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The spatial arrangement of variant phenotypes during stem cell division plays a
crucial role in the self-organization of cell tissues. The patterns observed in these
cellular assemblies, where multiple phenotypes vie for space and resources, are
largely influenced by a mixture of different diffusible chemical signals. This
complex process is carried out within a chronological framework of
interplaying intracellular and intercellular events. This includes receiving
external stimulants, whether secreted by other individuals or provided by the
environment, interpreting these environmental signals, and incorporating the
information to designate cell fate. Here, given two distinct signaling patterns
generated by Turing systems, we investigated the spatial distribution of
differentiating cells that use these signals as external cues for modifying the
production rates. By proposing a computational map, we show that there is a
correspondence between the multiple signaling and developmental cellular
patterns. In other words, the model provides an appropriate prediction for the
final structure of the differentiated cells in a multi-signal, multi-cell environment.
Conversely, when a final snapshot of cellular patterns is given, our algorithm can
partially identify the signaling patterns that influenced the formation of the
cellular structure, provided that the governing dynamic of the signaling
patterns is already known.
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1 Introduction

The duality of variety and organization is among the canonical concerns in biology.
During the course of development in multicellular organisms, although successive cell
divisions lead to the creation of diverse cells, it does not result in colony-like accumulation
of piled-up cells. Although, in principle, the genetic material of every single cell of an
organism is the same, influenced by variant stimulants, they are capable of generating highly
complex spatial patterns (Liu and Warmflash, 2021; Dubrulle et al., 2015; Heemskerk et al.,
2019; and van Boxtel et al., 2015). A diverse range of chemical stimuli, as underlying drivers
of non-genetic variations, act at multiple scales (Shahbazi et al., 2019). These stimuli play a
crucial role in directing cell fate determination in stem cells at the individual cell level
(Britton et al., 2021). On the other hand, collective processes such as tissue homeostasis,
wound healing, angiogenesis, and tumorigenesis are intimately linked with competing
environmental chemical cues (Schweisguth and Corson, 2019). Understanding the
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mechanisms underlying the generation and maintenance of these
ordered spatial assemblies could potentially aid in the development
of novel strategies for controlling tissue organization and function
in vitro and in vivo.During the development of multicellular
organisms, tissues are created through the spatial arrangement of
differentiated cells. Although modeling the formation of a spatial
arrangement from a single stem cell is complex, it becomes even
more complicated in reality as tissues are formed from the spatial
arrangement of cells from different stem cells. This process requires
intercellular signal transmission, which affects gene expression
regulation and intracellular decision-making.Internal mechanisms
are responsible for generating the right proportion of different types
of specialized cells, distributing them in their right position, and
maintaining the organized structure in the presence of intercellular
chemical signaling agents (Khorasani and Sadeghi, 2022). Cells also
sense and respond to mechanical stimuli and the physical properties
of their environment via induced downstream genetic regulatory
networks (Valet et al., 2022; Lenne et al., 2021; Wagh et al., 2021).
Several multi-stable regulatory networks play their role as the
internal decision-makers of dividing cells (Khorasani and
Sadeghi, 2022). This study investigates the impact of various
chemical signals on the mechanism by which multiple stem cells
generate intricate tissue structures and tries to provide a deeper
understanding of the mechanisms behind morphological variations.
In reality, the formation of intermediate structures during embryo
development or the formation of a tissue consisting of cells with
different phenotypes and with organization in their spatial
arrangement without a previous template is a complex problem,
andmodeling them using the simplest possible assumptions can lead
to a better comprehension of the development process in
multicellular organisms.We would like to answer these questions,
or, more realistically, get any enlightenment about the following:
first, in the presence of variant positional cues, how can spatially
organized populations give rise to and maintain large-scale
inhomogeneities starting from an initially roughly homogeneous
mass of intermixed stem cell populations? Second, how do
individual stem cells perceive and interpret their surrounding
spatial information to make decisions about their developmental
pathway in response to the local concentration of these stimulants?
Finally, is it possible to infer information about the specific form of
the signals that created them from the final structure of cell
populations?

The basis of cellular pattern formation is mounted on the
interaction of the mediating nonlinear diffusive signaling
components (Murray, 2001). For the spontaneous construction of
patterns during development, as proposed by Turing’s classic theory,
the system requires two diffusive chemical compounds: an activator
compound and an inhibitor compound (Turing, 1990). The latter
locally undergoes an autocatalytic reaction to generate more of itself
and also activates the formation of the inhibitor compound in some
way. Meanwhile, the former inhibits the formation of more activator
compounds. The key element for obtaining spatial patterns is that
the activator and the inhibitor components diffuse through the
reaction medium at different rates. Thus, the effective ranges of their
respective influences are different. Accordingly, if the inhibitor agent
diffuses faster than the activator one, a stable pattern can emerge
from a homogeneous background merely by the amplification of
small perturbations. The patterns generally take the form of spots

(and reverse spots) or stripes based on the choice of model
parameters (Murray, 2001). The dynamic elaborates different
possible pattern formation processes in a variety of
developmental situations. The related examples span from the
regeneration of hydras (Meinhardt, 2003) to animal coating
patterns (Koch and Meinhardt, 1994). Wave phenomena can also
generate patterns of spatiotemporal type (Cotterell et al., 2015; Eidi
et al., 2021). Since the typical characteristic time of cell division is
higher than that of a traveling wave, here, we exclude the formation
of cellular patterns induced by spatiotemporal signaling patterns.
Recently, Marcon et al. (2016) proposed a new development in
classical Turing models, indicating that the essential prerequisite of
varied diffusion rates for mobile signaling molecules is not essential
for pattern formation. Remarkably, specific networks are capable of
creating patterns using signals without the constraint of relative
diffusion rates.

Here, we assume that there are two multipotent stem cells as
resources of variation generation, each of which is potentially
capable of constructing its own organized structure in the
absence of the other. Although the cells do not directly interact,
they have an intracellular signal-dependent tri-stable switch that
affects their reproduction rates in response to multiple signals in the
environment. We present a computational model for their internal
mechanism in the presence of each other to form an organized
population consisting of whole descendants. We see that signaling
messengers play a significant and irreplaceable role as regulatory
agents in communication between different cell types. Our results
indicate that the association of variant environmental signaling
messengers and intracellular decision-making switches grants a
diverse range of cellular patterns. Furthermore, having the
ultimate arrangement of cellular organization, one can
approximately indicate the signaling patterns based on which the
cellular patterns have been established, provided that the prior
assumption of the pattern is given.

2 Materials and methods

In this model, we consider a scenario where a plane is initially
populated by two types of stem cells, SC1 and SC2. These stem cells
can both renew themselves and divide into their corresponding
differentiated cells. When they divide into specialized cells, SC1 can
give rise to eitherA or B, while SC2 can give rise to either C orD; see
Figure 1A. In this case, to simplify the computational process and
maintain the essence of the scenario, we will disregard any
intermediate stages and assume a direct division of stem cells
into their offspring. The division outcomes of each cell are
influenced by the amount of signaling agent that the mother cell
receives (Khorasani et al., 2020; Khorasani and Sadeghi, 2022,
Khorasani and Sadeghi, 2024). Here, the main idea is that in the
absence of cellular displacement, competition between existing
chemical signals in the environment plays the principal role in
the pattern formation process at the population level. To model the
underlying mechanism, we need to answer the following questions:

• What type of signal does the model refer to?
• How can a mixture of different signals impact the fate of an
individual cell?
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• What is the effect of the signals on the offspring at the
population level?

The materials and methods is structured as follows: first, we
introduce different possible dynamics for propagating extracellular
signals in the environment, including positional information in
Section 2.1.1 and reaction–diffusion dynamics in Section 2.1.2.
Subsequently, in Section 2.2, we propose a regulatory switch that
allows an individual cell to determine its fate influenced by the
uptake of different environmental signals. Finally, in Section 2.3, we
describe an algorithm for predicting the final cellular pattern of a
system that is initially composed of multiple signaling agents and
dividing cells.

2.1 Signals

Let us assume that the stem cells in a medium are exposed to
spatial chemical information, we refer to them as signals, which are
captured and interpreted by the cells to develop the spatial
organization. There are various ways to provide spatial patterns
in biology, among which, positional information and
reaction–diffusion dynamics are the most prominent (Green and
Sharpe, 2015).

2.1.1 Positional information dynamic
Generally, positional information dynamic refers to the

development of the spatial cellular organization in the embryo

differentiating at specific positions based on their response to the
gradient of environmental signals (Schweisguth and Corson, 2019).
For example, embryonic organizer centers secrete morphogens that
specify the emergence of germ layers and the establishment of the
body’s axes during embryogenesis (De Santis et al., 2021). In the
current study, by positional information, we mean any external
chemical cues whose procedure of setting up is immaterial for us,
and we merely focus on their impact on the regulation of internal
switches. To illustrate the relationship between different signals,
Figure 2 exemplifies the simultaneous presence of two signal profiles
of Gaussian type (the first column), a Gaussian profile and a
sinusoidal one (the second and third columns), and two
sinusoidal with different frequencies (the fourth column). In each
column, the final cellular pattern resulting from the process of cell
division and self-renewal of competing stem cells is represented by
the third row. Initially, the stem cells are randomly distributed in an
environment that contains upper-row signals. In all cases, the final
pattern can be distinguished by six different colors. The colors
magenta and green represent Sc1 and Sc2, respectively. The colors
blue, cyan, yellow, and red are used to represent the offspring A, B,
C, and D, respectively. The pattern formation process is
implemented using Algorithm 1.

2.1.2 Signaling through the
reaction–diffusion dynamic

To generate two independent signaling agents in the medium,
we consider a system that consists of two independent
reaction–diffusion processes. Each process involves two

FIGURE 1
Fate determination of stem cells under the influence of environmental signaling agents. (A) Differentiation of SC1 leads to either phenotype A or B,
while SC2 can differentiate into phenotype C or D depending on the amount of signaling agent exposure. (B) Regulation switch present in each stem cell
contributes to its development toward a specific fate, which is influenced by environmental stimulant pairs (s1 , s2). (C) The cruciform shape in the (s1 , s2)
plane represents the phase field of possible developed cells. Each phenotype is color-coded, with blue representing A, cyan representing B, yellow
representing C, and red representing D. The values of s1 and s2 have been scaled up to fall within the range of (0,5). Each quadrant in the plane
corresponds to a specific phenotype. The values of (s1 , s2) directly affect the determinants within the cell and, thereby, influence the outcome of cell
division, as described by Equations 3, 4. The gray cross denotes a comparable concentration of signaling agents, within which randomness plays a
significant role in determining cell division outcomes. (D) Fate of each stem cell SCi is influenced by a specific combination of (s1 , s2) pairs. There are
different pairs (s1 , s2) that can affect SC1 and leave SC2 unaffected. For example, columns 1 to 4 can influence SC1 and leave SC2 neutral, while columns
5 to 8 have the opposite effect.
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FIGURE 2
Resulting cellular pattern (third row) of a system influenced by two independent static signal profiles (first and second rows). The signal profiles
consist of a Gaussian profile, described by the exponential function exp[−(2σ2)−1((x − x*)2 + (y − y*)2)], and a sinusoidal profile sin(kx). The third row in
each column displays the final cellular pattern resulting from stem cell division and self-renewal. Initially, stem cells are randomly distributed in an
environment containing the signal profiles from the upper row. The final pattern, distinguishable by six colors, reveals specific cell types:magenta for
Sc1, green for Sc2, blue for offspring A, cyan for offspring B, yellow for offspring C, and red for offspring D. The outcome depends on the comparison of
signal concentrations at each point. The randomness involved in the patterns belongs to the areas where the concentration of positional signals is
comparable. The first column: (top) x* � 40, y* � 30, and σ � 2, (middle) x* � 60, y* � 30, and σ � 2 (bottom) the developed pattern in consequence of the
combination of its upper-head signals. The second column: (top) x* � 40, y* � 30, and σ � 2 (middle) and k � 4.5 (bottom) the developed pattern in
consequence of the combination of its upper-head signals. The third column (top) k � 4.5, (middle) x* � 40, y* � 30, and σ � 2 (bottom) the developed
pattern in consequence of the combination of its upper-head signals. The fourth column: (top) k � 1.5 (middle) and k � 4.5 (bottom) the developed
pattern in consequence of the combination of its upper-head signals.

FIGURE 3
Possible signaling agent patterns si (s(i)u ) following Equations 1, 2 with parameters: A � 0.9, B � 1.2, γ � 10000, and C � 0.2 and lattice size h � 0.01.
(Left) Spot pattern with Du � 1 and Dv � 20 Du, (middle) reverse spot pattern with Du � 25 and Dv � 500 Du, and (right) stripe pattern with Du � 1 and
Dv � 20 Du.
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interacting chemicals, namely, s(i)u and s(i)v , where i ∈ {1, 2}. The
spatial distribution of s(i)u and s(i)v is interdependent, as governed by
their corresponding dynamics. Thus, there are two independent
chemical variants produced by these two reaction–diffusion
processes. We assume that the concentration field of s(i)u in the
medium, i ∈ {1, 2}, defines the dynamic profile of each independent
signaling agent. Moreover, s(i)u and s(i)v are deemed to spread over the
environment with Ds(i)u

and Ds(i)v
, respectively. The governing

equations for the propagation of s(i)u and s(i)v are as follows (Shoji
et al., 2003):

∂s i( )
u

∂t
� ∇2s i( )

u + γf s i( )
u , s i( )

v( ), (1)
∂s i( )

v

∂t
� d∇2s i( )

v + γg s i( )
u , s i( )

v( ). (2)

Here, by rescaling the space variable, the diffusion coefficient of

s(i)u and s(i)v are set to 1 and d, respectively. Here, d is equal to
D

s(i)v
D

s(i)u

.

Thus, assuming that d≥ 1, the diffusivity of s(i)v is larger than that of

s(i)u . In addition, f(s(i)u , s(i)v ) and g(s(i)u , s(i)v ) are reaction kinetics of
the system represented with the following terms:

f s i( )
u , s i( )

v( ) � As i( )
u − s i( )

v + C and g s i( )
u , s i( )

v( ) � Bs i( )
u − s i( )

v − 1.

Here, A, B, and C are the controlling parameters. The kinetics also
constrains the variable s(i)u within a finite range: 0≤ s(i)u ≤ s(i)umax

. The
parameter γ exhibits the relative strength of reaction kinematics.
This dynamic with a reflective boundary condition can produce
steady-state heterogeneous spatial patterns of chemical
concentrations (Shoji et al, 2003). The diffusion process, with
d≥ 1, in this context, is considered the main deriving process for
the heterogeneity in the system. Moreover, s(i)umax

is considered the
controlling parameter, upon which the behavior of spatial patterns
differs; see Figure 3. To simulate the dynamic, we implement the
Gillespie method (Gillespie et al., 2007), which exhibits some degree
of randomness in the simulation of chemical kinetics. The Gillespie

algorithm is widely regarded as the “gold standard” for explaining
the behavior of systems characterized by a limited number of
determinants and driven by inherent fluctuations, all while
avoiding the complexities of mathematical equations. This
method generates a statistically possible solution of Equations 1,
2, for which the reaction rates are known. Defining the propensity
function for every single reaction, including diffusion ones that are
considered to be reducible to an analogous reaction, we have a
measure to find out the time when the next chemical reaction takes
place and determine which reaction is likely preferred by the system.
The entire reactions of the system and their corresponding
propensity functions are listed in Table 1. By updating the
propensity functions at each step, one can track the changes in
the corresponding cell-type population vector, which is induced by a
single occurrence of a particular reaction. Repeating the algorithm
simulates the whole behavior of the reaction–diffusion system
stochastically. The complete algorithm implementation is detailed
in Section 2.3. Before delving into that, it is crucial to explain how
various chemical environmental signals impact the ultimate fate of
an individual cell.

As previously mentioned, we assume that the concentration field
of s(i)u in the medium, where i ∈ 1, 2, represents the dynamic profile
of each separate signaling agent. From this point forward, whenever
we refer to si, we are referring to s(i)u .

2.2 Biased internal switch of determinants

Once we have identified the environmental signals that can
influence the fate of stem cells, we can explore the subsequent
question: how do simultaneous signals impact the destiny of a
single cell?

Let us assume that within the cytoplasm of each stem cell
SCi (i � 1, 2), there are two interacting chemical determinants, xi

and yi, where i ∈ {1, 2}, whose values play a crucial role in
determining the outcome of cell division. In this model, the
interaction dynamics of these cytoplasmic determinants of the
stem cell SCi (i � 1, 2) are controlled by a tri-stable regulatory
switch. This switch controls the fate of cell division and
determines whether the stem cell differentiates or self-renews.
(Balázsi et al., 2011; Staff, 2017; Khorasani et al., 2020; Khorasani
and Sadeghi, 2022, Khorasani and Sadeghi, (2024)). See Figure 1B.

∂xi

∂t
� α i( )

x

xn
i

βn + xn
+ k1

βn

βn + yn
i

− γ1xi, (3)
∂yi

∂t
� α i( )

y

yn
i

βn + yn
i

+ k2
βn

βn + xn
i

− γ2yi. (4)

In Figure 1B, the regulatory switch is shown. It involves mutual
repression of xi and yi and their degradation effects, as well as their
self-activation in the form of the Hill function. In the above
equations, n is the Hill coefficient, β is the synthesis rate of
determinants, α(i)x and α(i)y are the self-activation rates, k1 � k2
are the inhibition rates, and γ1 � γ2 are the degradation rates of
xi and yi, respectively.

It has been demonstrated by Khorasani et al. (2020) that in the
absence of stimulant signaling chemicals, when there is only one
type of stem cell and the coefficients in Equations 3, 4 are constant,

TABLE 1 Involved reactions and their corresponding propensity functions
(reaction no. 1–6) generating signaling patterns and the reactions (reaction
no. 7–10) involved in the production and degradation of intracellular
determinants. In total, there are 20 reactions incorporated in the Gillespie
algorithm, i ∈ {1,2}.

Reaction no. Reaction type Propensity function

1 Production of s(i)u γ(As(i)u + C)

2 Degradation of s(i)v γ(s(i)v )

3 Diffusion of s(i)u Du/h2

4 Production of s(i)u γ(Bs(i)u )

5 Degradation of s(i)v γ(s(i)v + 1)

6 Diffusion of s(i)v Dv/h2

7 Production of xi α(i)x
xni

βn+xn + k1
βn

βn+yn
i

8 Degradation of xi γ1xi

9 Production of yi α(i)y
yn
i

βn+yn
i
+ k2

βn

βn+xni

10 Degradation of yi γ2yi
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there are three stable steady-states for each stem cell. These steady
states correspond to three distinct cell fates: the stem cell itself and its
corresponding differentiated cells. The cell’s absorption to a specific

attractor is determined by the values of xi and yi, which, in turn,
defines the domains of the three attractors. Building upon previous
research, we aim to investigate how variant environmental chemical

FIGURE 4
Schematic illustration of the formation of developmental patterns influenced by external signals. Stem cells respond to dynamic signals, leading to
differentiation and self-renewal based on the number of determinants produced within their cytoplasm. Look-up tables summarize cell division
outcomes based on the signal combination intervals. The highlighted section with dice in the lower panel represents regions with comparable signal
concentrations. Here, the response of stem cells to these signals becomes unpredictable, and randomness plays an important role in determining
the outcome. See Algorithm 1 for in-depth details.
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signals influence the concentrations of xi and yi. In this study, we
consider two types of stem cells, SC1 and SC2, and assume the
presence of two independent signals, s1 and s2, in the environment.
The values of these signals evolve, and each stem cell (SCi) can
detect the presence of both s1 and s2. The cell then regulates its
internal determinants based on the amount of these signals it
receives, denoted as (s1, s2). We assume that the coefficients α(i)x

and α(i)y are not fixed parameters, but rather, they are influenced by
environmental signals s1 and s2. The behavior of α(i)x and α(i)y is
governed by the following relations:

α 1( )
j � α 1( )

0j + η s1( )η s2( ) if j � x
ζ s1( )ζ s2( ) if j � y

{ , (5)

α 2( )
j � α 2( )

0j + η s2( )ζ s1( ) if j � x
η s1( )ζ s2( ) if j � y

{ (6)

Here, η � s2

K2
1+s2 and ζ � K2

2

K2
2+s2. K1 and K2 are the fixed

parameters. We see that different concentrations of s1 and s2 will
lead to different levels of xi and yi, which will, in turn, influence the
fate of the stem cells.In this study, the parameters of Equations 3, 4
were set as follows: γ1 � γ2 � 0.38, β � 42, k1 � k2 � 30,
α(1)0j � α(2)0j � 30, and n � 4. Additionally, in the definition of η

and ζ , both K1 and K2 were adjusted to equal 2.5. Finally, the
parameters η and ζ were scaled up by a factor of 20. It is important to
note that these parameters were determined through a trial and error
process since the study was computational in nature.

FIGURE 5
Steady-state patterns of developmental cellular arrangements in a multiple signaling field. The figures depict the patterns obtained using
Algorithm 1, with each pattern governed by the dynamics of Equations 1, 2. The inline patterns, shown alongside, correspond to the signaling patterns
predicted by Algorithm 2. By understanding the distribution of stimulating signals for stem cells, Algorithm 1 can determine the final cellular
developmental pattern. Conversely, the inline patterns are generated according to the guidelines outlined in Algorithm 2 by analyzing the steady-
state cellular pattern in each element as input. The color code reflects the cell types.
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2.3 Patterns at the population level

In this section, we introduce a position-dependent procedure based
on the Gillespie algorithm to simulate the development of differentiated
cells in a population, as illustrated in Figure 4. The Gillespie algorithm is
widely used for modeling systems with a small number of determinants
or chemicals, taking into account inherent fluctuations. Previous studies
have mainly focused on understanding the decision-making
mechanism of a single type of stem cell. However, in this study, we
extend our analysis to include multiple types of stem cells and various
signaling stimulants in the system.

Consider a system comprising two types of stem cells, namely, SC1

and SC2. These stem cells possess the capability to undergo self-renewal
and differentiate into their specialized cells. The differentiation process is
regulated by the presence of signaling agents s1 and s2. SC1 is capable of
differentiating into A and B phenotypes, whereas SC2 is competent to
develop into C and D offspring; see Figure 1B. s1 and s2 independently
propagate on the substrate via the reaction–diffusion dynamics of
Equations 1, 2. The objective is to track the potential fate of stem cells
at each location on a two-dimensional grid based on their exposure to two
types of signals, s1 and s2. To achieve higher accuracy, the signal levels are
scaled up to a range of 0–5. For each present cell type, a 6 × 6 lookup

table is created at the start of the simulation, where each element in the
table represents the potential number of cells of the corresponding cell
type after division, assuming that a specific combination of s1 and s2
signals (s1, s2) exists at the mother cell’s location.

The cell cycle span represents the average time interval in which
each stem cell reaches the domain of one of its possible attractors: the
stem cell itself or its differentiated offspring. Through trial and error, it
has been determined that approximately 100 steps are necessary for the
cells to reach a state of homeostasis. During this period, the values of
intercellular signaling agents and intracellular determinants are updated
using the Gillespie algorithm. Table 1 contains the list of reactions for
these variants along with their corresponding propensity functions.
Once this period is completed, the cells are ready to undergo division. At
this point, we record the probable number of each possible fate based on
the values of the signals and determinants. These numbers serve as the
“virtual” destination of the stem cells and are recorded in their
respective 6 × 6 look-up tables, as shown in Figure 4. The value
6 represents the resolution of the signal considered by the
simulation for each cell. Consequently, the range of signal variations
has been divided into six equal intervals. The selection of the element to
enter the number of each probable fate in the table is directly dependent
on the specific subinterval within which the values of s1 and s2 reside.

FIGURE 6
Comparison of cellular patterns for multiple pairs of signaling patterns simulated using the proposed algorithm. Panel (A) illustrates the signaling
patterns pairs at the top of each column, while Panel (B) shows five independent simulated cellular patterns for each pair. The apparent similarity of the
cellular patterns demonstrates the reproducibility of the method. Refer to Figure 7 for an analytical measure of the pattern similarity.
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The process then repeats for another cell cycle duration, which is
typically 100 steps. After collecting enough data in the look-up tables,
for example after 1,000 steps, we can estimate the probability (Pb) of
each of the six cell types being born. This is done by referring to the
look-up tables and calculating the probability as the number of that
particular cell type in the table divided by the total population size.

The entire process continues until the difference between two
successive Pb values becomes smaller than a predefined tiny value,
denoted as ϵ. This signifies that there is no significant change in the
probability value and indicates the steady state of the pattern. The
final pattern is constructed using the probabilities of creating each
phenotype at the very last step.

To simulate the dynamic of the pattern formation through the
division process provoked by the positional chemical information,
we perform the following steps recurrently on a substrate of size
sz � 100, on which SC1 and SC2 have been distributed randomly
(Figure 4, panel of initial population arrangement).

1. For an adequate duration, such as 100 successive steps, let the
dynamic of Equations 3, 4, upon which the number of determinant
agents evolves, proceed. Here, we reckon that the signaling patterns
of s1 and s2 simultaneously evolve based on Equations 1, 2 and
provoke the stem cells toward a possible destiny.

2. Follow up the “potential” destiny of the stem cell located at each
grid on the plane. Allocate a 6 × 6 look-up table for each of the
present cell types (just once at the very first iteration). We scale up
the amounts of signals to the range of (0, 5). This is the variation
interval of the reverse spot signals. The rows of each table
represent the number of subintervals that correspond to
changes in s1, while the columns represent the number of
subintervals that correspond to changes in s2. Next, we need
to count the number of “virtual” offspring and renewed stem cells
and categorize them based on the current amount of s1 and s2 in
each location. Then, we insert the numbers into the row and
column that correspond to the subinterval where they reside in the
respective cell type; see Figure 4. It is crucial to highlight that, at
this point, the fate of the cells is not determined. Instead, an
assessment of their potential fate can be derived by taking into
account the spatiotemporal value of (s1, s2).

3. Repeat the two previous steps 1,000 times, and record the
corresponding classified data according to the above-mentioned
method. In this way, one collects more data and, in consequence,
the final predicted fate of the cells is closer to that of a real system.

4. Once every 1000 steps, assess the amount of s1 and s2 on every
single grid of the main substrate and find out the corresponding
number of the potential fate of the cell types on each of the six

FIGURE 7
Box plot illustrating the normalized score values for the cellular patterns depicted in Figure 6. The score valuemeasures the similarity of each pattern
to a reference deterministic pattern created from their extreme signaling value pairs.
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look-up tables. Then, compute the probability of the virtual
emergence of each cell type simply as the number which is
associated with it in the look-up table, divided by the number
of the whole population. After calculating the probability of all
possible outcomes of the cell-fate random variable, we compare
them with the same quantities for the 1,000 steps ahead and
replace their maximum difference in the d variable, which is taken
as an arbitrarily large value that guarantees that we will have
enough repetitions in our simulations. Repeat the above sequence
of instructions until the amount of d is less than that of
e � 0.0025, which is adopted as an arbitrary and constant limit
for the acceptable error in our simulations.

5. Finally, substitute the initial distribution of mother cells SC1 and
SC2 on the substrate with the final pattern of daughter cells of each
type based on their come-up probability. At this stage, every single
grid of the main substrate is implanted with the cell type that is
more likely conformed with the influence of the signal agent pair
(s1, s2) on the internal switch of determinants; see Figure 4. For a
summary of the ordered process, see Algorithm 1.

In a population of stem cells, the number of dividing cells remains
constant. An alternative explanation for the above algorithm can be
described as follows: once the mother cells reach a state of homeostasis
after 100 steps, they divide. However, the algorithm disregards the
differentiated cells as the algorithm focuses on studying the internal
switch of the stem cells at this stage. Thus, we assume that only the stem
cell daughter cells remain at each grid point. In the next iteration, the
offspring stem cells explore the phase space of (xi, yi) by updating the
values of xi and yi using the Gillespie algorithm. Then, these cells are
absorbed into one of the three stable states of the internal switch: the stem
cell itself or its differentiated offspring. As a result, the cells divide, and the
results are recorded in the look-up tables. Again, the differentiated cells
are disregarded, and the process is repeated for the stem cell offspring
across the entire grid. The algorithm continues until completion.

The only additional assumption in this description is that every
division always yields a stem cell as its daughter cell. The difference
between the two descriptions lies in the fact that the first description
defines potential cell fates, while the latter assumes that the divisions
are real. Both descriptions aim to gather more data, resulting in a
final predicted fate of the cells that are closer to that of a real system.

3 Results

3.1 Our signal-dependent tri-stable
switch works

Figure 1D illustrates the solutions of Equations 3, 4 in the
presence of variant pairs of (s1, s2). From different columns of
the figure, it is evident that when the stem cells are exposed to
different pairs of (s1, s2), the following fate of cell differentiation
differs. The stem cells’ response to the presence of signals, which is
implemented via Equations 5, 6, depends on the amount of both s1
and s2. In other words, there are pair combinations of (s1, s2) that
influence SC1, while SC2 remains neutral; e.g., column 1 to 4 and vice
versa (.e.g., column 5–8). On the other hand, every single stem cell
differentiates into one of its potential offspring based on the amount
of (s1, s2) to which it has been exposed. The first row of the tabular

Figure 1D displays the final course of action of SC1 in the presence of
variant combinations of (s1, s2). As it is seen in this row, in the
presence of (s1, s2) � (0, 0), B cell type is superior. The same trend is
seen when (s1, s2) � (2, 2) but with less difference between A and B
production. In the presence of (s1, s2) � (3, 3), the process is
reversed, and A production becomes prior to that of B cells.
When SC1 experiences (s1, s2) � (5, 5) pair signals, the A cell
type becomes superior. The corresponding signal pairs of the last
four columns have no impact on the preceding one of the cell types.
Similarly, the second row illustrates the behavior of SC2 in the
presence of different pairs of (s1, s2). It is seen that the first four rows
have no specific influence on altering production probabilities of C
and D. Although in the presence of (s1, s2) � (0, 5), the production
rate of C is higher, the process becomes reversed when the (s1, s2)
pair reaches (3,2). When s2 vanishes and s1 is on its highest value,
i.e., 5, the production probability of D(C) is the
maximum (minimum).

ϵ ← 0.0025. % a predefined small value.

d ← 10000. % the difference in emerging probabilities of

the six cell types between the successive steps.

To ensure a sufficient number of iterations, the

initial value of d is set as a large number.

co ← 0. % a dummy counter.

sz ← 100. % the number of grids on the plane.

pbold[6][sz][sz] ← 0.

Construct the medium and plant stem cells, SC1 and SC2.

Form signal patterns s1 and s2.

while d≥ ϵ do

co ← co + 1.

for i � 1 TO 100 do

Update the system.

end

Let the stem cells be divided potentially, observe the

offspring, and collect the data.

if co%1000 �� 0 then

pbnew ←Compute the probability of the birth of each

6 cell types based on the s1 and s2 values in their

mother cells’ grid.

d ← Maximum value of |pbnew − pbold|.
pbold ← pbnew.

end

end

Design the corresponding medium based on the

collected data

Algorithm 1. The sequential instruction to form a complex cellular pattern

based on a given signaling blueprint.

3.2 Individual cellular decisions lead to
collective cellular patterns under the
influence of combined signals

Figure 5 depicts the arrangement of the final developed cellular
patterns induced as a result of variant possible combinations of
signaling patterns governed by Eqs 1, 2. The color bar represents
different cell types. Purple and green stand for SC1 and SC2,
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respectively. Blue and cyan colors render phenotypes A and B,
respectively, while yellow and red colors refer to C and D
phenotypes, respectively. Each array of this arrangement
corresponds to the combination of two members of the solution
family of Eqs 1, 2, which are depicted inline in each case; see next
paragraph. According to Figure 3, the solution family of these
equations has three members: spot (left panel), reverse spot
(middle panel), and stripe (right panel). From Figure 5, it is
evident that the combination of these signaling patterns leads to
a diverse collection of distinctive cellular pattern.

3.3 One can recognize the signal patterns
from the final cellular arrangement,
provided that the prior assumption of the
pattern is given

sz ← 100.

pMat[sz][sz] ← the matrix corresponding to the

population pattern, and the color code for different

cell types.

s1[sz][sz] ← 0. %si[sz][sz], i ∈ {1,2} is the corresponding

matrix of si on the plane.

s2[sz][sz] ← 0.

for i � 1 TO sz do

for j � 1 TO sz do

if pMat[i][j] �� 1 then

s1[sz][sz] ← 0.5.

s2[sz][sz] ← 0.5.

end

if pMat[i][j] �� 2 then

s1[sz][sz] ← 1.

s2[sz][sz] ← 1.

end

if pMat[i][j] �� 3 then

s1[sz][sz] ← 0.

s2[sz][sz] ← 0.

end

if pMat[i][j] �� 4 then

s1[sz][sz] ← 0.5.

s2[sz][sz] ← 0.5.

end

if pMat[i][j] �� 5 then

s1[sz][sz] ← 0.

s2[sz][sz] ← 1.

end

if pMat[i][j] �� 6 then

s1[sz][sz] ← 1.

s2[sz][sz] ← 0.

end

end

end

Algorithm 2. The sequential instructions for determining the form of

triggering signaling patterns (spot, reverse spot, or stripe) associated

with the final cellular arrangement in a system of two reproducing stem

cells (SC1 and SC2) under the influence of two independent signals (s1 and

s2) in the environment. The signals are generated through a Turing process

with Equations 1, 2.

Figure 5 depicts the ultimate configurations of cellular
arrangements resulting from different combinations of signaling
patterns generated by Eqs 1, 2. The two corresponding acquired
signaling patterns are displayed at the bottom right of each array.
The key point here is that there is a dual relationship between the
signal distribution and cell growth pattern. By understanding the
distribution of signals that stimulate stem cells, algorithm 1 can be
utilized to ascertain the final cell growth pattern. Conversely, by
knowing the specific types of signals present, algorithm 2 can be
employed to determine the parameters associated with the signal
pattern based on the final cellular arrangement. In other words, if we
are provided with a snapshot of the steady state of a developed
cellular pattern and we assume that this pattern is influenced by two
independent signals (s1 and s2) generated through a Turing process
with Eqs 1, 2, algorithm 2 can predict the shape of each signal
(spot, reverse spot, or stripe) based on the observed final cellular
pattern. Recognition of signal patterns is a directional process.
Algorithm 2: first, it is necessary to consider two blank planes, each
of which is in accord with one of the signals to project its
corresponding pattern onto it. Next, we go through every single
pixel of the cellular pattern. Then, based on the color of the pixel,
we map the projection of this color onto the signal planes. Let us
assume that the color of a pixel is blue, meaning that this pixel is
occupied with a cell of phenotype A. According to the relations
(Eqs 5, 6) as well as Figure 4, this implies that at this spot, the
concentration of both signals is approximately at its own summit.
As a result, the projection of every blue pixel of the cellular pattern
on both signal planes is a white point. Similarly, the cyan color in
the cellular pattern corresponds to the B phenotype, whose
occurrence is highly probable when the concentration of both
signals is low. Accordingly, the map of each cyan pixel matches a
corresponding black color on both signal planes. Likewise, the
yellow (red) color represents the C phenotype (D phenotype),
whose production rate is high when the concentration of s1 is low
(high), while that of s2 is high (low). As a consequence, the
projection of each yellow (red) pixel onto the corresponding point
on the first signal plane is white (black), while its projection onto the
similar point on the second signal plane is black (white). For a
summary of the ordered process, see Algorithm 2.

4 Discussion

The positional stimuli have been emerging as key regulators of
transcription and gene expression in diverse physiological contexts
(Rulands et al., 2018). These environmental drivers engage in the
phenotypic diversity and proliferation/differentiation balance of
stem cells (Balázsi et al., 2011; Rulands and Simons, 2016; Blake
et al., 2006). The regulation process of non-genetic diversity involves
the interplay of intracellular and intercellular components to
interpret positional cues (Çağatay et al., 2009; Acar et al., 2008).
In a competing arena in which various chemical stimulants vie for
affecting a cell’s fate more, the process demands more robust and
complex mechanisms. In order to specify and extend their offspring
territory, the stem cells utilize a signaling process to communicate
and collaborate with each other. This process ends in collective self-
organized forms on length scales that are much larger than those of
the individual units Chhabra et al. (2019).
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In this study, first, we investigated the impact of multiple passive
external signals on intracellular switches of a single stem cell. This
provides us with a direct inspection of the connection between
intracellular and extracellular dynamics. By mapping the
environmental signaling patterns to the probability of the
emergence of differentiated cell types, this model is capable of
capturing any desired complex pattern, whether passive or active.
The sort of models that recapitulates signaling dynamics and
predicts cell fate patterning upon chemical perturbations
precedingly has been investigated in non-competitive
environments (Khorasani and Sadeghi, 2022; Khorasani et al.,
2020; Sharifi-Zarchi et al., 2015; Chambers et al., 2007; Kalmar
et al., 2009; Chen et al., 2010; Bergsmedh et al., 2011). Here, we
focused on the behavior of each cell in the interaction with multiple
signals. Figure 2 illustrates the resulting phenotypic cellular patterns
of different combinations of two typical signal profiles of Gaussian
and sinusoidal blueprints.

The environmental signals influence the fate of each stem cell,
SCi (i = 1,2), by means of biasing the regulation of our tri-stable
switch; see Equations 3, 4. Based on the definition of α(1)j and α(2)j in
Equations 5, 6, it is evident that the pairs of (s1, s2) are relevant in
controlling the decisions of this switch. This definition is
advantageous in various aspects: first, it directs each stem cell’s
fate to the symmetric phase space of Figure 1C, where each of the
patches correspond to one of the resulting phenotypes and there is
no dominant domain between them. In addition, the representative
patches are far enough apart to lead to distinctive outcomes in the
occurring cellular pattern field. The narrow cruciform band, i.e., the
gray area in Figure 1C between these four patches, is where the fate
of each cell is determined stochastically. From Figure 1D, it is
evident that the regulatory switch plays either an active role or a
neutral one based on the amount of existing signals (s1, s2) in each
point, i.e., combinations of (s1, s2), which effectively lead to
offspring A or B from SC1, have nothing to do with SC2 and
vice versa. In consequence, there is a smooth transition from left
to right in each row of Figure 1D.

After investigating the impact of static environmental
stimulants on the internal switch, we dealt with the active
signaling between the sources that produce variant
phenotypes. We took advantage of confined Turing models for
two different signals secreted from each of stem cells (Shoji et al.,
2003). The dynamic includes linear reaction terms and additional
constraints that confine the two variables within a finite range.
The resulting patterns of this dynamic are either stationary
striped patterns or spotted patterns. The second pattern, in
turn, consists of two forms: spotted and reverse spotted
patterns. Here, the tuning parameter upon which the pattern
type is specified is the maximum concentration of the activator
s(i)u , where i ∈ 1, 2 (Shoji et al., 2003); see Figure 3. Based on this
prior dynamic, nine distinct mutual patterns are generated by the
two signals s(1)u and s(2)u .

Stochasticity has been proven to be a non-genetic diversifying
resource of variation in nature (Delbrück, 1940; McEntire et al.,
2021; Acar et al., 2008; Kepler and Elston, 2001; Wu and
Tzanakakis, 2012; Perez-Carrasco et al., 2016). It has been
shown that controlled amount of randomness ends in
phenotypic variation and, as a result, population heterogeneity
(Losick and Desplan, 2008; Greulich and Simons, 2016;

Khorasani et al., 2020). In this study, to reflect the non-
deterministic portion of the signaling system, we implemented
the Gillespie algorithm (Gillespie et al., 2007) by stepping in time
to successive molecular reaction events according to the premises
of the model of Shoji et al. (2003); see Equations 1, 2. Another
aspect of incorporating randomness in our reductionist insight is
simulating the emergence of every cell type in the look-up table
based on the calculation of its corresponding probability; see
Figure 4. Stochastic algorithms generally provide the chance to
explore multiple solutions and potentially uncover a better one
compared to a deterministic method, which may get stuck in a
local minimum (Gillespie et al., 2007). Additionally, these
algorithms can be easily tailored to different problems and
constraints, making them adaptable for solving more complex
issues. By utilizing stochastic methods, we can account for the
inherent randomness and fluctuations present in natural systems.
This strategy allows for controlled noise to be introduced into the
system. As long as the level of randomness is controllable, the
system’s behavior remains predictable, and the resultant patterns
are statistically reproducible.

In our algorithm, we evaluate the similarity between cellular
patterns exposed to different pairs of signaling patterns by
comparing them numerically to a cellular pattern constructed
through a deterministic process while being exposed to the same
pair of signaling patterns. This measure of similarity serves as an
indicator of the reproducibility of cellular patterns using the
algorithm proposed. To accomplish this, we first create two new
100 × 100 matrices, each corresponding to one of the signaling
patterns. The size of the matrices corresponds to the plane on
which the signals are distributed, with each element indicating
the quantity of a specific signal at each grid location. The
elements of these newly constructed matrices are either zero
or the maximum value of that signal based on the corresponding
elements in the original signaling matrices. If the original signal
matrix element is less than half of its maximum number, the
element in the new matrix is set to zero. If the element is greater
than or equal to half of its maximum number, it is replaced by the
maximum value of that signal. For example, when two reverse-
spot type signaling patterns are distributed in the medium, each
with a maximum value of 5, there are four possible pairs of
extreme signals: (0,0),(0,5),(5,0), and (5,5). From Figure 1, it is
evident that these pairs of signals lead to the emergence of A, C,
D, and B types of cells, respectively.

By using these extreme signaling patterns, we can determine the
fate of each stem cell in the medium and create a deterministic
cellular pattern accordingly. We now have a reference pattern to
assess the reproducibility of our algorithm and measure the
resemblance of different patterns exposed to similar pairs of
signaling patterns. Figure 6 illustrates five different realizations
for various pairs of signaling patterns. The signaling patterns are
shown above each column, and the resulting cellular population
realizations are displayed below them in each column. We can
compare each realization with its corresponding deterministic
pattern, pixel by pixel. If the cell types in a pixel are identical,
we assign a score of +1 for the resemblance of the pattern to the
deterministic reference pattern. The normalized score function,
which quantifies the resemblance, is the sum of all these +1’s
divided by the population size. Figure 7 shows the box plot of the
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score variable for the cellular patterns in Figure 6 with respect to
the different signaling pattern pairs. It is observed that for all the
pairs, the median of the scores is above 0.6. We see that the
synthesis of the signaling arrangement with the switch in the
presence of controlled noise creates rich and highly
reproducible organizations of differentiated cells. Figure 5
depicts the resulting patterns of the differentiated cells that
have been exposed to various combinations of active signaling
lay-outs of Figure 3. The procedure we dealt with in this study is
one of the various known roots to construct an organized
arrangement of cells. Mobility of cells (Gallagher et al., 2022),
modulation of the physical and geometrical environment (Valet
et al., 2022), and priming with chemical signals (Shahbazi et al.,
2019) are among other intrinsic capacities of stem cells to make
patterns. In practice, a combination of all these methods is
incorporated to form an organization (Omid-Shafiei et al.,
2023). Nevertheless, it is seen that solely following chemical
environmental cues leads to the production of a rich and wide
range of patterns.

In conclusion, this study demonstrates that the signal-
dependent tri-stable switch can serve as a useful tool to bridge
intracellular dynamics with intercellular structures. In this scenario,
although the stem cells do not directly interact with each other, their
reproduction rates are influenced by external signals in their
environment through the switch mechanism within each cell. By
studying individual cellular decisions and the influence of multiple
signals, we observe how complex cellular patterns emerge. Although
the algorithm utilized in this study simplifies certain aspects, such as
considering the dynamic environment during cell division,
apoptosis, and cell movement, the presented systematic approach
allows for the simulation of complex cellular organizations based on
fundamental biophysical processes, resulting in reproducible
outcomes. Moreover, for any given complex cellular pattern, for
which merely the prior class of signal patterns is known, the
provided method closely concludes the signaling profile that sets
off the cellular pattern. Overall, these findings highlight the potential
of using signal-dependent switches for better comprehension and
regulation of cellular behaviors in diverse scenarios.
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