and multivariate analyses confirmed that the
PMRS was an independent marker for predicting survival prognosis
(Figures 8B, C). In order to comprehensively predict patient
prognosis, a nomogram was constructed using PMRS and other
clinical factors. Figure 8D shows that the 1-, 3-, and 5-year overall

survival probabilities were 0.921, 0.706, and 0.472, respectively. The
1-, 3-, and 5-year predicted overall survival probabilities were almost
identical to the actual overall survival probabilities, suggesting the
excellent efficacy of the scoring system in estimating LUAD patient
prognosis (Figure 8E). Moreover, the result of the ROC curve
showed that the nomogram had better performance in predicting
the prognosis than other indices (Figure 8F). The nomogram was
found to be a reliable survival prognostic indicator according to the
univariate and multivariate analyses (Figures 8G, H).

Immune infiltration characterization and
therapeutic efficacy prediction

In order to characterize the tumor’s immune
microenvironment, we applied a series of immune infiltration
methods. A total of 16 kinds of immune cell infiltration scores
between the two PMRS groups were calculated by the ssGSEA
method. Then, we observed that CD8+ T cells, macrophages, NK
cells, Th1 cells, Th2 cells, and Treg cells were activated in the high-
PMRS group, while DCs, iDCs, mast cells, neutrophils, and T helper
cells were activated in the low-PMRS group (Figure 9A). The results
of immune-related functional pathways showed that more immune
pathways were activated in the high-PMRS group, including APC
co-inhibition, CCR, cytolytic activity, inflammation promotion,
MHC class I, para-inflammation, T cell co-inhibition, only HLA,
and IFN type II response, suggesting the high-PMRS group to be the
immuno-active phenotype (Figure 9B). The result of the MCP-

FIGURE 4
Establishment of the polyamine metabolism-related score (PMRS) based on the Cancer Genome Atlas (TCGA) training cohort. (A, B) Seven genes
using LASSO regression analysis. (C) Three genes using multivariate Cox regression. (D) Heatmap of the distribution of the three genes. (E) Difference in
the survival outcomes between the two groups. (F) Area under the curve (AUC) for predicting 1-, 3-, and 5-year survival rates.
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counter immune infiltration method showed that the PMRS was
positively correlated with CD8+ T cells, cytotoxic lymphocytes, NK
cells, and fibroblasts while negatively correlated with myeloid
dendritic cells, neutrophils, and endothelial cells (Figure 9C).
Moreover, we also found that the PMRS was positively correlated
with CD8+ T cell infiltration by using different software (Figure 9D).

Subsequently, we investigated the application value of
predicting the immunotherapy response. The mutation waterfall
displays distinct gene mutation frequencies in the two PMRS
groups. The high-PMRS group had more gene mutation
frequency than the low-PMRS group, and TP53 was the top
mutation gene in both groups (55% vs. 32%) (Figures 10A, B).
TP53, TTN, MUC16, and RYR2 are the main genes involved in
resistance to immunotherapeutic drugs in low-TMB patients
(Figure 10B). Compared to the low-PMRS group, the high-
PMRS group displayed a higher TMB value (Figure 10C). The
high-PMRS group still had a higher proportion of high TMB after
the TMB score was split into high- and low-TMB scores
(Figure 10D). The PMRS was positively associated with the
TMB (R = 0.16, p < 0.001; Supplementary Figures S8A, B). We
also found that the C1 subtype and geneCluster A were correlated
with high-PMRS and -TMB groups, which were consistent with the
previous results. After integrating the TMB score and PMRS, the

low-TMB and high-PMRS groups had the worst survival outcome,
while the high-TMB and low-PMRS groups had the most
advantageous survival outcome (Supplementary Figure S8C).
Then, the relationship between the PMRS and TIDE score was
investigated, and the results revealed that the individuals in the
high-PMRS group had a low TIDE score (Figure 10E,
Supplementary Figure S8D). In addition, a significant
upregulation of PDCD1 and CD274 was found in the high-
PMRS group (Figures 10F, G). To demonstrate the strong
power of the polyamine metabolism-related score system in
evaluating immunotherapy response, three immunotherapy
cohorts were applied to compare the distribution of responders
in the two PMRS groups. In the GSE78220, GSE126044, and
GSE135222 cohorts, the high-PMRS group exhibited a greater
number of immunotherapy responders than the low-PMRS group
(Figures 10H–J). We further analyzed the sensitivity of common
chemotherapy drugs between the two PMRS groups (Figures
10K–N). The results showed that the IC50 value of cisplatin,
docetaxel, gemcitabine, and paclitaxel was lower in the high-
PMRS group than in the low-PMRS group, indicating that the
high-PMRS group was sensitive to these drugs. In summary, all the
above results could serve as a benchmark for treatment
stratification for individuals with LUAD.

FIGURE 5
Validation of the PMRS in the internal and external cohorts. (A) Heatmap of the distribution of the three genes. (B) Survival difference analysis. (C)
AUC for predicting 1-, 3-, and 5-year survival rates. The same analysis was performed in the TCGA test cohort (D–F) and theGSE13213 andGSE50081 lung
adenocarcinoma (LUAD) cohorts (G–I).
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Discussion

Lung cancer is a heterogeneous tumor, including its molecular
basis and histology (Vogelstein et al., 2013). LUAD, being the most
prevalent form of lung cancer, exhibits not only high invasiveness
but also has the highest heterogeneity (Devarakonda et al., 2015). In
recent years, the treatment of lung cancer based on traditional
histological classifications has improved, but the emergence of
drug resistance remains an intractable problem. According to
previous reports, the prognosis and therapeutic response of lung

cancer are linked to polyamine (Takahashi et al., 2015; Al-Habsi
et al., 2022). Therefore, investigating the distinctive molecular
classifications of lung cancer, especially those related to
polyamine, will help improve the patient’s prognosis and
determine a personalized treatment protocol.

First, we observed that the polyamine metabolism-related genes
displayed distinct expression levels and highly complicated interaction
relationships between lung adenocarcinoma and normal samples,
suggesting that polyamine metabolism may play a vital role in
lung adenocarcinoma. So, according to the polyamine metabolism-

FIGURE 6
Validation research of the three genes. (A–C) Diagnostic ROC curve of the three genes. (D–F) Correlation analysis between expression levels of the
three genes and survival outcomes. (G–L) Protein level of three genes according to immunohistochemical results.
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related genes, the lung adenocarcinoma patients were split into two
different clusters. Then, the study illustrated the two polyamine
metabolism patterns with disparate characteristics. C1 presented a
higher expression level of polyamine metabolism-related genes and a
poorer survival rate. The previous reports revealed that the increasing
level of polyamine is related to a poor prognosis in lung cancer
(Takahashi et al., 2015), which is consistent with the results. In
addition, the C1 subtype was strongly correlated with advanced-
stage tumor (stages III + IV) and lymph node involvement (pathologic
stage N). This condition may be attributed to the fact that polyamine
could maintain tumor cell continual proliferation and promote tumor

lymph node metastasis (López-Contreras et al., 2019; Xu et al., 2020).
The TME is a heterogeneous ecosystem containing tumor cells and
non-tumor cells. The immune cells are part of the main components
of non-tumor cells, especially CD8+ T cells, which are the cells leading
to damage to the tumor cell (Raskov et al., 2020). However, the CD8+

T cells exerting an anti-tumor immune response relied on their
normal cellular function (Raskov et al., 2020). The immune
checkpoints, including PD-1 and PD-L1, expressed on CD8+

T cells and tumor cells, could apparently restrain the T cell
immunity (Dammeijer et al., 2020). We observed that the
C1 subtype had higher expression levels of PD-1 and PD-L1,

FIGURE 7
Correlation analysis between the PMRS, survival rate in different clinical subgroups, and polyamine modification patterns. (A–L) Survival rate of the
high- and low-PMRS groups within various clinical subgroups. (M) Sankey diagram of the association between PMRS, clusters, geneClusters, and survival
status. The cluster (N) and geneCluster (O) distribution in the two PMRS groups.
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suggesting these had defective immunity, which could lead to a poor
prognosis. Luckily, PD-1 and PD-L1 were the widely supported
biomarkers to guide immunotherapy, and the ICB targeting the
two biomarkers has achieved great clinical therapeutic results in
NSCLC (Ettinger et al., 2022). Our findings observed that the
C1 subtype exhibited PD-1 and PD-L1 overexpression compared
to the C2 subtype, suggesting that the C1 subtype could potentially
derive advantages from immunotherapy. Additionally, TMB is also a
strong biomarker to elevate the patient response to antitumor
immunotherapy in various cancer types (Goodman et al., 2017).
The result showed that the C1 subtype possessed a higher TMB
than the C2 subtype. After the classification of the TMB score into

high- and low-TMB groups, the C1 subtype still had a higher
proportion of high TMB, indicating that the C1 subtype may
present sensitivity to immunotherapy. Finally, we compared the
TIDE scores between the two subtypes. The TIDE is a
computational method that evaluates the probability of tumor
immune evasion in the gene expression profiles of tumor samples,
and its results are thought to be an alternative to single biomarkers for
effectively predicting the effects of ICB (Jiang et al., 2018). Generally,
the TIDE score has an inverse relationship with the effects of ICB.
According to the results of the TIDE score comparison between the
two subtypes, the effects of ICB may be better in the C1 subtype than
in the C2 subtype.

FIGURE 8
Comprehensive investigation of the PMRS. (A) Functional enrichment analysis in the high- and low-PMRS groups. Univariate (B) and multivariate
analyses (C) of the PMRS and clinical factors. (D) Construction of the nomogram. (E) Calibration curve of the nomogram. (F) AUC for predicting the
survival rate. Univariate (G) and multivariate analyses (H) of the nomogram and clinical factors.
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Furthermore, in this study, the mRNA transcriptome differences
between different polyamine metabolism patterns were found to be
significantly correlated with polyamine metabolism-related gene
signatures. Two geneCluster types were established according to the
DEGs, which were similar to the clustering results of the polyamine
metabolism phenotypes. Parallel to the characteristics of the polyamine
metabolism patterns, the geneCluster was remarkably associated with
different clinical prognoses, profiles of immune infiltration, and
antitumor immunity. This demonstrated again that polyamine
metabolism patterns are involved in tumor development, shaping
distinct TME landscapes and immunotherapy effects. In summary,
we believe that the polyamine metabolism patterns will become a novel
biomarker to predict the survival prognosis and immunotherapy
response of LUAD patients.

Subsequently, the PMRS system was constructed to characterize
the polyamine metabolism patterns. Three genes, namely

proteasome 26S subunit, ATPase 6 (PSMC6), spermine oxidase
(SMOX), and spermine synthase (SMS), were selected through a
series of steps to build the score, which was applied to divide the
patients into high- and low-PMRS groups. The high-PMRS group
presented upregulation of PSMC6, SMOX, and SMS. PSMC6 is a
PSMC family member with an ATPase function for unpacking and
relocating the substrates (Bhattacharyya et al., 2014). The PSMC
family member contains PSMC1, PSMC2, PSMC3, PSMC4, PSMC5,
and PSMC6, which constitute the 19S proteasome complex (Gu and
Enenkel, 2014). Jia et al. (2022) revealed the prognostic effect and
related immune profile of PSMC genes in LUAD. As reported,
PSMC6 showed upregulation in the LUAD sample, which may
activate WNT signaling to promote tumor progression. For
knockdown, PSMC6 could inhibit cancer cell development,
migration, and invasion (Zhang et al., 2021a). In the study, we
observed that PSMC6 was overexpressed in the TCGA LUAD

FIGURE 9
Immune profile in the high- and low-PMRS groups. (A) Immune profile and (B) immune function pathway analysis by single-sample gene set
enrichment analysis (ssGSEA). (C)Correlation analysis between the PMRS, immune cells, and stroma cells. (D)Correlation analysis between the PMRS and
CD8+ T cells. *p < 0.05; **p < 0.01; and ***p < 0.001.
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sample, and we validated this with other LUAD cohorts and
immunohistochemistry detection results (Figures 6A, J).
Similarly, the high expression level of PSMC6 was related to
adverse survival outcomes. All these results were consistent with
previous reports, which could partially explain the worse prognosis
of the high-PMRS group. Considering that this protein upregulation
could result in the abnormal degradation of the mediators of the cell
cycle and apoptosis regulators, targeting the proteasome activity is a
potential antitumor method (Park et al., 2018). Then, we found that
the high-PMRS group and the tumor sample had a high expression

level of SMOX. SMOX is a key enzyme involved in the polyamine
metabolism pathway, which takes spermine as a substrate to catalyze
the production of spermidine, the aldehyde 3-aminopropanal, and
H2O2 (Cervelli et al., 2013). Previous research has indicated that
SMOX overexpression is a significant predisposing factor and a poor
prognostic indicator for many malignant tumors and is strongly
correlated with the occurrence and development of gastric cancer
(McNamara et al., 2021) and prostate cancer (Peng et al., 2021). Sun
et al. (2019) discovered a novel, new SMOX inhibitor that possessed
anti-tumor activity against lung cancer A549 cells by effectively

FIGURE 10
Immunotherapy response and chemotherapeutic drug efficacy evaluation. (A, B) Mutation map of the PMRS. (C, D) Distribution of the TMB.
(E) Distribution of TIDE. (F, G) Distribution of PDCD1 and CD274. (H–J) Distribution of responders between high- and low-PMRS groups in the
GSE78220, GSE126044, and GSE135222 immunotherapy cohorts. (K–N) Comparison of chemotherapy drug sensitivity between the two groups.
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inhibiting SMOX activity, interfering with polyamine metabolism,
and depleting the cellular polyamine content. The expression level
result of SMS was similar to that of PSMC6 and SMOX. SMS is a
highly specific aminopropyltransferase that catalyzes spermidine to
generate spermine (Pegg and Michael, 2010). Currently, SMS is
correlated with tumorigenesis in many tumors, including pancreatic
cancer (Guo et al., 2022), breast cancer (Hanash et al., 2020), and
colorectal cancer (Guo et al., 2020). However, it is unclear what role
SMS may play in the occurrence and progression of LUAD. This
research implied that SMS presented a higher expression level in the
LUAD sample than in the normal sample, which was verified by
other LUAD samples and immunohistochemistry tests (Figures 6C,
L). In addition, SMS showed upregulation in the high-PMRS group,
which had an adverse survival outcome. The mechanisms of SMS
contributing to LUAD malignancy require further research in the
future. Then, the internal and external samples were utilized to
validate the expression levels of the three genes and the contribution
of the PMRS to survival prognosis. Similar results were obtained,
which demonstrated the good performance of the PMRS for
evaluating the prognosis of LUAD patients.

We further investigated the application of the three genes to
other clinical factors. First, PSMC6 (AUC = 0.866), SMOX (AUC =
0.844), and SMS (AUC = 0.856) displayed the capacity to
differentiate normal samples from LUAD samples, so polyamines
may be applied in diagnosing LUAD in the future. Second, the
PMRS was positively correlated with lymph node metastasis
(pathological stages N2 + N3) and advanced stage (stages III +
IV), leading to adverse survival in the high-PMRS group. After
dividing the patients into different clinical subgroups, the high-
PMRS group still possessed poor survival outcomes, indicating that
the score was powerful enough to assess the survival rate of patients
with different clinical situations. Subsequent correlation analysis
revealed that the high-PMRS group exhibited a connection with the
C1 subtype and geneCluster A group, so the adverse survival of the
high-PMRS group proved the poor survival of the C1 subtype and
geneCluster A group. The functional enrichment analysis disclosed
that the cancer-related regulation pathways were mainly activated in
the high-PMRS group, including E2F_targets (Kent and Leone,
2019), PI3K_AKT_MTOR (He et al., 2021), and
epithelial–mesenchymal transition (EMT) (Dongre and
Weinberg, 2019), so these may mechanistically explain the tumor
progression and unfavorable prognosis observed in patients
belonging to the high-PMRS group. Currently, some mTOR and
EMT inhibitors have been developed (Chen and Zhou, 2020; Zhang
et al., 2021b), but their combination therapies have not been studied
in vitro or in vivo. Therefore, exploring the efficacy differences of the
combined treatment with these two inhibitors in high- and low-
PMRS groups holds great prospects. Given that the PMRS is a
separate indicator of prognosis, a nomogram combining the PMRS
with other clinical factors was established. Subsequent investigations
confirmed that the nomogram outperformed other clinical factors
when applied in estimating the survival rate, and it is also an
independent predictor of prognosis. All the above results
demonstrate that the PMRS has great potential for aiding the
clinical assessment of LUAD patient prognosis.

Finally, the PMRS prediction of immune cell infiltration and
antitumor efficacy was investigated. Similarly, the CD8+ T cells and
NK cells were more convergent in the high-PMRS group than in the

low-PMRS group by ssGSEA analysis, and we found that the PMRS
showed a positive correlation with the CD8+ T cell infiltration, which
was consistent with the C1 subtype and geneCluster A group. The
TMB and immune checkpoint (PD-1 and PD-L1) expression levels
were high, and the TIDE was low in the high-PMRS
group. Additionally, we found that the high-PMRS group
presented a high frequency of tumor protein P53 (TP53), titin
(TTN), mucin 16 (MUC16), and ryanodine receptor (RYR2)
mutations. In LUAD patients, the TP53 mutation is strongly
linked to elevated immune checkpoint expression, and patients
with a TP53 mutation show a favorable response to ICB (Dong
et al., 2017; Schoenfeld et al., 2020). Wang et al. (2021) reported that
the TTN mutation is related to a high-immunogenicity and
inflammatory tumor immune microenvironment, suggesting that
the TTN mutation may be a potential predictive marker for patients
with LUAD to accept immunotherapeutic drugs. The
MUC16 mutation seemed to correlate with genomic factors
linked to response and better outcomes to ICB treatment in solid
tumors, so the mutation shows potential as an indicator to guide
response to immunotherapy (Zhang et al., 2020). An et al. (2022)
indicated that the RYR2 mutation combined with a dendritic cell-
related risk score is useful for predicting the prognosis and
discovering appropriate patients for immunotherapy.
Furthermore, in the lung cancer and melanoma immunotherapy
cohorts, the high-PMRS group had a higher percentage of patients,
achieving better therapeutic effects than the low-PMRS group. All
these findings suggest that the PMRS may be a robust biomarker to
estimate the immunotherapeutic response. Cytotoxic chemotherapy
is one of the main therapy methods for lung cancer; nevertheless, the
emergence of drug resistance remarkably limited the drug efficacy
and resulted in a shortened overall survival time (Min and Lee,
2021). We investigated the performance of the PMRS in assessing
the effects of common chemotherapy drugs. Compared to the low-
PMRS group, the study disclosed that cisplatin, docetaxel,
gemcitabine, and paclitaxel are more suitable for the high-
PMRS group.

Wang et al. (2023) reported a polyamine metabolism-related
signature, but it contained 14 genes and mainly focused on
evaluating the survival outcome. In contrast, the PMRS
constructed by the research had fewer genes than the
previous study, but it was possible to achieve the same
effectiveness in evaluating prognostic effects and could
characterize immune cell infiltration and evaluate the
immunotherapy response and chemotherapeutic drug
efficacy. This research explored the polyamine metabolism
patterns and established a novel score system, which may
have great potential for improving the prognosis of LUAD
patients, but there are some limitations. First, functional
characterization of polyamine metabolism-related genes
should be carried out in in vitro and in vivo experiments to
explore the mechanisms of the impact of polyamine on immune
infiltration. Second, clinical trials should be conducted to verify
the association between PMRS and the effectiveness of
chemotherapy drugs. Finally, the difference in gene mutation
frequency between the high-PMRS and low-PMRS groups is
based on methodological prediction, so in vitro and in vivo
experiments that bolster the findings of our research need to be
implemented in the future.
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Conclusion

In conclusion, two distinct polyamine metabolism patterns were
identified, and the distribution of survival outcomes, immune
infiltration, and immunotherapy response was significantly
different between the two subtypes, suggesting that the polyamine
modification patterns had a great impact on the prognosis of patients
and TME. Subsequently, we constructed a polyamine metabolism-
related score system and applied it to evaluate the prognosis, immune
profile, and effectiveness of treatment in LUADpatients. Additionally,
the scoring system could characterize the individual tumor polyamine
alteration and help guide immunotherapy and chemotherapy. These
discoveries will offer new perspectives on the mechanism of
polyamine and improve the current antitumor strategies in LUAD.
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